Supercharging Means Driven By Engine Exhaust Actuated Motor Patents (Class 60/605.1)
  • Publication number: 20140366527
    Abstract: An engine system having a compressor coupled to an engine and supplying air to an intake manifold, a throttle controlling the supply of air from the compressor to the intake manifold, a vacuum reservoir, an aspirator having its motive section in fluid communication with the air intake system upstream of the compressor and its discharge section in fluid communication downstream of the compressor and a suction port in fluid communication with the vacuum reservoir, a compressor recirculation valve having a pneumatic control chamber in fluid communication with downstream air from the compressor and in fluid communication with the vacuum reservoir, a gate valve controlling the fluid communication of the pneumatic control chamber of the compressor recirculation valve with the downstream air and the vacuum reservoir, and a bleed line having a bleed valve in fluid communication with the vacuum reservoir and the pneumatic control chamber of the compressor recirculation valve.
    Type: Application
    Filed: June 13, 2014
    Publication date: December 18, 2014
    Applicant: DAYCO IP HOLDINGS, LLC
    Inventors: Dave Fletcher, Brian M. Graichen, Keith Hampton, Matt Gilmer, James H. Miller, Steve Long
  • Publication number: 20140352297
    Abstract: An engine block arrangement includes an engine block and an exhaust gas system. The exhaust gas system, viewed in the flow direction of an exhaust gas flow, includes an exhaust gas turbocharger, an oxidation catalytic converter, a feed device for a urea-water solution, a particle filter, and an SCR catalytic converter arranged one behind the other. The exhaust gas turbocharger, the oxidation catalytic converter, the feed device for the urea-water solution, the particle filter, and the SCR catalytic converter are situated together on the engine block along one side thereof, the side being oriented essentially perpendicularly with respect to an output side of the engine block.
    Type: Application
    Filed: January 11, 2013
    Publication date: December 4, 2014
    Applicant: Daimler AG
    Inventors: Christoph Spengel, Antonio Pepe, Peter Raitschev, Jutta Elisabeth Mueller, Clemens Schubert
  • Patent number: 8899041
    Abstract: A fresh gas supply device for an internal combustion engine having an exhaust gas turbocharger includes a charge air inlet for letting in compressed charge air from the exhaust gas turbocharger; an outlet connected to the charge air inlet, wherein the connection is closable via at least one backflow flap pivotable about a rotational flap axis; a compressed air inlet for letting compressed air into the outlet; an adjusting unit for adjusting the at least one backflow flap; at least one additional turbocharging unit having an air turbine and a compressor coupled thereto. The air turbine is disposed upstream of the compressed air inlet in the flow direction of the compressed air and compressed air can flow through the air turbine. The compressor is designed to take in and compress additional charge air from the charge air inlet and deliver compressed additional charge air to the outlet.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: December 2, 2014
    Assignee: KNORR-BREMSE Systeme fuer Nutzfahrzeuge GmbH
    Inventor: Johann Baumgartner
  • Publication number: 20140331667
    Abstract: A method and system is provided for a turbocharged multi-cylinder internal combustion engine comprising a two-channel turbine and at least two groups of cylinders, wherein one group of cylinders is switchable responsive to an engine load over a threshold. Exhaust lines of each group of cylinders are arranged in a targeted manner to couple with the turbine such that the switchable group is attached to one channel and the active group is attached to the other channel to reduce the difference in distances that pressure pulses travel, wherein a shut-off element is provided in the channel attached to the switchable group and may be moved to block exhaust flow through the channel when the cylinders are deactivated, thus improving the partial deactivation and turbocharging characteristics of the engine.
    Type: Application
    Filed: April 29, 2014
    Publication date: November 13, 2014
    Applicant: Ford Global Technologies, LLC
    Inventors: Helmut Matthias Kindl, Werner Willems, Vanco Smiljanovski, Norbert Andreas Schorn, Franz Arnd Sommerhoff, Andreas Kuske, Joerg Kemmerling, Franz Brinkmann, Rob Stalman
  • Patent number: 8881522
    Abstract: The present invention relates to an exhaust manifold (15) for an exhaust system (5) of a combustion engine (1), in particular of a motor vehicle, with an exhaust channel (16) for conducting exhaust gas, which comprises an inlet side (17) that can be connected to the combustion engine (1) and an outlet side (19) that can be connected to the exhaust system (5), and with at least one coolant channel (20) for conducting coolant, which is arranged on the outside of the exhaust channel (16) and can be connected to a cooling circuit (6). In order to reduce the thermal load on the exhaust manifold (15), at least one thermoelectric converter (22) can be provided, which on the one hand is coupled to the exhaust channel (16) and on the other hand to the coolant channel (20) in a heat-transferring manner.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: November 11, 2014
    Assignee: J. Eberspaecher GmbH & Co. KG
    Inventors: Rolf Jebasinski, Georg Wirth
  • Publication number: 20140318123
    Abstract: A rotary engine rotary engine according to the present invention comprises a main housing assembly and a rotor assembly rotatably supported within the housing. The rotor assembly has two rotors, an intake/compression rotor rotatably disposed within the intake/compression housing, and a power/exhaust rotor rotatably disposed within the power/exhaust housing. The rotors have N number of apexes and sides, wherein N is an integer greater than 2. A rotating chamber is formed between each side of the each rotor and the inner wall of the respective housing. The stages of the thermodynamic cycle of the engine occur within these chambers. For example, if the rotors have three sides, the rotors will have a triangular-like shape with three apexes. The apexes form the outermost radial part of the rotors which engage the inner wall of the respective housing bore.
    Type: Application
    Filed: July 14, 2014
    Publication date: October 30, 2014
    Inventor: Jose Lopez Cruz
  • Patent number: 8863513
    Abstract: A compressor including a housing assembly that includes a bearing housing and a compressor housing, and a movable vane. In the housing assembly, a diffuser is formed by a first diffuser wall portion and a second diffuser wall portion. The movable vane includes a base portion and vane portions. The movable vane is movable between a projected position where a facing surface of the base portion contacts with a positioning surface provided in a storage chamber and a retracted position. The compressor housing includes an affixing portion projecting further than the second diffuser wall portion, and a fastening surface being, provided, to the affixing portion. The compressor housing is assembled with the bearing housing by attaching the fastening surface to a mounting surface of the bearing housing. The positioning surface is provided in the storage chamber so as to be flush with the fastening surface.
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: October 21, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Masakazu Tabata
  • Patent number: 8857179
    Abstract: A secondary air system comprising a variable speed air pump and a gated check valve connected between the variable speed air pump and an IC engine. The gated check valve has two ports, and generally, a first of the two ports is connected to a first bank of engine cylinders, and a second of the two ports is connected to a second bank of engine cylinders. The system further comprises a controller for controlling the speed of the variable speed air pump, and the positioning of the gated check valve. The gated check valve is operable to fully close air flow to both ports, fully open air flow to one of the two ports, or variably split air flow between the two ports.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: October 14, 2014
    Assignee: Chrysler Group LLC
    Inventors: Mark S. Kado, Kenneth P. Degroot
  • Patent number: 8857162
    Abstract: The present disclosure is directed to a system for reducing the cold start time for a vehicle with a twin fuel engine. The system has an exhaust system, from which exhaust is discharged and collected on an exhaust manifold. A heat exchanger is positioned within the exhaust system, with coolant flow passages in thermal communication with the engine, and the heat exchanger. A control valve is coupled to a first flow path operable to direct the exhaust through the heat exchanger across the first flow path and a second flow path in selective amounts.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: October 14, 2014
    Assignee: Caterpillar Inc.
    Inventors: Cory Andrew Brown, Joshua Wayne Steffen
  • Patent number: 8850811
    Abstract: Systems and methods for determining compression device degradation of an engine of a rail vehicle are provided. In one embodiment, a rail vehicle system includes an engine, an air-intake passage coupled to the engine, a compression device including a compressor positioned along the air-intake passage, a barometric air pressure sensor for measuring a barometric air pressure upstream of the compressor, a manifold air pressure sensor for measuring a manifold air pressure downstream of the compressor, and a controller configured to adjust a rail vehicle operating parameter responsive to a determination of compression device degradation based on a negative pressure differential between the manifold air pressure and the barometric air pressure during a designated operating condition.
    Type: Grant
    Filed: October 12, 2010
    Date of Patent: October 7, 2014
    Assignee: General Electric Company
    Inventors: Paul Gerard Nistler, James Robert Mischler, Luke Henry, William Gray
  • Publication number: 20140290242
    Abstract: The present invention provides a turbocharger that prevents a seizure of a shaft member, prevents a leakage of exhaust gas, suppresses deterioration of components, and reduces a number of components. The turbocharger includes a waste gate valve which is connected to the shaft member rotatably supported by penetrating a support hole of the turbine housing. The waste gate valve includes an inclined surface formed at a portion facing an opening of a bypass passage. When the waste gate valve is opened, exhaust gas flown into the bypass passage presses the inclined surface, thrust force is applied to the shaft member in a shaft direction, and a seal contact portion is pressed against a peripheral edge of the support hole via a seal member.
    Type: Application
    Filed: March 18, 2014
    Publication date: October 2, 2014
    Applicant: OTICS CORPORATION
    Inventor: Tomoyuki ISOGAI
  • Publication number: 20140290241
    Abstract: A blow-by gas recirculating system for an internal combustion chamber, may include a cylinder including the combustion chamber, a ventilation passage that recirculates blow-by gas, which leaks from the combustion chamber, to the combustion chamber, a compressor that takes in and compresses outdoor air and supplies compressed air, and a supply passage that connects the compressor and the cylinder to mix the compressed air with the blow-by gas.
    Type: Application
    Filed: December 5, 2013
    Publication date: October 2, 2014
    Applicant: Hyundai Motor Company
    Inventor: Dong Heun SHIN
  • Patent number: 8844283
    Abstract: An exhaust-gas turbocharger is embodied with a bypass valve which is disposed in a bypass duct of a turbine between an exhaust-gas pressure line and an outlet cross section of the turbine of the exhaust-gas turbocharger and which is connected to an actuating device for controlling the throughput of exhaust-gas through the bypass duct. Through the bypass valve, a partial flow of the exhaust-gas can be guided past the turbine on demand. The bypass valve has a valve head and a valve stem. The bypass valve is axially movably held with the valve stem. The valve head, in a closed state of the bypass valve, can be placed against a valve seat in order to close the bypass duct in a gas-tight and pressure-tight manner. The side of the valve head that is connected to the valve stem faces the exhaust-gas pressure line.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: September 30, 2014
    Assignee: Volkswagen Aktiengesellschaft
    Inventors: Jens Kühlmeyer, Dirk Hagelstein, Eduard Lippert
  • Publication number: 20140260242
    Abstract: A method of providing exhaust gas recirculation (EGR) to an air-boosted internal combustion engine. The engine has both a high pressure EGR loop and a low pressure EGR loop. Each EGR loop has a valve that controls the amount of EGR that is delivered to the engine intake from that loop. During low-speed engine conditions, more EGR is delivered to the engine intake from the low pressure EGR loop than from the high pressure EGR loop. During high-speed engine conditions, more EGR is delivered to the engine intake from the high pressure EGR loop than from the low pressure EGR loop.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: SOUTHWEST RESEARCH INSTITUTE
    Inventors: Christopher J. Chadwell, Terrence F. Alger, II, Shinhyuk Joo
  • Patent number: 8833058
    Abstract: Embodiments for routing exhaust in an engine are provided. In one example, an engine method comprises, during a first condition, firing a subset of cylinders and routing all exhaust from the subset of cylinders through a first exhaust manifold coupled directly to a catalyst and not a turbocharger, and during a second condition, firing all cylinders, routing a first portion of exhaust through a second exhaust manifold coupled to the turbocharger, and routing a second portion of exhaust through the first exhaust manifold. In this way, exhaust can be directly routed to a catalyst under some conditions.
    Type: Grant
    Filed: April 16, 2012
    Date of Patent: September 16, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: James Douglas Ervin, Kim Hwe Ku, Gregory Patrick McConville, Brad Alan Boyer
  • Patent number: 8826659
    Abstract: PCV systems are well known in the art and commonly used in turbocharged engines. The ejector creates a pressure drop for additional pull of PCV gas under boosted conditions of the turbocharger engine. The ejector typically includes a first inlet and a second inlet and a sole outlet. The first inlet pulls air from the compressor of the PCV system. The second inlet pulls air from the cyclone separator of the PCV system. Air exiting the ejector is exited to the intake manifold. However, when the turbocharger of the system is off, fresh air can leak in from the inlet from the oil separator thereby preventing the ventilation of blowby. The unwanted air reduces the efficiency of the turbocharger system. Accordingly, an ejector preventing unwanted fresh air flow is needed in the art.
    Type: Grant
    Filed: September 27, 2011
    Date of Patent: September 9, 2014
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventor: Tenghua Tom Shieh
  • Patent number: 8820071
    Abstract: In one exemplary embodiment of the present invention, a compressor housing for a forced induction system of an internal combustion engine is provided. The compressor housing includes a compressor inlet passage in fluid communication with a compressor volute configured to house a compressor wheel, the compressor inlet passage comprising a wall that is shared with the compressor volute. The compressor also includes a compressor outlet in fluid communication with the compressor volute, the compressor outlet being configured to direct a compressed gas to an intake manifold of the internal combustion engine.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: September 2, 2014
    Assignee: GM Global Technology Operations LLC
    Inventor: Ronald M. Tkac
  • Patent number: 8820073
    Abstract: A compressor comprises an impeller wheel mounted within a housing defining an inlet and an outlet. The wheel has a plurality of vanes and is rotatable about an axis. The housing has an inner wall defining a surface located in close proximity to radially outer edges of the impeller vanes which sweep across said surface as the impeller wheel rotates about its axis. The inlet comprises a tubular wall extending away from the impeller wheel in an upstream direction. An enclosed chamber is defined between said inner wall and an outer wall and in communication with at least one opening in said in said inner wall. The outer wall is penetrated by at least one ventilation aperture that is designed to be connected via a conduit to a location upstream of the inlet and downstream of an air filter.
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: September 2, 2014
    Assignee: Cummins Turbo Technologies Limited
    Inventor: Bahram Nikpour
  • Patent number: 8820072
    Abstract: A diffuser plate for a centrifugal compressor includes an inner edge disposed at an inner diameter about a central axis; an outer edge disposed at an outer diameter, the outer edge displaced an axial distance from the inner edge; a deformable section that includes a substantially S-shaped cross-section, the deformable section disposed between the inner edge and the outer edge; and a spring constant for forced axial displacement of the outer edge with respect to the inner edge, the spring constant characterized, at least in part, by the deformable section.
    Type: Grant
    Filed: August 23, 2011
    Date of Patent: September 2, 2014
    Assignee: Honeywell International Inc.
    Inventors: Giorgio Figura, Parikshit I Mulani, Poomkuzhimannil Zachariah John, Shajeev Surendran, T. G. Vijayan
  • Patent number: 8813493
    Abstract: A supercharger control device for an internal combustion engine is preferably applied to a system having a first supercharger and a second supercharger. A switching supercharging pressure setting unit sets a switching supercharging pressure used in case of switching a mode for operating the first supercharger and the second supercharger, based on a difference between a target supercharging pressure and an actual supercharging pressure. When the actual supercharging pressure reaches the switching supercharging pressure, a switching control unit performs a control of switching the mode. Therefore, it becomes possible to appropriately prevent the overshoot of the supercharging pressure at the time of switching the mode.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: August 26, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kazuki Iwatani, Taro Aoyama, Yoshio Yamashita, Hiroshi Oyagi
  • Patent number: 8813489
    Abstract: A work machine having an air-breathing, fuel-consuming, liquid-cooled internal combustion (IC) engine and a turbocharger receiving combustion products from the IC engine and a compressor for pressurizing air to the IC engine. A primary heat exchanger is in fluid flow connection between the compressor and the IC engine and a secondary heat exchanger is in fluid flow connection between the compressor and the IC engine and is upstream of the primary heat exchanger. The secondary heat exchanger is an air-to-liquid heat exchanger and receives liquid coolant from the IC engine.
    Type: Grant
    Filed: February 15, 2011
    Date of Patent: August 26, 2014
    Assignee: Deere & Company
    Inventors: David R. Didelot, Douglas J. Send, Jonathan A. Dylhoff, Paul A. Wantschik
  • Publication number: 20140230433
    Abstract: A system and method for controlling temperature of a urea reductant to form ammonia for NOx reduction in a selective catalytic reducer coupled to a turbocharged engine exhaust by portioning a flow across the reductant between compressed air and ambient air.
    Type: Application
    Filed: February 11, 2014
    Publication date: August 21, 2014
    Applicant: Ford Global Technologies, LLC
    Inventor: Yasser Mohamed sayed Yacoub
  • Publication number: 20140230431
    Abstract: A supercharged internal combustion engine comprising a two channel turbine fluidly connects the two channels within the turbine housing by virtue of at least one opening in the housing wall which separates the two channels wherein at least one displaceable wall part is provided which serves for opening up the opening in the housing wall to optimize the performance of the turbine responsive to the exhaust gas flow rate.
    Type: Application
    Filed: January 29, 2014
    Publication date: August 21, 2014
    Applicant: Ford Global Technologies, LLC
    Inventors: Helmut Matthias Kindl, Norbert Andreas Schorn, Vanco Smiljanovski, Rob Stalman, Franz Arnd Sommerhoff
  • Publication number: 20140230432
    Abstract: A supercharged internal combustion engine wherein a two-channel turbine comprising a shut-off body positioned within a flow transfer duct within a turbine housing fluidly couples the two channels of a turbine housing to one another via the transfer duct responsive to the exhaust gas flow rate to enable better operation of the turbocharger.
    Type: Application
    Filed: January 29, 2014
    Publication date: August 21, 2014
    Applicant: Ford Global Technologies, LLC
    Inventors: Helmut Matthias Kindl, Norbert Andreas Schorn, Vanco Smiljanovski, Rob Stalman, Franz Arnd Sommerhoff
  • Patent number: 8806868
    Abstract: According to one embodiment of the invention, a secondary air injection system includes a first conduit in fluid communication with at least one first exhaust passage of the internal combustion engine and a second conduit in fluid communication with at least one second exhaust passage of the internal combustion engine, wherein the at least one first and second exhaust passages are in fluid communication with a turbocharger. The system also includes an air supply in fluid communication with the first and second conduits and a flow control device that controls fluid communication between the air supply and the first conduit and the second conduit and thereby controls fluid communication to the first and second exhaust passages of the internal combustion engine.
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: August 19, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Ko-Jen Wu, Darrell J. Walter
  • Publication number: 20140223902
    Abstract: An internal combustion engine comprising a turbocharger wherein a bypass line in an exhaust gas discharge system delivers an aqueous urea reductant to an at least one SCR catalyst and a method to maintain the reductant at a desired temperature to maximize its conversion to ammonia and optimize the reduction of NOx in the SCR.
    Type: Application
    Filed: February 11, 2014
    Publication date: August 14, 2014
    Applicant: Ford Global Technologies, LLC
    Inventor: Yasser Mohamed sayed Yacoub
  • Publication number: 20140223901
    Abstract: A turbocharger for use with an internal combustion engine is provided. The turbocharger comprises a differential device having a carrier portion, a compressor portion, and a turbine portion. The compressor portion is in driving engagement with a first portion of the differential device. The turbine portion is in driving engagement with a second portion of the differential device. The carrier portion of the differential device is in driving engagement with an infinitely variable transmission. The infinitely variable transmission is in driving engagement with the internal combustion engine. The turbocharger is simply controlled, reduces turbo lag, decreases a boost threshold of the turbocharger, and increases an efficiency of the internal combustion engine.
    Type: Application
    Filed: February 7, 2014
    Publication date: August 14, 2014
    Applicant: DANA LIMITED
    Inventors: Mark RJ Versteyhe, Thibaut E. Duchene, Matthias WJ Byltiauw, Donald J. Rembroski
  • Publication number: 20140216029
    Abstract: An internal combustion engine, in particular a stationary gas engine, includes a combustion chamber to which a propellant can be fed from a first propellant source via a combustion chamber pipe, and a pre-combustion chamber to which a flushing gas can be fed via a flushing gas pipe. A flushing gas mixer , in which a propellant to be fed via a propellant pipe from the first propellant source or from a second propellant source, and a synthesis gas to be fed via a synthesis gas pipe, can be mixed is provided. A mixer outlet opens into the flushing gas pipe, and the synthesis gas can be generated by a reformer to which a fuel can be fed from a fuel source via a reformer feed pipe. The reformer outlet of the reformer opens into the synthesis gas pipe, and a cooling device for cooling the synthesis gas is provided.
    Type: Application
    Filed: April 8, 2014
    Publication date: August 7, 2014
    Applicant: GE Jenbacher GmbH & Co OG
    Inventors: Friedrich GRUBER, Guenther WALL
  • Patent number: 8793999
    Abstract: A process is provided for starting an internal-combustion engine, particularly a Diesel engine, having an exhaust gas turbocharger and an inlet gas supply device with at least one compressed-air reservoir which is connected with an intake pipe of the internal-combustion engine. During the starting of the internal-combustion engine, additional air is blown from the inlet gas supply device into the intake pipe until a rotational speed of the internal-combustion engine reaches a previously definable idling speed.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: August 5, 2014
    Assignee: KNORR-BREMSE Systeme fuer Nutzfahrzeuge GmbH
    Inventors: Stephan Rebhan, Manuel Marx, Guang Rao
  • Patent number: 8793995
    Abstract: A system and method for recovering the unused energy of exhaust gas of an internal combustion engine is provided. A charge device for generating compressed intake air for the internal combustion engine is driven by exhaust gas, and an air compressor having at least one compression stage is connected to the charge device to withdraw at least a partial quantity of the compressed intake air, the partial quantity of the compressed intake air of the charge device that can be withdrawn by the air compressor is adjustable.
    Type: Grant
    Filed: January 12, 2010
    Date of Patent: August 5, 2014
    Assignee: KNORR-BREMSE Systeme fuer Nutzfahrzeuge GmbH
    Inventor: Eduard Gerum
  • Publication number: 20140208740
    Abstract: Various methods and systems are provided for removing fluid from a turbocharger turbine. In one example, a turbocharger comprises a turbine including a casing housing a rotor, a drain passage coupled to the casing, and an air jet coupled to the drain passage, the air jet supplying intake air from a high-pressure compressor outlet to the drain passage.
    Type: Application
    Filed: January 25, 2013
    Publication date: July 31, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Matthew John MALONE, Harsha VARDHANA
  • Publication number: 20140208741
    Abstract: A turbocharger is disclosed for use with an engine. The turbocharger may include a housing at least partially defining a compressor shroud and a turbine shroud. The turbine shroud may form a volute having an inlet configured to receive exhaust from an exhaust manifold of the engine in a tangential direction. The volute may also include an axial channel disposed downstream of the inlet. The turbocharger may also include a turbine wheel disposed within the turbine shroud that may be configured to receive exhaust from the axial channel. The turbocharger may also include a compressor wheel disposed within the compressor shroud, and a shaft connecting the turbine wheel to the compressor wheel. The turbocharger may also include a nozzle ring disposed within the axial channel at a location upstream of the turbine wheel.
    Type: Application
    Filed: January 31, 2013
    Publication date: July 31, 2014
    Applicant: Electro-Motive Diesel, Inc.
    Inventors: Gary Robert Svihla, Joshua Schueler, Shakeel Nasir, Keith Moravec
  • Publication number: 20140208742
    Abstract: An engine system is disclosed for use with an engine having at least a first cylinder and a second cylinder. The engine system may have a first exhaust manifold fluidly connected to the first cylinder, a second exhaust manifold fluidly connected to the second cylinder, and a recirculation passage extending from the first exhaust manifold to at least one of the first and second cylinders. The engine system may also have a restricted orifice connecting the first exhaust manifold to the second exhaust manifold, a pressure relief passage extending from the first exhaust manifold, and a valve disposed within the pressure relief passage and movable to selectively reduce a back pressure of the first exhaust manifold.
    Type: Application
    Filed: January 2, 2014
    Publication date: July 31, 2014
    Applicant: Electro-Motive Diesel, Inc.
    Inventors: Deep BANDYOPADHYAY, Keith E. MORAVEC, Michael B. GOETZKE
  • Patent number: 8783031
    Abstract: Systems and methods for supplying air to an engine are disclosed. In one example, an air inlet throttle is at least partially closed in response to a change in engine torque request. In another example, the air inlet throttle is adjusted in conjunction with adjusting an engine throttle. The approach can reduce compressor noise and may reduce the possibility of compressor surge.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: July 22, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Joseph Norman Ulrey, Jeffrey Allen Doering, Ross Dykstra Pursifull, Donald J. Lewis
  • Patent number: 8783030
    Abstract: A system and method are provided for controlling an air handling system for an internal combustion engine including a turbocharger having a variable geometry turbine and a compressor having a fresh air inlet fluidly coupled to ambient and to an air outlet of an electric air pump. An air pump enable value as determined a function of target engine speed and total fuel target values and an air flow target is determined as a function of a target fresh air flow value. Operation of the electric air pump is activated to supply supplemental air flow to the fresh air inlet of the compressor if the air pump enable value is greater than a threshold air pump enable value and the air flow target does not exceed a maximum flow value.
    Type: Grant
    Filed: September 25, 2011
    Date of Patent: July 22, 2014
    Assignee: Cummins Inc.
    Inventors: John N Chi, John M Mulloy, Sriram S Popuri, Timothy R Frazier, Martin T Books, Divakar Rajamohan, Indranil Brahma
  • Publication number: 20140190164
    Abstract: A duct for connection between an exhaust manifold and a high-pressure turbine inlet include a cylindrical duct body defining a longitudinal axis. A frustoconical outlet nozzle connected at one end of the duct body and extending at about eighty-five degrees from the longitudinal axis. The duct further includes an inlet bell connected at the other end of the duct body and extending at about fifty degrees from the longitudinal axis.
    Type: Application
    Filed: June 24, 2013
    Publication date: July 10, 2014
    Inventors: CHARLES B. ATZ, JOHN DOWELL, VIJAYASELVAN JAYAKAR, PRATAP SUBHASH SHITOLE, CAIN PIOTROWSKI, TRENT A. LARSON, EDWARD PHANEUF, ABHIJEET WARALE, SHIRISH BHIDE
  • Publication number: 20140190162
    Abstract: A heat recovery system for an engine having an exhaust nozzle whereby exhaust gas is expelled, the heat recovery system comprising a heat exchanger disposed within the exhaust nozzle, heat exchanger containing a fluid, heat exchanger is further positioned to utilize heat energy from exhaust gas to vaporize fluid a turboexpander fluidly connected to heat exchanger and located downstream from heat exchanger, turboexpander further operatively connected to a utility a condenser fluidly connected to turboexpander and located downstream of turboexpander, and a pump fluidly connected to condenser and located between condenser and heat exchanger, pump is configured to direct fluid from condenser to heat exchanger; whereby operation of engine will generate heat energy in exhaust nozzle, vaporize fluid, and create a pressurized vapor which will drive turboexpander.
    Type: Application
    Filed: April 7, 2011
    Publication date: July 10, 2014
    Applicant: FLYSTEAM, LLC
    Inventor: Eduardo E. Fonseca
  • Publication number: 20140182288
    Abstract: A protective device for a spark-ignition gas engine is provided, which engine has a throttle valve for controlling a gas/air mixture and has an exhaust-gas turbocharger with a turbine that is associated with a throttle member for exhaust gas. A detection unit is configured to detect an actual differential pressure across the throttle valve, and a control unit is configured to change the position of the throttle member based on the actual differential pressure. The throttle member for the exhaust gas is provided only downstream of the turbine in relation to the flow direction of the exhaust gas. A method for regulating an exhaust-gas throttle member, connected downstream of a turbine of an exhaust-gas turbocharger, is also disclosed.
    Type: Application
    Filed: August 7, 2012
    Publication date: July 3, 2014
    Applicant: CATERPILLAR ENERGY SOLUTIONS GMBH
    Inventor: Karl Stellwagen
  • Publication number: 20140182285
    Abstract: A charge air cooler cover includes a nozzle configured for connection to an outlet of a compressor for receiving charge air, a tray configured for connection to an inlet of a charge air cooler, and a plenum leading from the nozzle to a plurality of passages defined by a plurality of ribs. The plurality of passages connects the plenum to the tray. The ribs and the tray are arranged to achieve substantially uniform charge air velocity across the inlet of the charge air cooler, in at least one mode of operation.
    Type: Application
    Filed: July 12, 2013
    Publication date: July 3, 2014
    Inventors: VIJAYASELVAN JAYAKAR, JOHN DOWELL, CHARLES B. ATZ, PRATAP SUBHASH SHITOLE, GARY SZUCH, TRENT A. LARSON, SCOTT SNYDER, SHIRISH BHIDE
  • Publication number: 20140182284
    Abstract: A turbocharger is mounted on a diesel engine (e.g., a marine diesel engine), with the turbocharger's turbine axis transverse to a crankshaft axis of the engine.
    Type: Application
    Filed: December 30, 2013
    Publication date: July 3, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Jason Ozolins, Mahantesh Navalagund, Charles B. Atz, Vijayaselvan Jayakar, Senthilkumar Anandhakrishnan, Pratap Subhash Shitole
  • Publication number: 20140182286
    Abstract: A turbocharger system for a vehicle may include a turbocharger, a tank for compressed gas and an exhaust manifold conduit in fluid communication with an inlet of the turbocharger. The tank is in fluid communication with the manifold conduit and is arranged to push compressed gas into the manifold conduit during a predetermined pulse duration time period for initial compressor spin up in the turbocharger.
    Type: Application
    Filed: December 23, 2013
    Publication date: July 3, 2014
    Applicant: VOLVO CAR CORPORATION
    Inventors: Goran ALMKVIST, Jonas J. BJORKHOLTZ
  • Publication number: 20140182289
    Abstract: A turbocharger system includes: an engine including a first cylinder head constituting a first bank and a second cylinder head constituting a second bank; a center turbocharger formed between the first bank and the second bank, and connected to exhaust and intake manifolds of the first and second banks; a first turbocharger connected to the other exhaust and intake manifolds of the first bank; and a second turbocharger connected to the other exhaust and intake manifolds of the second bank.
    Type: Application
    Filed: December 2, 2013
    Publication date: July 3, 2014
    Applicant: Hyundai Motor Company
    Inventors: Jonghyuck KIM, Dae Sung PARK
  • Publication number: 20140165559
    Abstract: A turbocharger including a turbine wheel having a hub-to-tip ratio of no more than 60% and blades with a high turning angle, a turbine housing forming a pair of inwardly spiraling primary-scroll passageways that significantly converge to produce highly accelerated airflow into the turbine at high circumferential angles, and a two-sided parallel compressor. The compressor and turbine each produce substantially no axial force, allowing the use of minimal axial thrust bearings.
    Type: Application
    Filed: November 21, 2013
    Publication date: June 19, 2014
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Jeffrey A. Lotterman, Vaclav Kares
  • Publication number: 20140165558
    Abstract: A heat exchanger (28) has a first inlet (29) and a first outlet (30), which are fluidically connected with one another via a first path (31) carrying for a first medium to be cooled. A second inlet (32) and a second outlet (33) are fluidically connected with one another via a second path (34) carrying a second medium. A third inlet (35) and a third outlet (36) are fluidically connected with one another via a third path (37) carrying a third medium. The first path (31) is coupled with the second path (34) and with the third path (37) in a heat-transferring manner and in such as way that the media are separated. The heat-transferring coupling between the first path and the second path takes place upstream of the heat-transferring coupling between the first path and the third path relative to the direction of flow of the first medium.
    Type: Application
    Filed: September 13, 2013
    Publication date: June 19, 2014
    Applicant: Eberspacher Exhaust Technology GmbH & Co. KG
    Inventors: Markus BIRGLER, Gerd GAISER, Matthias FEUERBACH, Christof KLINGLER, Jürgen SCHWEIZER
  • Patent number: 8746404
    Abstract: Gas turbine engines systems and methods involving oil flow management are provided. In this regard, a oil pressure analysis system for a gas turbine engine is operative to: receive information corresponding to measured oil pressure and rotational speed during a start up of the engine; correlate the information into data sets, each of the data sets containing a measured oil pressure and a corresponding rotational speed; and determine whether the oil flow valve is functioning properly based on the information contained in the data sets.
    Type: Grant
    Filed: July 30, 2008
    Date of Patent: June 10, 2014
    Assignee: United Technologies Corporation
    Inventor: Mahdy A. Allam
  • Publication number: 20140150426
    Abstract: The invention relates to a method and a device for using the waste heat of an internal combustion engine (2) comprising a thermodynamic working circuit (4) in which a working medium circulates. A pump (6), at least one heat exchanger (8) at least one expansion machine (10) and at least one capacitor (12) are arranged in the direction of flow of the working medium. The mechanical energy generated by the expansion machine (10) is selectively transferred to a drive train (23) and/or at least one other component (25) which can be driven mechanically.
    Type: Application
    Filed: April 20, 2012
    Publication date: June 5, 2014
    Applicant: ROBERT BOSCH GMBH
    Inventors: Gregory Rewers, Nadja Eisenmenger, Achim Brenk, Hans-Christoph Magel, Andreas Wengert, Dieter Seher, Michael Krueger
  • Patent number: 8740746
    Abstract: The invention relates to a method for controlling the power transmission in a drive train, in particular of a motor vehicle, wherein the drive train comprises: an internal combustion engine which drives an output shaft at an engine speed and generates an exhaust gas stream; an exhaust gas turbine which is arranged in the exhaust gas stream and is engaged in or can be switched to a drive connection with the output shaft in order to transmit the drive power of the exhaust gas turbine to the output shaft; a compressor which is arranged in a fresh air stream supplied to the internal combustion engine and which is engaged in and driven by a drive connection with the exhaust gas turbine in order to charge the internal combustion engine at a predefined charging pressure; a power-controlled hydrodynamic clutch, which is arranged in the drive connection between the exhaust gas turbine and the output shaft and by means of which drive power of the exhaust gas turbine is transmitted to the output shaft depending on the p
    Type: Grant
    Filed: December 11, 2009
    Date of Patent: June 3, 2014
    Assignee: Voith Patent GmbH
    Inventors: Thomas Figler, Markus Kley, Alexander Wunsch
  • Publication number: 20140144136
    Abstract: A combined internal combustion engine and waste heat recovery system is provided. The combined internal combustion engine and waste heat recovery system comprises the internal combustion engine, the waste heat recovery system, and a ratio adapting device. The internal combustion engine includes a turbocharger. The waste heat recovery system comprises a condenser, a pump, a heat exchanger, and an expander. The expander is in driving engagement with the turbocharger. The ratio adapting device is drivingly engaged with an output of the internal combustion engine and the expander of the waste heat recovery system. The ratio adapting device may be engaged to transfer energy from at least one of the turbocharger and the expander to the output of the internal combustion engine.
    Type: Application
    Filed: November 27, 2013
    Publication date: May 29, 2014
    Inventor: Mark R.J. Versteyhe
  • Patent number: 8726660
    Abstract: A supercharger compressor includes a plurality of rotors rotatably mounted in a housing, a first inlet for air, a second inlet for recirculated exhaust gas, and a flow separator. The flow separator is arranged interior the housing and configured to form a slideable seal with at least one rotor of the plurality of rotors, the slideable seal fluidically isolating the first inlet from the second inlet, at least in part, and retarding pressure equalization therebetween.
    Type: Grant
    Filed: January 23, 2012
    Date of Patent: May 20, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Brad Alan Boyer, Eric Warren Curtis
  • Patent number: 8726656
    Abstract: A power assembly includes an internal combustion engine including an air intake line and an exhaust gas line having at least one heat exchanger. The power assembly further includes a Brayton cycle system capable of providing additional power to the main internal combustion engine and that includes a gas compressor, a fuel burning heater and a turbine linked to the compressor so that air is drawn into the compressor where it is pressurized, the pressurized air is further heated by flowing through at least one heat exchanger where it exchanges heat with exhaust gases from the main internal combustion engine, the heated and pressurized air is further heated by the fuel burning heater and is thereafter expanded through the turbine where a first fraction of the work extracted by the turbine is used to drive the compressor and a second fraction of the work extracted by the turbine is used to bring additional energy.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: May 20, 2014
    Assignee: Renault Trucks
    Inventor: Marc Lejeune