Having Heater, Igniter, Or Fuel Supply For Reactor Patents (Class 60/303)
  • Publication number: 20140245718
    Abstract: An exhaust aftertreatment system for an engine is provided that includes a burner, an air supply system and a control module. The air supply system may be in fluid communication with the burner and may include an air compressor disposed upstream from the burner. The air compressor may include a pump mechanism, a clutch assembly selectively transferring torque from the engine to the pump mechanism, and a motor selectively driving the pump mechanism. The control module may be in communication with the clutch assembly and the motor. The control module may selectively switch the air compressor between a first operating mode in which the clutch assembly transfers torque from the engine to the pump mechanism and a second operating mode in which the motor drives the pump mechanism.
    Type: Application
    Filed: March 1, 2013
    Publication date: September 4, 2014
    Applicant: TENNECO AUTOMOTIVE OPERATING COMPANY INC.
    Inventor: Keith G. Olivier
  • Patent number: 8820059
    Abstract: A mounting assembly for an injector is located in a curved portion of an exhaust line having an exhaust flow from an upstream end to a downstream end. The mounting assembly includes an indent extending at least partially into the exhaust line curved portion and disposed in the exhaust flow. The downstream wall has an interior surface oriented to substantially face the exhaust line downstream end. A recess extends from the downstream wall in a direction away from the exhaust line downstream end, and a recess aperture is formed in the recess and configured to fluidly communicate with the injector. The recess reduces the amount of exhaust heat reaching the injector tip.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: September 2, 2014
    Assignee: Caterpillar Inc.
    Inventors: Matthew F. Fahrenkrug, Jason W. Hudgens, Richard A. Crandell
  • Patent number: 8820051
    Abstract: A vehicle includes a fuel tank, an internal combustion engine, an oxidation catalyst, a regenerable particulate filter in fluid communication with an outlet side of the oxidation catalyst, and a host machine. The host machine calculates an actual hydrocarbon level in the exhaust stream downstream of the particulate filter as a function of an actual energy input value and an actual output value of the oxidation catalyst, and subsequently executes a control action using the actual hydrocarbon level. A method for use aboard the vehicle includes using the host machine to calculate an actual hydrocarbon level in the exhaust stream downstream of the particulate filter, including solving a function of an actual energy input value and an actual energy output value of the oxidation catalyst, and executing a control action aboard the vehicle via the host machine using the actual hydrocarbon level.
    Type: Grant
    Filed: August 10, 2010
    Date of Patent: September 2, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Patrick Barasa, Scot A. Douglas, Jason D. Mullins
  • Patent number: 8820052
    Abstract: A liquid reductant injection system is provided. The liquid reductant injection system includes a storage tank housing a reductant solution, a return conduit extending into the storage tank, the return conduit including an outlet positioned in the storage tank, and a thermosyphon comprising an evaporator coupled to an exhaust conduit and in fluidic communication with a condenser coupled to a portion of the return conduit inside the storage tank, the condenser positioned vertically above the evaporator.
    Type: Grant
    Filed: March 14, 2012
    Date of Patent: September 2, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Michael Levin, Furqan Zafar Shaikh, Thomas A. McCarthy
  • Patent number: 8820058
    Abstract: A system and method includes an exhaust aftertreatment system for an internal combustion engine having a reductant stored in a solid storage media. The reductant is released by heating the solid storage media to convert the reductant to gaseous form. The system and method determines the quality of the solid storage media by measuring operating parameters of the aftertreatment system and comparing the operating parameters to expected parameters stored in a memory of a controller of the system.
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: September 2, 2014
    Assignee: Cummins Inc.
    Inventors: Cary Henry, Neal W. Currier, Aleksey Yezerets, Michael J. Ruth
  • Patent number: 8820054
    Abstract: In an internal combustion engine, inside of an engine exhaust passage, an upstream side air-fuel ratio sensor (23), a hydrocarbon feed valve (15), an exhaust purification catalyst (13), and a downstream side air-fuel ratio sensor (24) are arranged in this order from the upstream. At the time of engine operation, the injection amount of hydrocarbons from the hydrocarbon feed valve (15) is controlled based on the air-fuel ratio detected by the upstream side air-fuel ratio sensor (23) and the downstream side air-fuel ratio sensor (24) so that the amplitude of change of the concentration of hydrocarbons which flow into the exhaust purification catalyst (13) becomes within a predetermined range of amplitude.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: September 2, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yuki Bisaiji, Kohei Yoshida, Mikio Inoue, Kazuhiro Umemoto
  • Publication number: 20140238002
    Abstract: An exhaust aftertreatment system may include a first housing and a burner. The first housing may include first and second chambers. The first chamber may include an exhaust gas inlet receiving exhaust gas from an engine. The second chamber may receive exhaust gas from the first chamber and may include an exhaust gas outlet. The burner may include a second housing and a combustion chamber disposed within the second housing. The second housing may be at least partially disposed within the first chamber. The burner may supply heated gas to the second chamber. The heated gas within the burner may be fluidly isolated from exhaust gas in the first chamber. The second housing may be in a heat transfer relationship with exhaust gas in the first chamber.
    Type: Application
    Filed: February 27, 2013
    Publication date: August 28, 2014
    Inventor: Tenneco Automotive Operating Company Inc.
  • Publication number: 20140237999
    Abstract: A burner for an exhaust aftertreatment system may include a housing assembly and an ignition device. The housing assembly may include an inner shell surrounded by intermediate and outer shells. The inner shell may at least partially define a combustion chamber. The housing assembly may include an airflow passage having an opening extending through the outer shell. The airflow passage may extend between the outer shell and the intermediate shell as well as between the intermediate shell and the inner shell. The airflow passage may provide fluid communication between the opening and the combustion chamber. The ignition device may be at least partially disposed within the housing assembly and may ignite fuel received from a fuel source and air received from the airflow passage to produce a flame in the combustion chamber. The airflow passage may be in a heat transfer relationship with the flame in the combustion chamber.
    Type: Application
    Filed: February 27, 2013
    Publication date: August 28, 2014
    Applicant: TENNECO AUTOMOTIVE OPERATING COMPANY INC.
    Inventor: Keith G. Olivier
  • Publication number: 20140238000
    Abstract: A burner for an exhaust aftertreatment system is provided that includes a nozzle assembly having a body and a heating element. The body may include first and second cavities, a fuel inlet passage and an air inlet passage. The first cavity may receive portion of the heating element and may be in fluid communication with the fuel inlet passage and a fuel discharge passage such that fuel from the fuel inlet passage is heated in the first cavity by the heating element and discharged from the first cavity through the fuel discharge passage. The second cavity may be in fluid communication with the air inlet passage and an air discharge passage. The first and second cavities may be fluidly isolated from each other and may supply fuel and air, respectively, to an exit aperture disposed downstream of the fuel discharge aperture and the air discharge aperture.
    Type: Application
    Filed: February 27, 2013
    Publication date: August 28, 2014
    Inventor: TENNECO AUTOMOTIVE OPERATING COMPANY INC.
  • Publication number: 20140238001
    Abstract: An exhaust treatment system may include a burner, a flame sensor assembly and a control module. The flame sensor assembly may be at least partially disposed within the burner and may include an insulator and an electric heating element in heat transfer relation with the insulator. The control module may be in communication with the flame sensor assembly. The control module may determine whether a flame is present in a combustion chamber based on feedback from the flame sensor assembly. The control module may detect contamination on the insulator based on feedback from the flame sensor assembly. The control module may operate the heating element in a first mode in response to detection of a contamination in which the control module causes electrical power to be applied to the heating element to raise a temperature of the heating element to burn contamination off of the insulator.
    Type: Application
    Filed: February 27, 2013
    Publication date: August 28, 2014
    Applicant: TENNECO AUTOMOTIVE OPERATING COMPANY INC.
    Inventor: Keith G. Olivier
  • Patent number: 8813477
    Abstract: An exhaust purification system is provided that can continuously maintain a NOx purification rate to be high while suppressing the occurrence of ammonia slip. The exhaust purification system includes a slip determination portion 34 that determines the occurrence of ammonia slip based on an output value NH3CONS of an ammonia sensor 26. A reference injection amount calculating portion 31 calculates a reference injection amount GUREA—BS based on a parameter correlating to an operating state of an engine. A switching injection amount calculating portion 32 decreases in amount a urea injection amount GUREA by setting a switching injection amount GUREA—SW to a negative value in response to having determined that ammonia slip has occurred, and increases in amount the injection amount GUREA by setting the switching injection amount GUREA—SW to a positive value in response to a storage amount estimated value STUREA having fallen below a predetermined switch storage amount STUREA—SW.
    Type: Grant
    Filed: November 1, 2010
    Date of Patent: August 26, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventors: Yuji Yasui, Kazuo Yanada
  • Patent number: 8806855
    Abstract: The invention relates to an arrangement (1) for operating an exhaust gas aftertreatment device, in particular of a motor vehicle, having a plurality of active sensors (3-8) and a control device (2) that comprises at least one voltage supply unit (9) to which the sensors (3-8) are operatively connected. According to the invention, the voltage supply unit (9) comprises at least two supply benches (13-15) that can be switched independently from each other. The sensors (3-8) are grouped according to the function thereof and are then associated with one of the supply benches (13-15).
    Type: Grant
    Filed: August 4, 2010
    Date of Patent: August 19, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Bernd Schelling, Patrick Bauer, Mehmet Oencel, Ralph Bauer, Thomas Holst, Georg Hoegele
  • Patent number: 8800268
    Abstract: Exhaust treatment filters, systems, and methods are disclosed. According to one or more embodiments, a particulate filter is zone coated with an oxidation catalyst and is used in an emission treatment system or method including a NOx reducing catalyst and an optional NH3 destruction catalyst.
    Type: Grant
    Filed: November 29, 2007
    Date of Patent: August 12, 2014
    Assignee: BASF Corporation
    Inventors: Kenneth Voss, Ingemar Gottberg, Steve Truesdail, Marius Vaarkamp
  • Patent number: 8800275
    Abstract: A mounting assembly for an injector is located in a curved portion of an exhaust line having an exhaust flow from an upstream end to a downstream end. The mounting assembly includes an indent extending at least partially into the exhaust line curved portion and disposed in the exhaust flow. The downstream wall has an interior surface oriented to substantially face the exhaust line downstream end. A recess extends from the downstream wall in a direction away from the exhaust line downstream end, and a recess aperture is formed in the recess and configured to fluidly communicate with the injector. The recess reduces the amount of exhaust heat reaching the injector tip.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: August 12, 2014
    Assignee: Caterpillar Inc.
    Inventors: Richard Anderson Crandell, Jinhui Sun, Yong Yi, Zhi Huang, Matthew Fahrenkrug, James E. Webster, III, Michael Max Blanco
  • Patent number: 8800276
    Abstract: A mixing system is provided. The mixing system includes a housing defining a boundary of a mixing conduit including an expansion section with an injector mount and a reductant diverter extending into the conduit upstream of the injector mount in the expansion section. The mixing system further includes an atomizer with openings positioned in the housing and a helical mixing element positioned in the housing.
    Type: Grant
    Filed: March 14, 2012
    Date of Patent: August 12, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Michael Levin, Furqan Zafar Shaikh
  • Patent number: 8793980
    Abstract: Systems and methods for controlling temperature and total hydrocarbon slip in an exhaust system are provided. Control systems can comprise an oxidation catalyst, a particulate filter, a fuel injector, and a processor for controlling a fuel injection based on an oxidation catalyst model. Example system includes a virtual sensor comprising a controller for calculating and providing the total hydrocarbon slip to subsystems for after-treatment management based on modeling the oxidation catalyst. Example methods for controlling the temperature and the total hydrocarbon slip in an exhaust system include the steps of providing an oxidation catalyst model, monitoring a condition of the exhaust system, calculating a hydrocarbon fuel injection flow rate and controlling a fuel injection. The example methods further include the steps of determining an error in the oxidation catalyst model based on the monitored condition and changing the oxidation catalyst model to reduce the error.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: August 5, 2014
    Assignee: Corning Incorporated
    Inventors: Suhao He, Achim Karl-Erich Heibel, Wenbin Qiu
  • Patent number: 8793982
    Abstract: The present application generally relates to a diesel engine and, more particularly, to a control system and method for an exhaust aftertreatment system for a locomotive diesel engine. In accordance with an embodiment of the present system, a two-stroke uniflow scavenged diesel engine system including an exhaust aftertreatment system is described for reducing NOX emissions and achieving desired fuel economy. More specifically, a system and method for controlling the exhaust aftertreatment system is provided. The present system being adapted to monitor and control select components of the exhaust aftertreatment system. Specifically, the control system may be adapted to control select components of an exhaust aftertreatment system to adaptively regulate filtration based on various operating conditions of the locomotive.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: August 5, 2014
    Assignee: Electro-Motive Diesel Inc.
    Inventors: Ajay Patel, Gary R. Svihla
  • Patent number: 8793983
    Abstract: A heater tube for an exhaust system is disclosed. The heater tube may have an open end to receive heated exhaust from a pre-heater. The heater tube may have a closed end located opposite the open end. The heater tube may also have an outer surface extending from the open end to the closed end. The heater tube may further have a fin attached to the outer surface. In addition, the heater tube may have an opening disposed on the outer surface to discharge the heated exhaust.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: August 5, 2014
    Assignee: Electro-Motive Diesel, Inc.
    Inventors: Pradeep K. Ganesan, Satyajit Gowda
  • Publication number: 20140208719
    Abstract: A vehicular fluid injection system including a storage tank, an injection line, a heating system including an electrical heating element being powered by a power source, and a voltage converter inserted between the power source and the heating element, alone or combined with a PWM power regulation.
    Type: Application
    Filed: July 17, 2012
    Publication date: July 31, 2014
    Applicant: Inergy Automotive Systems Research (Societe Anonyme)
    Inventors: Volodia Naydenov, Stephane Leonard, Guillaume Zeller, Florent Barzic, Benone Dorneanu, Laurent Etorre
  • Patent number: 8789362
    Abstract: A metering system for injecting a reducing agent into the exhaust gas flow of an internal combustion engine for selective catalytic reduction, including a reducing agent tank, a metering pump, an air compressor for a compressed air supply, at least one nozzle which is in a flow connection to a pressure line of the compressed air supply and a pressure line of the metering pump and by which the reducing agent can be injected into the exhaust gas flow by means of compressed air, the air compressor being located on a mounting plate and having channels which form intake and pressure lines of the air compressor and which have connection regions at the outlets from the mounting plate and one or more pockets which are in a flow connection to the channels and which form the intake connection and/or the pressure connection of the air compressor.
    Type: Grant
    Filed: January 18, 2011
    Date of Patent: July 29, 2014
    Assignee: Albonair GmbH
    Inventors: Werner Overhoff, Denis Leichinger
  • Patent number: 8789358
    Abstract: A control system for a vehicle includes a location identification module, an adjustment triggering module, and an adjustment module. The location identification module identifies a location where an engine of the vehicle is expected to be shut down and later re-started with at least one temperature within a predetermined range of an ambient temperature at the time of the re-start. The adjustment triggering module generates a triggering signal when a vehicle location provided by a global positioning system (GPS) is less than a predetermined distance from the identified location. The adjustment module selectively one of increases and decreases a rate at which a dosing agent is injected into an exhaust system, upstream of a selective catalytic reduction (SCR) catalyst, when the triggering signal is generated.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: July 29, 2014
    Inventor: Adam Vosz
  • Patent number: 8789363
    Abstract: An emission abatement assembly includes a fuel-fired burner having a combustion chamber and a particulate filter positioned downstream of the fuel-fired burner. A mixing baffle is positioned between the fuel-fired burner and the particulate filter.
    Type: Grant
    Filed: June 13, 2007
    Date of Patent: July 29, 2014
    Assignee: Faurecia Emissions Control Technologies, USA, LLC
    Inventors: Robert J. Iverson, John B. Abel, Navin Khadiya, John P. Nohl, Geoff Morgan, Wilbur H. Crawley
  • Patent number: 8789359
    Abstract: An exhaust purification system of an internal combustion engine, having an exhaust purification catalyst in the exhaust passage of the engine of a vehicle, a fuel supply device provided in the exhaust passage upstream the exhaust purification catalyst and supplies fuel to an exhaust gas flowing into the catalyst, a heating device which heats the fuel supplied from the fuel supply device, and a controller which controls the heating device. The controller controls the heating device, when a first processing request based on a state of the exhaust purification catalyst is standing and a second processing request based on an operating state of the vehicle is not standing (t2), to a pre-heating temperature lower than an ignition threshold capable of igniting the fuel and, when the first processing request and the second processing request are standing (t3), to an ignition temperature higher than the ignition threshold.
    Type: Grant
    Filed: April 1, 2010
    Date of Patent: July 29, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Kenichi Tsujimoto
  • Publication number: 20140202142
    Abstract: A diesel exhaust fluid (DEF) tank for an off-road vehicle including a first conduit channel molded into an exterior surface of the DEF tank, at a first depth, in which the first conduit channel is configured to guide a first conduit along the exterior surface of the DEF tank. The DEF tank further including a second conduit channel molded into the exterior surface of the DEF tank at a second depth, different than the first depth, in which the second conduit channel is configured to guide a second conduit, and the first depth and the second depth are selected to create a vertical gap between the first conduit and the second conduit at an intersection of the conduits.
    Type: Application
    Filed: January 18, 2013
    Publication date: July 24, 2014
    Applicant: CNH America LLC
    Inventors: Timothy Ralph Hertsgaard, Jason Keith Novacek, David Donald Blomberg, John Thomas Rasset, Erik Andrew Larson, Paul Engene Wibbels, Daniel LaRoy Hinz, Jay Michael Larson, David Larry Tveito, David Edward Susag, Russell Victor Stoltman, Chad Alry Bautz, Nathaniel James Keller, David Sheldon Booth
  • Patent number: 8783018
    Abstract: A catalyst supported on a substrate includes a heater embedded in a sub-region of the substrate to heat a local region of the catalyst. The amount of ammonia stored on the catalyst may be determined and controlled through conductivity measurements in the locally heated portion of the system described.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: July 22, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: David John Kubinski, Devesh Upadhyay
  • Patent number: 8783014
    Abstract: The present invention is intended to suppress the inflow of an ammonia derived compound to an EGR passage. In the present invention, in an exhaust system, there is arranged an ammonia derived compound addition means in such a position as to enable at least a part of the ammonia derived compound added therefrom to arrive at a connection portion of the EGR passage. Further, in the present invention, the inflow of the ammonia derived compound added from the ammonia derived compound addition means into the EGR passage is suppressed by a suppression means.
    Type: Grant
    Filed: September 10, 2009
    Date of Patent: July 22, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Kazuhiro Itoh
  • Patent number: 8776499
    Abstract: Provided are exhaust systems, components, and catalytic articles that have been passivated for use in conjunction with diesel engines that includes a NOx abatement system that uses a reductant. These items are passivated in order to minimize degradation of a reductant in their presence when, for example, they have been subjected to temperatures in excess of 650° C.
    Type: Grant
    Filed: February 24, 2009
    Date of Patent: July 15, 2014
    Assignee: BASF Corporation
    Inventors: Edgar V. Huennekes, Martin Kalwei
  • Patent number: 8776498
    Abstract: Embodiments are described to improve the durability of a lean NOx aftertreatment system. According to one embodiment of the present invention an air injection system is used to inject air continuously into the exhaust system between the upstream three-way catalyst and the downstream selective catalytic reduction (SCR) catalyst when the engine is operating at stoichiometric or rich air/fuel ratios and the exhaust temperatures are above a calibratible level (e.g., 700° C.). In another embodiment, an oxidation catalyst is positioned downstream of the air injection point to prevent exothermic reactions from occurring on the SCR. In another embodiment, the reductant for the SCR is generated in-situ. In yet another embodiment, a diverter valve with a reduction catalyst in a bypass arm is utilized to bypass the SCR during high load conditions.
    Type: Grant
    Filed: April 16, 2008
    Date of Patent: July 15, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Harendra S Gandhi, Robert Walter McCabe, Joseph Robert Theis
  • Patent number: 8776495
    Abstract: An exhaust gas after treatment system for an internal combustion engine comprises an oxidation catalyst device having a first substrate, a heater, and a second substrate disposed serially between the inlet and the outlet. A hydrocarbon supply is connected to and is in fluid communication with the exhaust system upstream of the oxidation catalyst device for delivery of a hydrocarbon thereto. The heater is configured to oxidize the hydrocarbon therein and to raise the temperature of the second substrate and exhaust gas passing therethrough.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: July 15, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Eugene V. Gonze, Michael J. Paratore, Jr.
  • Patent number: 8776502
    Abstract: This disclosure relates to a method for controlling a system for regenerating a diesel particulate filter. The method includes monitoring an engine run time that has lapsed since a previous regeneration event. The method also includes monitoring backpressure behind the diesel particulate filter. The method further includes triggering a regeneration flag if the engine run time that lapsed since the previous regeneration event reaches a predetermined time limit and the backpressure exceeds a minimum value.
    Type: Grant
    Filed: July 1, 2009
    Date of Patent: July 15, 2014
    Assignee: Donaldson Company, Inc.
    Inventors: John Hiemstra, Eivind Stenersen, Wenzhong Zhang, Allan T. Hovda, Gary Dale Reeves, Josh Kundert, Wayne M. Wagner, Todd R. Taubert
  • Patent number: 8776507
    Abstract: A system for regenerating a particulate filter mounted on an exhaust pipe of a gasoline engine including a plurality of cylinders and an ignition device for igniting fuel and air in the cylinder, a three-way catalyst device mounted on the exhaust pipe connected to the gasoline engine, and to oxidize or reduce exhaust gas, the particulate filter mounted on the exhaust pipe downstream of the three-way catalyst device to trap particulate matter and regenerate the particulate matter using heat of the exhaust gas, a differential pressure sensor mounted upstream and downstream of the particulate filter and to measure a pressure difference of the particulate filter, and a control portion to receive the measured pressure difference and control parameters to determine an amount of non-ignited fuel which is not ignited and flows to the three-way catalyst device among the fuel flowing into the plurality of cylinders.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: July 15, 2014
    Assignee: Hyundai Motor Company
    Inventors: Chibum In, Ki Young Yoon
  • Patent number: 8776500
    Abstract: A control system for a hybrid vehicle is presented. The control system can include an air/fuel ratio control module that selectively commands a rich air/fuel ratio upon starting an engine based on a temperature of an electrically heated catalyst (EHC) in an exhaust system of the engine, wherein the EHC includes a hydrocarbon (HC) adsorber. The control system can include an air pump control module that selectively activates an air pump supplying air into the exhaust system upstream from the EHC based on whether the engine is on and at least one of whether the HC adsorber is full and whether the EHC is saturated with oxygen. The control system can also include an electric heater control module that selectively activates an electric heater of the EHC based on whether the engine is on and the temperature of the EHC, as well as whether the HC adsorber is full.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: July 15, 2014
    Inventors: Eugene V. Gonze, Halim G. Santoso, Bryan N. Roos
  • Publication number: 20140190151
    Abstract: A heating apparatus and method for use in an exhaust gas system is provided that includes a container body defining an exhaust gas pathway, a heater flange component attached to an exterior of the container body, and a heater assembly disposed in the exhaust gas pathway and secured to the heater flange component. The heater assembly includes at least one heater element, a bracket assembly that secures the at least one heater element in the container body, and a conformal bracket for securing the at least one heater element to the bracket assembly.
    Type: Application
    Filed: December 18, 2013
    Publication date: July 10, 2014
    Applicant: Watlow Electric Manufacturing Company
    Inventors: David P. Culbertson, Richard T. Williams, JR., Christopher Meyers, Jeremy Ohse, Mark Everly, Roger Brummell, Gerald S. Jackson, Jake Spooler, James N. Pradun, Scott H. Boehmer, Mitchell T. Diaco, Robert K. Frake
  • Patent number: 8769935
    Abstract: A method of operating an internal combustion engine having a reductant delivery and storage system in an emission control system, comprising of correlating a change in a monitored operating condition with a refill event to determine whether a reductant-diluting substance has been added to the reductant storage system; and limiting vehicle operation based on the correlation.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: July 8, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Furqan Zafar Shaikh, John Paul Bogema, Michiel J. Van Nieuwstadt, Scott Donald Cooper, Garry Anthony Zawacki, Jacobus Hendrik Visser, William Charles Ruona, Timothy Webb, Ed Kulik, David K. Chen
  • Patent number: 8763370
    Abstract: Inside of an engine exhaust passage, a hydrocarbon feed valve (15) and an exhaust purification catalyst (13) are arranged. At the time of engine operation, a first NOx purification method which maintains the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst (13) lean while injecting hydrocarbons from the hydrocarbon feed valve (15) at predetermined feed intervals to thereby remove the NOx which is contained in exhaust gas and a second NOx purification method which switches the air-fuel ratio of the exhaust gas flowing to the exhaust purification catalyst (13) from lean to rich by intervals longer than the above predetermined feed intervals to thereby remove the NOx are selectively used in accordance with the sulfur poisoning of the exhaust purification catalyst (13).
    Type: Grant
    Filed: March 23, 2010
    Date of Patent: July 1, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yuki Bisaiji, Kohei Yoshida, Mikio Inoue
  • Patent number: 8764607
    Abstract: A start-stop system includes a fuel type module that determines a fuel type of a fuel supplied to an engine. A threshold module determines a first threshold based on the fuel type. A temperature module estimates a temperature of a catalyst of an exhaust system of the engine. A comparison module compares the temperature to the first threshold and generates a comparison signal. A power module adjusts power to a heating circuit based on the comparison signal. The heating circuit is configured to increase temperature of the catalyst. The power module adjusts the power to the heating circuit to increase the temperature of the catalyst when the engine is shutdown. An engine control module shuts down and restarts the engine to reduce idling time of the engine.
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: July 1, 2014
    Inventors: Eugene V. Gonze, Halim G. Santoso
  • Patent number: 8763378
    Abstract: An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine and wherein an upstream surface of the particulate filter includes machined grooves. A grid of electrically resistive material is inserted into the machined grooves of the exterior upstream surface of the PF and selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF.
    Type: Grant
    Filed: October 22, 2007
    Date of Patent: July 1, 2014
    Inventors: Eugene V. Gonze, Mark R. Chapman
  • Patent number: 8765084
    Abstract: Several embodiments of high-efficiency catalytic converters and associated systems and methods are disclosed. In one embodiment, a catalytic converter for treating a flow of exhaust gas comprising a reaction chamber, a heating enclosure enclosing at least a portion of the reaction chamber, and an optional coolant channel encasing the heating enclosure. The reaction chamber can have a first end section through which the exhaust gas flows into the reaction chamber and a second end section from which the exhaust gas exits the reaction chamber. The heating enclosure is configured to contain heated gas along the exterior of the reaction chamber, and the optional coolant channel is configured to contain a flow of coolant around the heating enclosure. The catalytic converter can further include a catalytic element in the reaction chamber.
    Type: Grant
    Filed: October 30, 2012
    Date of Patent: July 1, 2014
    Assignee: in the works
    Inventors: Todd K. Hansen, David A. Endrigo
  • Patent number: 8756927
    Abstract: A method and to a device for the regeneration of a particle filter arranged in the exhaust gas tract of an internal combustion engine with at least one NO oxidation catalyst for the oxidation of NO, especially to NO2, which is arranged upstream of the particle filter and through which an exhaust gas stream flows. At least one heater, especially a heating catalyst, through which another gas stream, i.e., a second exhaust gas stream, flows and which heats the additional gas steam, is provided upstream of the particle filter. The heated additional gas stream is mixed upstream of the particle filter with the exhaust gas stream coming from the NO oxidation catalyst, i.e., the gas stream loaded in particular with NO2.
    Type: Grant
    Filed: August 12, 2009
    Date of Patent: June 24, 2014
    Assignee: MAN Truck & Bus AG
    Inventor: Andreas Döring
  • Patent number: 8756924
    Abstract: A catalyst heating system includes a monitoring module, a mode selection module and an electrically heated catalyst (EHC) control module. The monitoring module monitors at least one of (i) a first temperature of a non-EHC of a catalyst assembly in an exhaust system of an engine and (ii) an active catalyst volume of the catalyst assembly. The mode selection module is configured to select an EHC heating mode and generate a mode signal based on the at least one of the first temperature and the active catalyst volume. The EHC control module controls current to an EHC of the catalyst assembly based on the mode signal.
    Type: Grant
    Filed: May 19, 2010
    Date of Patent: June 24, 2014
    Inventors: Eugene V. Gonze, Halim G. Santoso, Brian L. Spohn, Bryan Nathaniel Roos
  • Patent number: 8756919
    Abstract: A device for providing a liquid reducing agent includes a reducing agent tank for storing the liquid reducing agent. The reducing agent tank has at least one heater disposed in a movable manner in the reducing agent tank and constructed as an active heater. A method for thawing frozen reducing agent and a motor vehicle having the device are also provided.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: June 24, 2014
    Assignee: EMITEC Gesellschaft fuer Emissionstechnologie mbH
    Inventors: Jan Hodgson, Sven Schepers
  • Patent number: 8756920
    Abstract: The invention concerns a procedure for controlling a metering device for metering fuel into the exhaust gas duct of a combustion engine for the regeneration of a particle filter, whereby the metering device supplies the fuel to the exhaust gas duct over a security valve, a first fuel pipe, a metering valve, a second fuel pipe and an injection check valve and whereby the pressure of the fuel is determined between the metering valve and the injection check valve in the second fuel pipe. It is thereby provided that an opening pressure of the injection check valve is determined from the pressure course between the metering valve and the injection check valve.
    Type: Grant
    Filed: August 26, 2009
    Date of Patent: June 24, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Damian Dyrbusch, Ignacio Garcia-Lorenzana Merino, Markus Boerner, Natalie Kuestner
  • Patent number: 8745978
    Abstract: In an exhaust gas pipe, a first fluid flows in a flow direction in the pipe, and a second fluid is injected inside the pipe by a nozzle, from an injection inlet arranged in the pipe wall, according to an injection direction. A mixing device fastened inside the pipe upstream from the injection inlet creates turbulence that helps the mixing of the fluids. The mixing device has a first portion located on the injection inlet side of the pipe and a second portion located opposite the injection inlet side of the pipe, the portions being designed so that the fluid velocity is higher downstream from the mixing device second portion than downstream from the mixing device first portion. An aqueous solution of urea can be injected inside an exhaust pipe of a diesel engine.
    Type: Grant
    Filed: September 19, 2008
    Date of Patent: June 10, 2014
    Assignee: Renault Trucks
    Inventors: Michel Vanvolsem, Julien Ampere
  • Patent number: 8745975
    Abstract: Embodiments of the invention are directed to an exhaust system for a combustion engine with a bent pipe section conducting an exhaust gas flow. The exhaust system further includes an injector for introducing a liquid reduction agent into the exhaust gas flow, which is connected to the pipe section via a connecting pipe so that the injector can introduce the reduction agent through the connecting pipe into an introduction region of the pipe section into the exhaust gas flow. The risk of a crystallization of the reduction agent can be reduced with a return flow plate, which in the pipe section is arranged upstream of the introduction region.
    Type: Grant
    Filed: June 5, 2012
    Date of Patent: June 10, 2014
    Assignee: Bosch Emission Systems GmbH & Co. KG
    Inventors: Chaiwat Jaruvatee, Florian Kortendiek, Christoph Lauzansky
  • Patent number: 8745967
    Abstract: A system for controlling regeneration in an after-treatment component comprises a feedback module, an error module, a gain module, and a regeneration control module. The feedback module is configured for determining a rate of change of the value of a controlled parameter. The error module is in communication with the feedback module and is configured for determining a value of an error term by subtracting a value of a target parameter from the value of the controlled parameter. The gain module is configured for determining a value of a proportional gain factor by raising a mathematical constant “e” to the negative power of the value of a tuned gain exponent and for determining a value of a derivative gain factor by multiplying the value of the proportional gain factor by a tuning factor. The regeneration control module is configured for determining a value of a rational control increment.
    Type: Grant
    Filed: May 4, 2012
    Date of Patent: June 10, 2014
    Assignee: GM Global Technology Operations LLC
    Inventor: Patrick Barasa
  • Patent number: 8745974
    Abstract: An exhaust system includes an exhaust passage configured to receive exhaust from a combustion engine, a heat exchanger disposed within the exhaust passage, and a reductant supply fluidly connected to the heat exchanger, the reductant supply including methane. The exhaust system also includes a first catalyst fluidly connected to the heat exchanger and configured to receive methane from the reductant supply via the heat exchanger. The exhaust system further includes a second catalyst disposed within the exhaust passage and configured to receive the exhaust from the combustion engine via the heat exchanger. The exhaust system also includes a clean-up catalyst disposed within the exhaust passage and configured to receive a combined flow. The combined flow includes the exhaust and the methane exiting the first catalyst.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: June 10, 2014
    Assignee: Caterpillar Inc.
    Inventor: Svetlana Mikhailovna Zemskova
  • Publication number: 20140150407
    Abstract: An integrated load bank and exhaust heater for a diesel genset exhaust aftertreatment system of the type having a diesel particulate filter (DPF) and a selective catalytic reduction (SCR) section. The load bank/heater can function as a load bank when testing the genset, as a heat source to optimize SCR efficiency, as to thermally regenerate the DPF filter.
    Type: Application
    Filed: December 5, 2012
    Publication date: June 5, 2014
    Inventors: Herman Van Niekerk, Eric G. Wiemers, Mark Yragui
  • Publication number: 20140150414
    Abstract: A burner for an exhaust gas treatment system includes a tubular inner housing having a closed upstream end, a reduced diameter portion, and a plurality of apertures downstream of the reduced diameter portion. An outer housing surrounds the inner housing comprising a bypass flow path therebetween. First and second tubular supports fix the upstream end of the inner housing to the outer housing and provide fluid communication between a cavity within the inner housing to a location outside of the outer housing. A plate fixes the downstream end of the inner housing to the outer housing and cooperates with the housings to partially define an aperture formed in a portion of the bypass flow path.
    Type: Application
    Filed: February 11, 2014
    Publication date: June 5, 2014
    Inventors: Nicholas Morley, Lawrence Dalimonte, Jagandeep Sandhu
  • Patent number: 8739517
    Abstract: A method is provided for controlling regeneration of an SCR catalyst. The method includes coordinating the regeneration duration and temperature (e.g., longer/shorter regenerations and/or lower/higher temperatures) to the urea deposit loading. In this way, improved regeneration may be achieved due to the particular nature of urea deposits on SCR catalysts.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: June 3, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Lifeng Xu, Williams Lewis Henderson Watkins, Shane Elwart, George Wade Graham
  • Patent number: 8733085
    Abstract: The present invention is a burner apparatus (S1, S2, S3, S4) that combusts air-fuel mixture (Y) of an oxidizing agent and fuel. This burner apparatus (S1, S2, S3, S4) includes a partitioning component (8) that separates an ignition chamber (R2) where the air-fuel mixture (Y) is ignited and a combustion holding chamber (R3) where the combustion of the air-fuel mixture (Y) is maintained such that the air-fuel mixture (Y) is able to pass between them, wherein the partitioning component (8) adjusts the flow rate of the air-fuel mixture (Y) that is supplied from the ignition chamber (R2) to the combustion holding chamber (R3).
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: May 27, 2014
    Assignee: IHI Corporation
    Inventors: Youichi Marutani, Yasunori Ashikaga, Syouji Itoh, Akihiko Ogasawara, Mamoru Kurashina