Blood Glucose Patents (Class 600/347)
  • Patent number: 11826089
    Abstract: A device and method for compressing a renal artery prior to delivery of radiofrequency ablative energy to the renal nerves. The device includes a stent structure with a focal region that expands outwards to place the RF electrodes located on the stent structure in close proximity to the renal nerves. A covering is applied to the stent structure to prevent intimal hyperplasia.
    Type: Grant
    Filed: June 2, 2021
    Date of Patent: November 28, 2023
    Inventors: William Joseph Drasler, William Joseph Drasler, II
  • Patent number: 11806135
    Abstract: Sensing and infusion devices are described. In one embodiment, a sensing and infusion device may include an implantable segment having a sensor. The sensing and infusion device may also include a catheter, and a sensor channel may be formed in the catheter. The sensor channel may be configured to retain at least a portion of the implantable segment.
    Type: Grant
    Filed: August 19, 2021
    Date of Patent: November 7, 2023
    Assignee: PercuSense, Inc.
    Inventors: Rajiv Shah, Ellen Messer, Katherine Wolfe, Shaun Pendo
  • Patent number: 11806139
    Abstract: An on-body insertion system is described. The on-body system includes a sensor in a first position being substantially parallel to an insertion surface. Activation of an actuator transitions the sensor to a second position. Wherein the transition imparts movement to the sensor that is substantially parallel to the insertion surface and the second position results in the sensing area being beneath the insertion surface.
    Type: Grant
    Filed: October 30, 2020
    Date of Patent: November 7, 2023
    Assignee: PercuSense, Inc.
    Inventors: Katherine Wolfe, Joseph Ferreira, Ellen Messer, Rajiv Shah, Konrad Chan
  • Patent number: 11793472
    Abstract: A method comprising executing a prescription digital therapeutic configured to treat symptoms associated with migraines experienced by a patient.
    Type: Grant
    Filed: February 21, 2020
    Date of Patent: October 24, 2023
    Assignee: WELT Corp., Ltd
    Inventors: Marguerite Manteau-Rao, Antoun Nabhan
  • Patent number: 11796466
    Abstract: Contained herein is a system and method for using non-contact diffuse optical skin reflectance method to obtain remote sensing of in-vivo glucose levels in biological tissue or fluids. One embodiment uses an optical, non-contact method capable of measuring glucose levels at a stand-off distance of 0.5 to 2 meters. In this method, the tissue is illuminated with a collimated beam of near-infrared (optical) band of light having a specific band of wavelengths. The diffuse reflectance measured from the tissue/fluid is collected while varying the optical circuit. Using the collected data, an algorithm to unravel the mixed effects of tissue/fluid scattering and absorption is applied to determine the absorption level of the light, which is then associated with a quantitative glucose level.
    Type: Grant
    Filed: July 13, 2021
    Date of Patent: October 24, 2023
    Assignee: The Board of Regents for the Oklahoma Agricultural and Mechanical Colleges
    Inventors: Sabit Ekin, Daqing Piao, John O'Hara
  • Patent number: 11772329
    Abstract: An input data creation device for powder additive manufacturing that can design and provide an appropriate support that avoids manufacturing failure. The device creates input data of a model in which a support is provided to a manufacturing designed object in powder additive manufacturing. The device includes a mechanical quantity calculation unit including a mechanism configured to calculate a mechanical quantity generated on a surface to which the support is provided in the manufacturing designed object; and a support shape determination unit including a mechanism configured to determine, based on information on a plurality of types of support shapes, information on an allowable mechanical quantity defined for each support shape, and a mechanical quantity calculated by the mechanical quantity calculation unit, an optimized support shape having an allowable mechanical quantity equal to or greater than the calculated mechanical quantity from among the plurality of types of support shapes.
    Type: Grant
    Filed: July 18, 2018
    Date of Patent: October 3, 2023
    Assignee: HITACHI, LTD.
    Inventors: Takashi Hamaguchi, Makoto Onodera, Masayuki Hariya, Zixian Zhang, Shingo Noro
  • Patent number: 11771351
    Abstract: A sensor includes: a tubular needle member that includes a side wall and defines a hollow portion; and a linear detection member located in the hollow portion. The side wall of the needle member includes a thick portion that is thicker than another portion of the side wall in a cross-section of the needle member, and wherein the thick portion protrudes toward the hollow portion.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: October 3, 2023
    Assignee: TERUMO KABUSHIKI KAISHA
    Inventor: Takeshi Akiyama
  • Patent number: 11730403
    Abstract: A diversified glucose sensor system comprises an introducer needle and two or more independent sensor bodies, each sensor body having one or more sensing elements that can be subcutaneously positioned in a patient's body by insertion of the introducer needle for glucose measurement. The system further includes a progressive insertion device comprising an insertion shaft that pushes the sensor bodies out the end opening of the introducer needle to a desired depth in the patient prior to removal of the insertion shaft and the introducer needle. The sensor bodies are bent or folded and held under stress within the introducer needle for insertion, and released and biased outwardly when pushed out of the introducer needle. The sensing elements are anchored and disposed within the patient at positions providing X/Y/Z-axis diversity for measurement.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: August 22, 2023
    Inventor: Arnold Chase
  • Patent number: 11718865
    Abstract: Embodiments of the invention provide multilayer analyte sensors having elements and/or architectures that function to improve oxygen delivery to sensor enzymes in manner that enhances sensor function, as well as methods for making and using such sensors. Typical embodiments of the invention include glucose sensors used in the management of diabetes.
    Type: Grant
    Filed: July 26, 2019
    Date of Patent: August 8, 2023
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Daniel E. Pesantez, Ashwin K. Rao, Ellis Garai, Rui Kong, Michael E. Miller
  • Patent number: 11701038
    Abstract: An analyte monitoring system and method. The analyte monitoring system may include an analyte sensor and a transceiver. The analyte sensor may include an analyte indicator that exhibits one or more detectable properties based on an amount or concentration of an analyte in proximity to the indicator. The transceiver may be configured to receive one or more measurements from the sensor. The transceiver may be configured to assess in real time a performance of the sensor based on at least the one or more measurements. The transceiver may be configured to determine whether the performance of the sensor is deficient based at least on the assessed performance of the sensor. The transceiver may be configured to calculate an analyte level based on at least the one or more sensor measurements. The transceiver may be configured to determine whether the calculated analyte level is a spike.
    Type: Grant
    Filed: December 10, 2019
    Date of Patent: July 18, 2023
    Assignee: Senseonics, Incorporated
    Inventors: Ravi Rastogi, James Masciotti, Xiaoxiao Chen
  • Patent number: 11701040
    Abstract: A venous access device includes a hub and a bifurcated cannula. The hub includes a bifurcated connecting arm, a blood sampling arm connected to the bifurcated connecting arm, a fluid transfer arm connected to the bifurcated connecting arm, a blood sampling channel and a fluid transfer channel. The blood sampling channel passes through the blood sampling arm and the bifurcated connecting arm. The fluid transfer channel passes through the fluid transfer arm and the bifurcated connecting arm. The bifurcated cannula is coupled to the bifurcated connecting arm and includes a blood sampling lumen having a blood sampling port, a fluid transfer lumen having a fluid transfer port, and a dividing member separating the blood sampling lumen from the fluid transfer lumen. The blood sampling port is 2 mm to 20 mm proximal from the fluid transfer port. The blood sampling channel is fluidly connected to the blood sampling lumen, and the fluid transfer channel is fluidly connected to the fluid transfer lumen.
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: July 18, 2023
    Assignee: Site Saver, Inc.
    Inventors: Spencer A. Jones, David DePoyster, David L. Nichols, Christopher A. Richardson, Kelli L. Shada
  • Patent number: 11700695
    Abstract: A method for assembling a catheter is disclosed. The method includes printing conductive traces on at least one flexible substrate and encapsulating the at least one flexible substrate to provide for environmental protection. The at least one encapsulated flexible substrate is inserted into a shaft of a catheter. Then, connectors are attached to each end of the at least one encapsulated flexible substrate. One set of the connectors are further attached to sensors located at a distal end of the catheter and another set of the connectors are further attached to electronics in a handle of the catheter.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: July 11, 2023
    Assignee: BIOSENSE WEBSTER (ISRAEL) LTD.
    Inventors: Shemer Shmaryau Berkowitz, Sharona Ben Shoshan, Eden Kidishman
  • Patent number: 11698385
    Abstract: Technologies and implementations for a wearable healthcare system, which may be worn by a person. The wearable healthcare systems may include one or more motion sensors. A motion analysis modules may be included in the wearable healthcare system, which may be configured to determine physical activities and intensity of the physical activities of the person.
    Type: Grant
    Filed: July 16, 2021
    Date of Patent: July 11, 2023
    Assignee: WEST AFFUM HOLDINGS DAC
    Inventors: Jaeho Kim, Pamela F. Breske
  • Patent number: 11690577
    Abstract: Systems and methods for providing sensitive and specific alarms indicative of glycemic condition are provided herein. In an embodiment, a method of processing sensor data by a continuous analyte sensor includes: evaluating sensor data using a first function to determine whether a real time glucose value meets a first threshold; evaluating sensor data using a second function to determine whether a predicted glucose value meets a second threshold; activating a hypoglycemic indicator if either the first threshold is met or if the second threshold is predicted to be met; and providing an output based on the activated hypoglycemic indicator.
    Type: Grant
    Filed: May 27, 2020
    Date of Patent: July 4, 2023
    Assignee: Dexcom, Inc.
    Inventors: Hari Hampapuram, Anna Leigh Davis, Naresh C. Bhavaraju, Apurv Ullas Kamath, Claudio Cobelli, Giovanni Sparacino, Andrea Facchinetti, Chiara Zecchin
  • Patent number: 11678820
    Abstract: A continuous glucose monitoring (CGM) device may include a wearable portion having a sensor configured to produce glucose signals from interstitial fluid, a processor, a memory and transmitter circuitry. The memory may include a pre-determined gain function based on a point-of-interest glucose signal and glucose signals measured prior to the point-of-interest glucose signal. The memory may also include computer program code stored therein that, when executed by the processor, causes the CGM device to (a) measure and store a plurality of glucose signals using the sensor and memory; (b) for a presently-measured glucose signal, employ the plurality of previously-measured glucose signals stored in the memory and the pre-determined gain function to compute a compensated glucose value; and (c) communicate the compensated glucose value to a user of the CGM device. Numerous other embodiments are provided.
    Type: Grant
    Filed: September 8, 2020
    Date of Patent: June 20, 2023
    Assignee: Ascensia Diabetes Care Holdings AG
    Inventor: Huan-Ping Wu
  • Patent number: 11680933
    Abstract: A method of operating a gas sensor for a gas analyte including a sensing component includes, in a first mode, interrogating the sensor by periodically applying an electrical signal to the sensing component of the sensor, measuring sensor response to the electrical signal which is indicative of a sensitivity of the sensor each time the electrical signal is applied to the sensing component, determining whether one or more thresholds have been exceeded based upon the sensor response determined each time the electrical signal is applied to the sensing component, and entering a second mode, different from the first mode in analysis of the sensor response to the periodically applied electrical signals, if one or more thresholds are exceeded.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: June 20, 2023
    Assignee: MSA Technology, LLC
    Inventors: Michael Alvin Brown, Brian Keith Davis
  • Patent number: 11672449
    Abstract: Embodiments of the present disclosure relate generally devices for detecting analytes in a subject. More particularly, the present disclosure provides a biosensor array for detecting analytes in a subject. Embodiments of the present disclosure include a biosensor array comprising a plurality of sensor cells for detecting an analyte in a subject. In accordance with these embodiments, the plurality of sensor cells comprises at least one electrode, at least one antibody immobilized on a surface of the at least one electrode, and a biodegradable coating in contact with the at least one antibody.
    Type: Grant
    Filed: October 27, 2021
    Date of Patent: June 13, 2023
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Jeffrey LaBelle, David Probst, Bin Mu
  • Patent number: 11670418
    Abstract: The subject matter disclosed herein provides methods for presenting glucose level data. Glucose data for a patient may be received. A current glucose level and a rate of change of the current glucose level may be determined based on the received glucose data. A first interface may be displayed on a screen of a device. The first interface may include a unitary icon. The unitary icon may display the current glucose level and a visualization of the rate of change. Related apparatus, systems, techniques, and articles are also described.
    Type: Grant
    Filed: April 1, 2019
    Date of Patent: June 6, 2023
    Assignee: Dexcom, Inc.
    Inventors: Katherine Yerre Koehler, Esteban Cabrera, Jr., Eric Cohen, Mark Dervaes, Rian Draeger, Sheryl Sadsarin Gaano, Thomas Hall, Paul Kramer, Shawn Larvenz, Michael Robert Mensinger, Paul Noble-Campbell, Andrew Attila Pal, Eli Reihman, Brian Christopher Smith, Angela Marie Traven
  • Patent number: 11654235
    Abstract: Medical devices and related systems and methods are provided. A method of calibrating an instance of a sensing element involves obtaining fabrication process measurement data from a substrate having the instance of the sensing element fabricated thereon, obtaining a calibration model associated with the sensing element, determining calibration data associated with the instance of the sensing element for converting the electrical signals into a calibrated measurement parameter based on the fabrication process measurement data using the calibration model, and storing the calibration data in a data storage element associated with the instance of the sensing element.
    Type: Grant
    Filed: September 12, 2019
    Date of Patent: May 23, 2023
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Akhil Srinivasan, Peter Ajemba, Steven C. Jacks, Robert C. Mucic, Tyler R. Wong, Melissa Tsang, Chi-En Lin, Mohsen Askarinya, David Probst
  • Patent number: 11638781
    Abstract: An infusion pump system providing therapy to a patient in a closed-loop or semi-closed loop mode can safely automatically revert to open-loop therapy. The system stores a default open-loop basal rate profile in memory. The system also continually tracks the insulin on board for the patient over a plurality of closed-loop therapy intervals. When an error or event occurs requiring reversion to open-loop therapy, the system automatically provides therapy according to the open-loop basal rate profile and the tracked insulin on board amount.
    Type: Grant
    Filed: February 14, 2020
    Date of Patent: May 2, 2023
    Assignee: Tandem Diabetes Care, Inc.
    Inventor: Michael J. Rosinko
  • Patent number: 11639989
    Abstract: A time-of-flight (ToF) transmitter with self-stabilized optical output phase with minimal overhead is described, where the transmitter may either function as a slave in that the laser pulse phase and width can be controlled by the master ToF receiver, or it can function as a master where the laser control pulse is generated on the same chip or a companion chip. When the ToF transmitter functions as a slave and receives the laser pulse control signal, the techniques of this disclosure can transform the receive path and the pre-driver circuit into part of a delay locked loop (DLL).
    Type: Grant
    Filed: May 13, 2019
    Date of Patent: May 2, 2023
    Assignee: Analog Devices International Unlimited Company
    Inventors: Junhua Shen, Erik D. Barnes, Alberto Marinas, Daniel Peter Canniff, Siwen Liang
  • Patent number: 11633129
    Abstract: Systems and methods are provided for determining levels of an analyte in a biological fluid sample. A transdermal sampling and analysis device may include a substrate, at least one disruptor mounted on the substrate, a reservoir configured to collect and contain a biological fluid sample; a sensing element comprising at least two sensing electrodes, and at least one layer of a cofactor covering the sensing element in which the cofactor catalyzes a reaction to determine levels of an analyte in the biological fluid sample. The at least one disruptor of the transdermal sampling and analysis device may generate a localized heat capable of altering permeability characteristics of a stratum corneum layer of skin of an organism. The surface of at least one of the sensing electrodes of the transdermal sampling and analysis device may be coated with a sensing layer in which an enzyme immobilized within a hydrogel.
    Type: Grant
    Filed: April 2, 2020
    Date of Patent: April 25, 2023
    Assignee: Cambridge Medical Technologies LLC
    Inventors: Helena Woodvine Snyder, Vikas Bhatia, John Frederick Currie, Emil F. Jachmann
  • Patent number: 11627894
    Abstract: A method for determining a body fluid glucose level of a patient from a continuous signal of a glucose sensor element of a continuous body fluid glucose monitoring device in a data processing unit, comprising receiving measurement data representing a continuous sensor signal provided by a glucose sensor element of a continuous body fluid glucose monitoring device in the data processing unit, receiving calibration data representing a time-dependent zero-signal level of the glucose sensor element in the data processing unit, determining a body fluid glucose level by processing at least the measurement data and the calibration data in the data processing unit, the processing comprising subtraction of the time dependent zero-signal level from the continuous sensor signal, and providing result data indicative of the continuous body fluid glucose level in the processing unit; and a system for determining a body fluid glucose level of a patient.
    Type: Grant
    Filed: July 16, 2015
    Date of Patent: April 18, 2023
    Assignee: Roche Diabetes Care, Inc.
    Inventors: Guenther Schmelzeisen-Redeker, Nikolaus Schmitt
  • Patent number: 11607156
    Abstract: Systems and methods are provided for determining levels of an analyte in a biological fluid sample. A transdermal sampling and analysis device may include a substrate, at least one disruptor mounted on the substrate, a reservoir configured to collect and contain a biological fluid sample; a sensing element comprising at least two sensing electrodes, and at least one layer of a cofactor covering the sensing element in which the cofactor catalyzes a reaction to determine levels of an analyte in the biological fluid sample. The at least one disruptor of the transdermal sampling and analysis device may generate a localized heat capable of altering permeability characteristics of a stratum corneum layer of skin of an organism. The surface of at least one of the sensing electrodes of the transdermal sampling and analysis device may be coated with a sensing layer in which an enzyme immobilized within a hydrogel.
    Type: Grant
    Filed: April 2, 2020
    Date of Patent: March 21, 2023
    Assignee: Cambridge Medical Technologies LLC
    Inventors: Helena Woodvine Snyder, Vikas Bhatia, John Frederick Currie, Emil F. Jachmann
  • Patent number: 11607180
    Abstract: A computer-implemented method for analyzing glucose monitoring data comprising: receiving first glucose monitoring data indicative of a glucose level at a measurement time, the first glucose monitoring signals detected in one or more glucose measurement time periods over a first monitoring time period of a continuous glucose monitoring, determining at least one first range event selected from the following group: a normal glucose level event, a hyperglycaemia event, or a hypoglycaemia event; determining how often the first range event is determined for the first monitoring time period; providing a first minimum total, measurement time period, the first minimum total measurement time period being shorter in time than the first monitoring time period; generating first display data representing, for the at least one first range event, the number of first range events in a graphical representation, if the one or more glucose measurement time periods sum up to at least a first minimum total measurement time period
    Type: Grant
    Filed: February 14, 2018
    Date of Patent: March 21, 2023
    Assignee: ROCHE DIABETES CARE, INC.
    Inventor: Itzhak Grinberg
  • Patent number: 11596356
    Abstract: The present it relates to a sensor applicator assembly for a continuous glucose monitoring system and provides a sensor applicator assembly for a continuous glucose monitoring system, which is manufactured with a sensor module assembled inside an applicator, thereby minimizing additional work by a user for attaching the sensor module to the body and allowing the sensor module to be attached to the body simply by operating the applicator, and thus can be used more conveniently. A battery is built in the sensor module and a separate transmitter is connected to the sensor module so as to receive power supply from the sensor module and be continuously used semi-permanently, thereby making the assembly economical. The sensor module and the applicator are used as disposables, thereby allowing accurate and safe use and convenient maintenance.
    Type: Grant
    Filed: June 1, 2018
    Date of Patent: March 7, 2023
    Assignee: I-SENS, INC.
    Inventors: Kyung Chul Chae, Hyun Ho Choi, Goang Yel Ryu, Ji Hoon Wang, Young Jea Kang
  • Patent number: 11589823
    Abstract: Systems and methods for minimizing or eliminating transient non-glucose related signal noise due to non-glucose rate limiting phenomenon such as ischemia, pH changes, temperatures changes, and the like. The system monitors a data stream from a glucose sensor and detects signal artifacts that have higher amplitude than electronic or diffusion-related system noise. The system replaces some or the entire data stream continually or intermittently including signal estimation methods that particularly address transient signal artifacts. The system is also capable of detecting the severity of the signal artifacts and selectively applying one or more signal estimation algorithm factors responsive to the severity of the signal artifacts, which includes selectively applying distinct sets of parameters to a signal estimation algorithm or selectively applying distinct signal estimation algorithms.
    Type: Grant
    Filed: August 13, 2019
    Date of Patent: February 28, 2023
    Assignee: Dexcom, Inc.
    Inventors: Paul V. Goode, James H. Brauker, Arpurv U. Kamath, James Patrick Thrower, Victoria Carr-Brendel
  • Patent number: 11584945
    Abstract: A biosensor system, method and apparatus are provided for implementing threshold based correction functions for biosensors. A primary measurement of an analyte value is obtained. A secondary measurement of a secondary effect is obtained and is compared with a threshold value. A correction function is identified responsive to the compared values. The correction function is applied to the primary measurement of the analyte value to provide a corrected analyte value. The correction method uses correction curves that are provided to correct for an interference effect. The correction curves can be linear or non-linear. The correction method provides different correction functions above and below the threshold value. The correction functions may be dependent or independent of the primary measurement that is being corrected. The correction functions may be either linear or nonlinear.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: February 21, 2023
    Assignee: Ascensia Diabetes Care Holdings AG
    Inventor: George A. Mecklenburg
  • Patent number: 11574742
    Abstract: A method includes obtaining training data for a plurality of patients of a patient population. The training data includes training blood glucose history data including treatment doses of insulin administered by the patients of the patient population and one or more outcome attributes associated with each treatment dose. The method also includes identifying, for each patient of the patient population, one or more optimum treatment doses of insulin from the treatment doses yielding favorable outcome attributes. The method also includes receiving patient-state information for the treated patient, determining a next recommended treatment dose of insulin for the treated patient based on one or more of the identified optimum treatment doses associated with the patients of the patient population having training patient-state information similar to the patient-state information for the treated patient, and transmitting the next recommended treatment dose to a portable device associated with the treated patient.
    Type: Grant
    Filed: November 8, 2021
    Date of Patent: February 7, 2023
    Assignee: Aseko, Inc.
    Inventors: Robert C. Booth, Harry Hebblewhite
  • Patent number: 11565044
    Abstract: Medical devices, systems and methods are provided.
    Type: Grant
    Filed: September 12, 2019
    Date of Patent: January 31, 2023
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Steven C. Jacks, Peter Ajemba, Akhil Srinivasan, Jacob E. Pananen, Sarkis Aroyan, Pablo Vazquez, Tri T. Dang, Ashley N. Sullivan, Raghavendhar Gautham
  • Patent number: 11564638
    Abstract: Systems and methods for health and body simulations in order to predict numerous physiological parameters in a subject or a population of subjects based on the input of limited physiological data.
    Type: Grant
    Filed: August 1, 2019
    Date of Patent: January 31, 2023
    Assignee: PricewaterhouseCoopers LLP
    Inventors: Paul M. D'Alessandro, Mark Paich, Samuel Pierce Burns, Joydeep Sarkar, Gaurav Dwivedi, Colleen Chelini
  • Patent number: 11559230
    Abstract: This document discusses, among other things, systems and methods to compensate for the effects of temperature on sensors, such as analyte sensor. An example method may include determining a temperature-compensated glucose concentration level by receiving a temperature signal indicative of a temperature parameter of an external component, receiving a glucose signal indicative of an in vivo glucose concentration level, and determining a compensated glucose concentration level based on the glucose signal, the temperature signal, and a delay parameter.
    Type: Grant
    Filed: January 22, 2019
    Date of Patent: January 24, 2023
    Assignee: Dexcom, Inc.
    Inventors: Anna Claire Harley-Trochimczyk, Sebastian Böhm, Rui Ma, Disha B. Sheth, Minglian Shi, Kamuran Turksoy
  • Patent number: 11547357
    Abstract: Embodiments relate to an insertion device that includes: a plunger coupled with a lock collar. The insertion device houses contents including: a striker including self-locking striker snap arm(s) where the striker is kept from firing by a striker spring captured between the plunger and the striker when the insertion device is in a cocked position; a sensor assembly; and a needle carrier that holds a piercing member, the needle carrier captured between the striker and a needle carrier spring where a self-releasing snap(s) keeps the needle carrier cocked, where the plunger prevents the self-releasing snap(s) from repositioning and releasing the needle carrier. The striker fires the needle carrier such that the self-locking striker snap arm(s) are positioned to allow the striker to snap down. The needle carrier is then retracted when the user releases the plunger and the piercing member is encapsulated within the insertion device.
    Type: Grant
    Filed: August 2, 2019
    Date of Patent: January 10, 2023
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: David C. Antonio, Eric Allan Larson, Jose J. Ruelas
  • Patent number: 11547358
    Abstract: An oxygen sensor for sensing dissolved oxygen concentration in tissue includes an electrochemical sensor comprising first and second conductive threads having proximal sections connected to a potentiostat. The first thread forms a cathode, and the second thread forms an anode.
    Type: Grant
    Filed: December 8, 2021
    Date of Patent: January 10, 2023
    Assignees: Trustees of Tufts College, DTAMedical
    Inventors: Sameer Sonkusale, Junfei Xia, Francois Dufay
  • Patent number: 11547812
    Abstract: In one embodiment, an infusion set and sensor assembly delivered within a subject is disclosed. The assembly includes a cannula that is terminated at a cannula opening. The assembly further includes a sharp that is at least partially within the hollow of the cannula. A sensor having a proximal end and a distal end is also included in the assembly. The proximal end of the sensor is held in a fixed location while the distal end is retained with a portion of the cannula. The sensor further includes sensor slack, wherein transitioning the sharp from a first position to a second position simultaneously inserts the cannula and sensor to a desired insertion depth within a subject via a single point of insertion.
    Type: Grant
    Filed: July 23, 2020
    Date of Patent: January 10, 2023
    Assignee: PercuSense, Inc.
    Inventors: Katherine Wolfe, Rajiv Shah
  • Patent number: 11540751
    Abstract: Systems, methods, and devices of a health device network may include: a non-invasive glucometer that non-invasively measures analyte levels; an invasive glucometer communicatively coupled directly to the non-invasive glucometer; a cloud-based server communicatively coupled to the non-invasive glucometer or the invasive glucometer; a user device communicatively coupled to the cloud-based server; and/or a user interface that displays the invasive glucose measurement, the non-invasive glucose measurement, a data batch, and/or processed data to the user. The non-invasive glucometer and/or the invasive glucometer may aggregate an invasive glucose measurement and a non-invasive glucose measurement into the data batch.
    Type: Grant
    Filed: March 25, 2020
    Date of Patent: January 3, 2023
    Assignee: Tula Health, Inc.
    Inventors: David Miller, Devin Miller, Michael Jones, David Derrick
  • Patent number: 11529099
    Abstract: The present invention relates to a sensor applicator assembly for a continuous glucose monitoring system and provides a sensor applicator assembly for a continuous glucose monitoring system, which is manufactured with a sensor module assembled inside an applicator, thereby minimizing additional work by a user for attaching the sensor module to the body and allowing the sensor module to be attached to the body simply by operating the applicator, and thus can be used more conveniently. A battery is built in the sensor module and a separate transmitter is connected to the sensor module so as to receive power supply from the sensor module and be continuously used semi-permanently, thereby making the assembly economical. The sensor module and the applicator are used as disposables, thereby allowing accurate and safe use and convenient maintenance.
    Type: Grant
    Filed: June 1, 2018
    Date of Patent: December 20, 2022
    Assignee: I-SENS, INC.
    Inventors: Kyung Chui Chae, Hyun Ho Choi, Goang Yel Ryu, Ji Hoon Wang, Young Jea Kang
  • Patent number: 11531001
    Abstract: The present invention has as its object the provision of a controlled potential electrolysis gas sensor capable of speedily obtaining a state in which gas concentration measurement can be conducted after the activation of a power source. The controlled potential electrolysis gas sensor is configured to include at least a working electrode and a counter electrode which are provided in contact with an electrolytic solution and to detect a concentration of a detection target gas in a gas to be tested by detecting a current flowing between the working electrode and the counter electrode in a state in which the working electrode is controlled at a constant set potential. The controlled potential electrolysis gas sensor includes an operation control circuit that drives the controlled potential electrolysis gas sensor based on a current in a forward direction detected when the controlled potential electrolysis gas sensor is activated under energization conditions at the time of a gas detection operation.
    Type: Grant
    Filed: January 30, 2019
    Date of Patent: December 20, 2022
    Assignee: RIKEN KEIKI CO., LTD.
    Inventors: Shinji Uesugi, Kei Ono, Naoyuki Miyagawa
  • Patent number: 11521730
    Abstract: A subject is prescribed short and long acting insulin medicament regimens. When a qualified fasting event occurs, the basal insulin sensitivity estimate of the subject is updated using (i) an expected fasting blood glucose level based upon the long acting insulin medicament dosing specified by the long acting regimen during the fasting event, (ii) glucose measurements contemporaneous with the fasting event and (iii) a prior insulin sensitivity factor. A basal insulin sensitivity factor curve is calculated from the updated basal insulin sensitivity estimate. A bolus insulin sensitivity estimate of the subject is updated upon occurrence of a correction bolus with a short acting insulin medicament using (i) an expected blood glucose level based upon the correction bolus, (ii) glucose measurements after occurrence of the correction bolus, and (iii) a prior insulin sensitivity factor. A bolus insulin sensitivity factor curve is calculated from the updated bolus insulin sensitivity estimate.
    Type: Grant
    Filed: June 22, 2017
    Date of Patent: December 6, 2022
    Assignee: Novo Nordisk A/S
    Inventors: Henrik Bengtsson, Tinna Bjoerk Aradottir, Pete Brockmeier
  • Patent number: 11519131
    Abstract: Provided is a clothes care apparatus which includes: a main body including a care room accommodating clothes; a machine room positioned below the care room; and a steam generator positioned inside the machine room, and including a case and a water level sensor configured to sense a level of water stored in the case, wherein the water level sensor includes: a housing coupleable to and decoupleable from the case; a plurality of electrodes supported by the housing; and an electrode membrane including an electrode membrane body respectively surrounding each of the plurality of electrodes, and an electrode hole formed in the electrode membrane body to respectively expose the plurality of electrodes to an outside of the electrode membrane body, wherein the electrode hole is further spaced apart from one end of the electrode membrane body than from another end of the electrode membrane body.
    Type: Grant
    Filed: June 9, 2020
    Date of Patent: December 6, 2022
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Hakjae Lee, Hyeonjoo Kim, Jaeryong Park
  • Patent number: 11510595
    Abstract: An implantable sensor can be used for determining a concentration of at least one analyte in a medium, particularly in a body tissue and/or a body fluid. The implantable sensor can comprise a flexible, tubular sensor element. This sensor element has a tubular body on which at least two electrode rings are mounted for electrochemical determination of the concentration of the analyte.
    Type: Grant
    Filed: November 3, 2009
    Date of Patent: November 29, 2022
    Assignee: Roche Diabetes Care, Inc.
    Inventors: Karin Schwind, Hans-Peter Haar, Otto Fuerst
  • Patent number: 11510573
    Abstract: An implantable device having a communication system, a sensor, and a monolithic substrate is described. The monolithic substrate has an integrated sensor circuit configured to process input from the sensor into a form conveyable by the communication system.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: November 29, 2022
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Muhammad Mujeeb-U-Rahman, Axel Scherer
  • Patent number: 11504004
    Abstract: Systems and methods are provided to calibrate an analyte concentration sensor within a biological system, generally using only a signal from the analyte concentration sensor. For example, at a steady state, the analyte concentration value within the biological system is known, and the same may provide a source for calibration. Similar techniques may be employed with slow-moving averages. Variations are disclosed.
    Type: Grant
    Filed: February 5, 2020
    Date of Patent: November 22, 2022
    Assignee: Dexcom, Inc.
    Inventors: Arturo Garcia, Peter C. Simpson, Apurv Ullas Kamath, Naresh C. Bhavaraju, Stephen J. Vanslyke
  • Patent number: 11497849
    Abstract: Ambulatory medicament devices that provide therapy to a subject, such as blood glucose control, are disclosed. Disclosed systems and methods can implement one or more features that improve the user experience, by modifying delivery of therapy to a subject after determining that a possible occlusion exists in a medicament delivery system, monitoring the status of an ambulatory medical device and the health condition of a subject that receives therapy from the ambulatory medical device and annunciating alarm condition when necessary, selectively muting alarm annunciations while a Do Not Disturb mode is activated, implementing various power saving modes to save power, controlling operation of the device and medicament delivery based on the user gesture controls, and controlling medicament delivery based on a condition of the ambulatory medicament device.
    Type: Grant
    Filed: March 2, 2022
    Date of Patent: November 15, 2022
    Assignee: Beta Bionics, Inc.
    Inventors: Himanshu Patel, Justin P. Brown
  • Patent number: 11497852
    Abstract: Ambulatory medicament devices that provide therapy to a subject, such as blood glucose control, are disclosed. Disclosed systems and methods can implement one or more features that improve the user experience, by modifying delivery of therapy to a subject after determining that a possible occlusion exists in a medicament delivery system, monitoring the status of an ambulatory medical device and the health condition of a subject that receives therapy from the ambulatory medical device and annunciating alarm condition when necessary, selectively muting alarm annunciations while a Do Not Disturb mode is activated, implementing various power saving modes to save power, controlling operation of the device and medicament delivery based on the user gesture controls, and controlling medicament delivery based on a condition of the ambulatory medicament device.
    Type: Grant
    Filed: March 2, 2022
    Date of Patent: November 15, 2022
    Assignee: Beta Bionics, Inc.
    Inventors: Himanshu Patel, Justin P. Brown
  • Patent number: 11484652
    Abstract: An automated closed-loop blood glucose control system comprises a continuous glucose-monitoring sensor (101), a subcutaneous insulin delivery device (103); and a controller (105) which determines a maximal allowable insulin injection amount and determines an insulin delivery control signal on the basis of the maximal allowable insulin injection amount and the quantity of insulin to inject.
    Type: Grant
    Filed: August 1, 2018
    Date of Patent: November 1, 2022
    Assignee: DIABELOOP
    Inventors: Sylvain Rousson, Romain Blanc, Maeva Doron
  • Patent number: 11478174
    Abstract: The sensor includes a working electrode having a first wire with a first flat surface and an electrochemical element on the first flat surface. A reference electrode includes a second wire with a second flat surface and a counter electrode includes a third wire with a third flat surface. The first wire is a first sensor wire for the working electrode, the second wire is a second sensor wire for the reference electrode and the third wire is a third sensor wire for the counter electrode in a plurality of sensor wires. The second flat surface and the third flat surface face toward each other.
    Type: Grant
    Filed: April 5, 2019
    Date of Patent: October 25, 2022
    Assignee: Zense-Life Inc.
    Inventor: Robert James Boock
  • Patent number: 11456060
    Abstract: Disclosed are an apparatus and method for calibrating analyte data. In an embodiment, a method of calibrating analyte data may include receiving first analyte data measured by a reference device, storing the received first analyte, calculating a calibration value by using an artificial intelligence (AI) calibration model having second analyte data measured by an analyte sensor and the stored first analyte data as inputs, and calculating the final analyte data by incorporating the calculated calibration value into the second analyte data.
    Type: Grant
    Filed: August 11, 2021
    Date of Patent: September 27, 2022
    Assignee: SB Solutions Inc.
    Inventor: Namhwan Sung
  • Patent number: 11437141
    Abstract: A method of providing performance reports to persons associated with the monitoring of an analyte level, such as blood glucose concentrations in a host, is provided. The performance reports can indicate a measure of an analyte variability of the host over a first analysis time period compared to a measure of analyte variability of the host over one or more other analysis time periods. The analyte level of the host can be received in each of a plurality of sensor readings from a continuous analyte sensor, such as multiple sensor readings per hour, so that the analyte variability that is used in determining the performance report of the host can be based on not just a few metered readings taken by the host, but a plurality of intermittent readings that are taken by a continuous analyte sensor, for example.
    Type: Grant
    Filed: February 1, 2017
    Date of Patent: September 6, 2022
    Assignee: Dexcom, Inc.
    Inventors: Michael Robert Mensinger, Deborah M. Ruppert
  • Patent number: 11419548
    Abstract: A flexible photonic skin is provided, including a functional layer, an adhesive layer used for fixing the functional layer and made of hypoallergenic polyvinyl ethyl ether, and a packaging layer made of a polyurethane semi-transparent film and adhered to the adhesive layer, which are arranged successively from the top down, wherein the functional layer consists of two electrodes located on two sides and used for acquiring electrocardiographic signals of a human body, and a polymer-based photonic integrated chip located between the two electrodes and used for acquiring body temperature, pulse, blood pressure and blood glucose signals of the human body; and, the polymer-based photonic integrated chip processes and outputs the acquired electrocardiographic signals of the human body as well as the body temperature, pulse, blood pressure and blood glucose signals of the human body.
    Type: Grant
    Filed: March 25, 2020
    Date of Patent: August 23, 2022
    Assignee: TIANGONG UNIVERSITY
    Inventors: Hongqiang Li, Rui Xie, Xiaoqing Wei, Jianing Wang