Electroanalysis Patents (Class 600/345)
  • Patent number: 10905363
    Abstract: The present invention relates to a point-of-care (POC) diagnostic device adaptable to environmental changes and a control method thereof. The POC diagnostic device includes a measurement unit configured to perform a POC diagnosis, an information acquisition unit configured to acquire environmental information of the POC diagnostic device, and a control unit configured to predict a temperature of the measurement unit on the basis of the environmental information acquired by means of the information acquisition unit and correct a measurement value of the measurement unit or control the POC diagnostic device on the basis of the predicted temperature of the measurement unit.
    Type: Grant
    Filed: October 24, 2017
    Date of Patent: February 2, 2021
    Assignee: Osang Healthcare Co., Ltd.
    Inventor: Keun Young Kim
  • Patent number: 10898113
    Abstract: Systems and methods for dynamically and intelligently estimating analyte data from a continuous analyte sensor, including receiving a data stream, selecting one of a plurality of algorithms, and employing the selected algorithm to estimate analyte values. Additional data processing includes evaluating the selected estimative algorithms, analyzing a variation of the estimated analyte values based on statistical, clinical, or physiological parameters, comparing the estimated analyte values with corresponding measure analyte values, and providing output to a user. Estimation can be used to compensate for time lag, match sensor data with corresponding reference data, warn of upcoming clinical risk, replace erroneous sensor data signals, and provide more timely analyte information encourage proactive behavior and preempt clinical risk.
    Type: Grant
    Filed: June 5, 2018
    Date of Patent: January 26, 2021
    Assignee: DexCom, Inc.
    Inventors: James H. Brauker, Victoria E. Carr-Brendel, Paul V. Goode, Jr., Apurv Ullas Kamath, James Patrick Thrower, Ben Xavier
  • Patent number: 10891053
    Abstract: Computerized systems and methods facilitate preventing dangerous blood glucose levels using a predictive model to predict whether a particular patient is trending to have dangerous blood glucose levels. The predictive model may be built using logistic or linear regression models incorporating glucose data associated with a plurality of patients received from a plurality of sources. The glucose data may include context data and demographic data associated with the glucose data and the plurality of patients. The predictive model may be employed to predict a likelihood of a particular patient to have dangerous blood glucose levels. Based on the likelihood, the prediction and one or more interventions are communicated to a care team or the patient. The one or more interventions may be incorporated into a clinical device workflow associated with a clinician on the care team or the patient.
    Type: Grant
    Filed: September 13, 2018
    Date of Patent: January 12, 2021
    Assignee: CERNER INNOVATION, INC
    Inventors: Hugh H. Ryan, Megan Kathleen Quick, Daniel Craig Crough
  • Patent number: 10877909
    Abstract: A data processing system includes a memory system including a memory device storing data and a controller performing a data program operation or a data read operation with the memory device, and a host suitable for requesting the data program operation or the data read operation from the memory system. The controller can perform a serial communication to control a memory which is arranged outside the memory system and engaged with the host.
    Type: Grant
    Filed: March 28, 2019
    Date of Patent: December 29, 2020
    Assignee: SK hynix Inc.
    Inventor: Jong-Min Lee
  • Patent number: 10861603
    Abstract: Medical devices and related augmented reality systems and methods are provided. A method of operating an infusion device involves analyzing one or more images captured by an imaging device to identify image content indicative of an activity capable of influencing the physiological condition of the patient and in response to identifying the activity based at least in part on the one or more images, automatically adjusting delivery of the fluid to the patient based at least in part on the activity. An expected nutritional characteristic for a meal is determined based at least in part on the image content, and a delivery adjustment for delivering the fluid is determined based on the expected nutritional characteristic. A graphical indication of the delivery adjustment may also be provided using augmented reality.
    Type: Grant
    Filed: May 3, 2019
    Date of Patent: December 8, 2020
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Chia-Hung Chiu, Rebecca K. Gottlieb, Carol A. Jerome, Kenny J. Long
  • Patent number: 10827955
    Abstract: Sensor systems can be used to measure an analyte concentration. Sensor systems can include a base having a distal side configured to face towards a person's skin. An adhesive can couple the base to the skin. A transcutaneous analyte measurement sensor can be coupled to the base and can be located at least partially in the host. A transmitter can be coupled to the base and can transmit analyte measurement data to a remote device.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: November 10, 2020
    Assignee: DexCom, Inc.
    Inventors: Peter C. Simpson, Minglian Shi, Sebastian Bohm, John Patrick Majewski, Maria Noel Brown Wells, Leah Morta Edra, Disha B. Sheth, John Michael Gray, Shanger Wang, Ted Tang Lee, Michael L. Moore, Jason Mitchell, Jennifer Blackwell, Neel Narayan Shah, Todd Andrew Newhouse, Jason Halac, Ryan Everett Schoonmaker, Paul V. Neale, Jiong Zou, Sean T. Saint
  • Patent number: 10820860
    Abstract: A microsensor and method of manufacture for a microsensor, comprising an array of filaments, wherein each filament of the array of filaments comprises a substrate and a conductive layer coupled to the substrate and configured to facilitate analyte detection. Each filament of the array of filaments can further comprise an insulating layer configured to isolate regions defined by the conductive layer for analyte detection, a sensing layer coupled to the conductive layer, configured to enable transduction, and a selective coating coupled to the sensing layer, configured to facilitate detection of specific target analytes/ions. The microsensor facilitates detection of at least one analyte present in a body fluid of a user interfacing with the microsensor.
    Type: Grant
    Filed: January 19, 2017
    Date of Patent: November 3, 2020
    Assignee: ONE DROP BIOSENSOR TECHNOLOGIES, LLC
    Inventors: Ashwin Pushpala, Matthew Chapman, Alan Szmodis
  • Patent number: 10806387
    Abstract: A medical device and method of making the medical device are disclosed. The medical device includes a sensor having an interconnect. The interconnect has a first conductive layer, an insulation layer, and a second conductive layer separated from the first conductive layer by the insulation layer. An electrical contact is provided that is electrically connected to the second conductive layer and is contactable from the side of the interconnect that opposes the second conductive layer. The electrical contact is provided free of micro-vias. The medical device also includes an electronics assembly having an electrical connector, the electronics assembly configured to mate with the interconnect to establish an electrical connection between the electrical connector and the first conductive layer via the electrical contact.
    Type: Grant
    Filed: September 6, 2019
    Date of Patent: October 20, 2020
    Assignee: Roche Diabetes Care, Inc.
    Inventors: Sabine Achmann, Marcel Thiele, Sebastian Pankalla, Jonathan Seidel
  • Patent number: 10786185
    Abstract: Systems and methods for processing sensor analyte data, including initiating calibration, updating calibration, evaluating clinical acceptability of reference and sensor analyte data, and evaluating the quality of sensor calibration. During initial calibration, the analyte sensor data is evaluated over a period of time to determine stability of the sensor. The sensor may be calibrated using a calibration set of one or more matched sensor and reference analyte data pairs. The calibration may be updated after evaluating the calibration set for best calibration based on inclusion criteria with newly received reference analyte data. Fail-safe mechanisms are provided based on clinical acceptability of reference and analyte data and quality of sensor calibration. Algorithms provide for optimized prospective and retrospective analysis of estimated blood analyte data from an analyte sensor.
    Type: Grant
    Filed: January 5, 2018
    Date of Patent: September 29, 2020
    Assignee: DexCom, Inc.
    Inventors: Paul V. Goode, Jr., James H. Brauker, Apurv Ullas Kamath, James Patrick Thrower
  • Patent number: 10743846
    Abstract: Sample collection apparatus and methods of sample collection are provided, for example saliva collection apparatus and methods of saliva collection. Said apparatus conveniently comprises a filter assembly and an interface for delivering material from the apparatus to an assay unit.
    Type: Grant
    Filed: June 23, 2015
    Date of Patent: August 18, 2020
    Assignee: NEPESMO LIMITED
    Inventors: Monica Silverstone Spiteri, Neil Patel
  • Patent number: 10736553
    Abstract: Enzymatic and non-enzymatic detectors and associated membrane apparatus, and methods of use, such as within a fully implantable sensor apparatus. In one embodiment, detector performance is controlled through selective use of membrane configurations and enzyme region shapes, which enable accurate detection of blood glucose level within the solid tissue of the living host for extended periods of time. Isolation between the host's tissue and the underlying enzymes and reaction byproducts used in the detectors is also advantageously maintained in one embodiment via use of a non-enzyme containing permeable membrane formed of e.g., a biocompatible crosslinked protein-based material. Control of response range and/or rate in some embodiments also permits customization of sensor elements. In one variant, heterogeneous detector elements are used to, e.g., accommodate a wider range of blood glucose concentration within the host.
    Type: Grant
    Filed: March 12, 2018
    Date of Patent: August 11, 2020
    Assignee: GlySens Incorporated
    Inventors: Joseph Lucisano, Bahman Javidi, Lev Kurbanyan, Joe Lin, Timothy Routh, Bradley Walker
  • Patent number: 10729361
    Abstract: The invention provides a monitoring device (1) for attachment to a stance of a subject. The device comprises a data collector (2) and a processor (3) as two separate parts which can be detachably joined such that physiological signals which are detected by the data collector can be transferred to the processor for signal processing and provision of monitoring data. At least one of the data collector and the processor comprises a transducer which can convert the physiological signal to a data signal which can be processed electronically. The data collector is adapted for adhesive contact with a skin surface, and may comprise an adapter (6) for the detachable attachment of the processor.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: August 4, 2020
    Assignee: BRAEMAR MANUFACTURING, LLC
    Inventors: Karsten Hoppe, Jakob Janting
  • Patent number: 10722161
    Abstract: Disclosed herein are devices, systems, and methods for a continuous analyte sensor, such as a continuous glucose sensor. In certain embodiments disclosed herein, various in vivo properties of the sensor's surroundings can be measured. In some embodiments, the measured properties can be used to identify a physiological response or condition in the body. This information can then be used by a patient, doctor, or system to respond appropriately to the identified condition.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: July 28, 2020
    Assignee: DexCom, Inc.
    Inventors: Naresh C. Bhavaraju, Sebastian Bohm, Robert J. Boock, Daiting Rong, Peter C. Simpson
  • Patent number: 10709332
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Grant
    Filed: August 16, 2019
    Date of Patent: July 14, 2020
    Assignee: DexCom, Inc.
    Inventors: Mark C. Brister, Jack Pryor, John Nolting, Jacob S. Leach, Luis Pestana, Nelson Quintana, Vance Swanson, Paul V. Goode, Jr., James Patrick Thrower
  • Patent number: 10706966
    Abstract: A system is disclosed in which a plurality of in-vitro diagnostic (IVD) devices each include a network communication device for connecting to a publicly accessible data network. For example, IVD devices are provided with a cellular modem for connecting to a public cellular network. These IVD devices connect to the data network upon completion of a diagnostic test, and upload results of the test, as well as other appropriate data, to a remote device which is also on the network. The IVD devices also download appropriate data from remote network elements. The remote network element may be a network element such as a Hospital Information System (HIS) or Laboratory Information System (LIS) database. Alternatively, the remote device may be a remote server or another IVD device. This connectivity enables the system to accumulate diagnostic test data, and to analyze, report, and/or update the IVD devices based on the accumulated data.
    Type: Grant
    Filed: July 24, 2017
    Date of Patent: July 7, 2020
    Assignee: Alverix, Inc.
    Inventors: Stephan Hengstler, Tong Xie
  • Patent number: 10634662
    Abstract: Methods for data processing and control for a medical communication system are provided, including determining a sensitivity value for each sensor of a batch of in vivo analyte sensors; determining a sensitivity variation for each sensor of the batch; determining a mean sensitivity based on the sensitivity value determined for each sensor of the batch when it is determined that the determined sensitivity variation does not exceed a tolerance threshold level; associating a sensor code with each sensor of the batch of in vivo analyte sensors when the mean sensitivity is within a predetermined sensitivity range, wherein the sensor code associated with each sensor is based on a characteristic of the associated sensor; and storing the sensor code associated with at least one sensor of the batch configured to generate signals corresponding to monitored analyte level in a memory of a data processing device associated with the sensor.
    Type: Grant
    Filed: November 5, 2018
    Date of Patent: April 28, 2020
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Gary Alan Hayter, Geoffrey V. McGarraugh, Andrew H. Naegeli, John Charles Mazza, Benjamin Jay Feldman
  • Patent number: 10633714
    Abstract: The present disclosure provides methods for profiling a microbiome and therapeutic compositions for treatment. Additionally, the methods, systems, compositions and kits provided herein are directed to assessing or predicting health status in a subject. Some of the embodiments include generating a report.
    Type: Grant
    Filed: July 21, 2014
    Date of Patent: April 28, 2020
    Assignee: Pendulum Therapeutics, Inc.
    Inventors: Colleen Cutcliffe, John S. Eid, James H. Bullard
  • Patent number: 10624568
    Abstract: Systems and methods for processing sensor data and self-calibration are provided. In some embodiments, systems and methods are provided which are capable of calibrating a continuous analyte sensor based on an initial sensitivity, and then continuously performing self-calibration without using, or with reduced use of, reference measurements. In certain embodiments, a sensitivity of the analyte sensor is determined by applying an estimative algorithm that is a function of certain parameters. Also described herein are systems and methods for determining a property of an analyte sensor using a stimulus signal. The sensor property can be used to compensate sensor data for sensitivity drift, or determine another property associated with the sensor, such as temperature, sensor membrane damage, moisture ingress in sensor electronics, and scaling factors.
    Type: Grant
    Filed: August 13, 2019
    Date of Patent: April 21, 2020
    Assignee: DexCom, Inc.
    Inventors: Sebastian Böhm, Daiting Rong, Peter C. Simpson
  • Patent number: 10624539
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Grant
    Filed: July 3, 2019
    Date of Patent: April 21, 2020
    Assignee: DexCom, Inc.
    Inventors: Mark C. Brister, Jack Pryor, John Nolting, Jacob S. Leach, Luis Pestana, Nelson Quintana, Vance Swanson, Paul V. Goode, Jr., James Patrick Thrower
  • Patent number: 10610102
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Grant
    Filed: July 3, 2019
    Date of Patent: April 7, 2020
    Assignee: DexCom, Inc.
    Inventors: Mark C. Brister, Jack Pryor, John Nolting, Jacob S. Leach, Luis Pestana, Nelson Quintana, Vance Swanson, Paul V. Goode, Jr., James Patrick Thrower
  • Patent number: 10610103
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Grant
    Filed: August 16, 2019
    Date of Patent: April 7, 2020
    Assignee: DexCom, Inc.
    Inventors: Mark C. Brister, Jack Pryor, John Nolting, Jacob S. Leach, Luis Pestana, Nelson Quintana, Vance Swanson, Paul V. Goode, Jr., James Patrick Thrower
  • Patent number: 10589059
    Abstract: An insertion device (110) for inserting an analyte sensor (114) into a body tissue is proposed. The insertion device (110) comprises an insertion needle holder (120) and a drive mechanism (124) for linearly driving the insertion needle holder (120) in a longitudinal direction (126). The drive mechanism (124) comprises at least one actuator (132) for actuating the drive mechanism (124). The actuator (132) comprises at least one actuator arm (136, 138) which is pivotable about at least one axle (140) in order to actuate the drive mechanism (124). The insertion device (110) further comprises at least one protection against reuse including at least one locking mechanism (178). The locking mechanism (178) is adapted to at least partially prevent a back-pivoting of the actuator arm (136, 138) in a direction reversing the actuation direction once the actuator arm (136, 138) has been pivoted by at least one threshold angle.
    Type: Grant
    Filed: July 22, 2015
    Date of Patent: March 17, 2020
    Assignee: ROCHE DIABETES CARE, INC.
    Inventors: Stephan-Michael Frey, Oliver Kube, Andrea Rittinghaus
  • Patent number: 10588575
    Abstract: Disclosed are a system and method for determining a metric and/or indicator of a reliability of a blood glucose sensor in providing glucose measurements. In one aspect, the metric and/or indicator may be computed based, at least in part, on an observed trend associated with signals generated by the blood glucose sensor.
    Type: Grant
    Filed: February 1, 2017
    Date of Patent: March 17, 2020
    Assignee: Medtronic Minimed, Inc.
    Inventors: Rebecca K. Gottlieb, Ying Luo, Raghavendhar Gautham, Bradley Liang, Anirban Roy, Kenneth W. Cooper, Rajiv Shah, Barry Keenan
  • Patent number: 10561353
    Abstract: Enzymatic and non-enzymatic detectors and associated membrane apparatus, and methods of use, such as within a fully implantable sensor apparatus. In one embodiment, detector performance is controlled through selective use of membrane configurations and enzyme region shapes, which enable accurate detection of blood glucose level within the solid tissue of the living host for extended periods of time. Isolation between the host's tissue and the underlying enzymes and reaction byproducts used in the detectors is also advantageously maintained in one embodiment via use of a non-enzyme containing permeable membrane formed of e.g., a biocompatible crosslinked protein-based material. Control of response range and/or rate in some embodiments also permits customization of sensor elements. In one variant, heterogeneous detector elements are used to, e.g., accommodate a wider range of blood glucose concentration within the host.
    Type: Grant
    Filed: June 1, 2016
    Date of Patent: February 18, 2020
    Assignee: GLYSENS INCORPORATED
    Inventors: Joseph Lucisano, Bahman Javidi, Lev Kurbanyan, Joe Lin, Timothy Routh, Bradley Walker
  • Patent number: 10561354
    Abstract: Systems and methods for processing sensor data and self-calibration are provided. In some embodiments, systems and methods are provided which are capable of calibrating a continuous analyte sensor based on an initial sensitivity, and then continuously performing self-calibration without using, or with reduced use of, reference measurements. In certain embodiments, a sensitivity of the analyte sensor is determined by applying an estimative algorithm that is a function of certain parameters. Also described herein are systems and methods for determining a property of an analyte sensor using a stimulus signal. The sensor property can be used to compensate sensor data for sensitivity drift, or determine another property associated with the sensor, such as temperature, sensor membrane damage, moisture ingress in sensor electronics, and scaling factors.
    Type: Grant
    Filed: July 2, 2019
    Date of Patent: February 18, 2020
    Assignee: DexCom, Inc.
    Inventors: Sebastian Böhm, Daiting Rong, Peter C. Simpson
  • Patent number: 10555695
    Abstract: Systems and methods for processing sensor data and self-calibration are provided. In some embodiments, systems and methods are provided which are capable of calibrating a continuous analyte sensor based on an initial sensitivity, and then continuously performing self-calibration without using, or with reduced use of, reference measurements. In certain embodiments, a sensitivity of the analyte sensor is determined by applying an estimative algorithm that is a function of certain parameters. Also described herein are systems and methods for determining a property of an analyte sensor using a stimulus signal. The sensor property can be used to compensate sensor data for sensitivity drift, or determine another property associated with the sensor, such as temperature, sensor membrane damage, moisture ingress in sensor electronics, and scaling factors.
    Type: Grant
    Filed: July 2, 2019
    Date of Patent: February 11, 2020
    Assignee: DexCom, Inc.
    Inventors: Sebastian Böhm, Daiting Rong, Peter C. Simpson
  • Patent number: 10549080
    Abstract: A microsensor and method of manufacture for a microsensor, comprising an array of filaments, wherein each filament of the array of filaments comprises a substrate and a conductive layer coupled to the substrate and configured to facilitate analyte detection. Each filament of the array of filaments can further comprise an insulating layer configured to isolate regions defined by the conductive layer for analyte detection, a sensing layer coupled to the conductive layer, configured to enable transduction of an ionic concentration to an electronic voltage, and a selective coating coupled to the sensing layer, configured to facilitate detection of specific target analytes/ions. The microsensor facilitates detection of at least one analyte present in a body fluid of a user interfacing with the microsensor.
    Type: Grant
    Filed: October 6, 2015
    Date of Patent: February 4, 2020
    Assignee: Sano Intelligence, Inc.
    Inventors: Ashwin Pushpala, Alan Szmodis, Matthew Chapman, Weldon Hall, Scott Miller, Hooman Hafezi
  • Patent number: 10534052
    Abstract: Provided herein are methods related to identifying an early, asymptomatic (prodromal) stage of a neurodegenerative disease or identifying a subject with a symptomatic neurodegenerative disease, including, for example, mild cognitive impairment (MCI), Alzheimer's Disease (AD), or HIV-associated neurocognitive disorder (HAND), using functional MRI data from the subject. Methods are also provided for treating a subject identified with the methods taught herein and for modifying or selecting treatment based on the results of fMRI. Methods are also available for staging neurodegenerative disease and for identifying agents useful in treating them.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: January 14, 2020
    Assignee: Georgetown University
    Inventors: Xiong Jiang, Maximilian Riesenhuber
  • Patent number: 10527737
    Abstract: A dose calculation device 50 includes: a detector 20 detecting a physical quantity as voltage; a V/I conversion element 28 converting the quantity into current; a memory 51 storing a zero point current and a shift amount from a true value caused by radiation; a correlation storage 52 storing zero point shift data in correlation between the zero point current and cumulative dose and span shift data in correlation between the cumulative dose and the shift; a first evaluator 53 estimating cumulative dose of the V/I conversion element 28 based on the zero point current and the zero point shift; a second evaluator 54 estimating cumulative dose of the V/I conversion element 28 based on the shift and the span shift; and a comparator 56 specifying a common cumulative dose as a true cumulative dose by comparing cumulative doses estimated by the first evaluator 53 and the second evaluator 54.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: January 7, 2020
    Assignees: KABUSHIKI KAISHA TOSHIBA, Toshiba Energy Systems & Solutions Corporation
    Inventor: Satoru Tsuruta
  • Patent number: 10524694
    Abstract: Tubes (e.g., catheters, endotracheal or chest tubes and bypass grafts) are provided, comprising a catheter and a plurality of sensors. Briefly stated, a wide variety of tubes (e.g., catheters, endotracheal or chest tubes, bypass grafts, balloon catheters, urinary catheters, central lines and dialysis catheters), as well as related delivery devices (e.g., guidewires) are provided with a number of sensors to monitor the integrity, patency and efficaciousness of the device.
    Type: Grant
    Filed: June 25, 2015
    Date of Patent: January 7, 2020
    Assignee: Canaray Medical Inc.
    Inventor: William L. Hunter
  • Patent number: 10506982
    Abstract: Systems and methods for processing sensor data are provided. In some embodiments, systems and methods are provided for calibration of a continuous analyte sensor. In some embodiments, systems and methods are provided for classification of a level of noise on a sensor signal. In some embodiments, systems and methods are provided for determining a rate of change for analyte concentration based on a continuous sensor signal. In some embodiments, systems and methods for alerting or alarming a patient based on prediction of glucose concentration are provided.
    Type: Grant
    Filed: May 22, 2013
    Date of Patent: December 17, 2019
    Assignee: DexCom, Inc.
    Inventors: Apurv Ullas Kamath, Michael Robert Mensinger, Ying Li, Aarthi Mahalingam, J. Michael Dobbles
  • Patent number: 10499937
    Abstract: Ablation device including a probe structure 10 having a proximal end 12 and a distal end 14. Probe structure 10 includes a tubular first catheter 16, a tubular second catheter 18 surrounding the first catheter and a tubular guide catheter extending within the first catheter 16. The first catheter 16 carries a cylindrical ultrasonic transducer 20 adjacent its distal end. The transducer 20 is connected to a source of electrical excitation. The ultrasonic waves emitted by the transducer are directed at the heart wall tissue. Once the tissue reaches the target temperature, the electrical excitation is turned on and off to maintain the tissue at the target temperature. Alternatively, the transducer 20 is subjected to continuous excitation at one power level and upon the tissue reaching the target temperature, the power level of the continuous excitation is switched to a second lower power level.
    Type: Grant
    Filed: May 10, 2007
    Date of Patent: December 10, 2019
    Assignee: ReCor Medical, Inc.
    Inventor: Reinhard Warnking
  • Patent number: 10499818
    Abstract: A method for monitoring autoregulation includes, using a processor, using a processor to execute one or more routines on a memory. The one or more routines include receiving one or more physiological signals from a patient, determining a correlation-based measure indicative of the patient's autoregulation based on the one or more physiological signals, and generating an autoregulation profile of the patient based on autoregulation index values of the correlation-based measure. The autoregulation profile includes the autoregulation index values sorted into bins corresponding to different blood pressure ranges. The one or more routines also include designating a blood pressure range encompassing one or more of the bins as a blood pressure safe zone indicative of intact regulation and providing a signal to a display to display the autoregulation profile and a first indicator of the blood pressure safe zone.
    Type: Grant
    Filed: October 18, 2016
    Date of Patent: December 10, 2019
    Assignee: Covidien LP
    Inventors: Paul Stanley Addison, James N. Watson, Dean Montgomery
  • Patent number: 10470661
    Abstract: Systems and methods are provided to calibrate an analyte concentration sensor within a biological system, generally using only a signal from the analyte concentration sensor. For example, at a steady state, the analyte concentration value within the biological system is known, and the same may provide a source for calibration. Similar techniques may be employed with slow-moving averages. Variations are disclosed.
    Type: Grant
    Filed: September 9, 2016
    Date of Patent: November 12, 2019
    Assignee: DexCom, Inc.
    Inventors: Arturo Garcia, Peter C. Simpson, Apurv Ullas Kamath, Naresh C. Bhavaraju, Stephen J. Vanslyke
  • Patent number: 10470660
    Abstract: Systems and methods are provided to calibrate an analyte concentration sensor within a biological system, generally using only a signal from the analyte concentration sensor. For example, at a steady state, the analyte concentration value within the biological system is known, and the same may provide a source for calibration. Similar techniques may be employed with slow-moving averages. Variations are disclosed.
    Type: Grant
    Filed: September 9, 2016
    Date of Patent: November 12, 2019
    Assignee: DexCom, Inc.
    Inventors: Arturo Garcia, Peter C. Simpson, Apurv Ullas Kamath, Naresh C. Bhavaraju, Stephen J. Vanslyke
  • Patent number: 10420494
    Abstract: Devices and methods are provided for continuous measurement of an analyte concentration. The device can include a sensor having a plurality of sensor elements, each having at least one characteristic that is different from other sensor(s) of the device. In some embodiments, the plurality of sensor elements are each tuned to measure a different range of analyte concentration, thereby providing the device with the capability of achieving a substantially consistent level of measurement accuracy across a physiologically relevant range. In other embodiments, the device includes a plurality of sensor elements each tuned to measure during different time periods after insertion or implantation, thereby providing the sensor with the capability to continuously and accurately measure analyte concentrations across a wide range of time periods.
    Type: Grant
    Filed: January 23, 2018
    Date of Patent: September 24, 2019
    Assignee: DexCom, Inc.
    Inventors: Peter C. Simpson, Robert J. Boock, Apurv Ullas Kamath, Matthew D. Wightlin, Michael J. Estes
  • Patent number: 10413183
    Abstract: Embodiments relate to an insertion device that includes: a plunger coupled with a lock collar. The insertion device houses contents including: a striker including self-locking striker snap arm(s) where the striker is kept from firing by a striker spring captured between the plunger and the striker when the insertion device is in a cocked position; a sensor assembly; and a needle carrier that holds a piercing member, the needle carrier captured between the striker and a needle carrier spring where a self-releasing snap(s) keeps the needle carrier cocked, where the plunger prevents the self-releasing snap(s) from repositioning and releasing the needle carrier. The striker fires the needle carrier such that the self-locking striker snap arm(s) are positioned to allow the striker to snap down. The needle carrier is then retracted when the user releases the plunger and the piercing member is encapsulated within the insertion device.
    Type: Grant
    Filed: November 21, 2016
    Date of Patent: September 17, 2019
    Assignee: Medtronic MiniMed, Inc.
    Inventors: David C. Antonio, Eric Allan Larson, Jose J. Ruelas
  • Patent number: 10405794
    Abstract: The disclosed invention includes sweat sensing devices configured to periodically measure sweat conductivity and galvanic skin response, devices to measure volumetric sweat flow rate, and devices that combine the three functions. The disclosure further includes methods for using a device configured to perform periodic sweat conductivity measurements, galvanic skin response measurements, and volumetric sweat rate measurements so that each sensor modality informs composite estimates of sweat onset, sweat cessation, sweat ion concentration, and sweat rate. The method uses those measurements to inform other sweat sensing device functions, such as determining the existence of a physiological condition, or performing measurements of concentrations, ratios, and trends of sweat analytes.
    Type: Grant
    Filed: July 18, 2017
    Date of Patent: September 10, 2019
    Assignee: Eccrine Systems, Inc.
    Inventors: Gavi Begtrup, Jacob A. Bertrand, Jason Heikenfeld, Austin Morgan, Nathan Weinle
  • Patent number: 10403012
    Abstract: An integrated system for the monitoring and treating diabetes is provided, including an integrated receiver/hand-held medicament injection pen, including electronics, for use with a continuous glucose sensor. In some embodiments, the receiver is configured to receive continuous glucose sensor data, to calculate a medicament therapy (e.g., via the integrated system electronics) and to automatically set a bolus dose of the integrated hand-held medicament injection pen, whereby the user can manually inject the bolus dose of medicament into the host. In some embodiments, the integrated receiver and hand-held medicament injection pen are integrally formed, while in other embodiments they are detachably connected and communicated via mutually engaging electrical contacts and/or via wireless communication.
    Type: Grant
    Filed: July 18, 2017
    Date of Patent: September 3, 2019
    Assignee: DexCom, Inc.
    Inventors: Apurv Ullas Kamath, Richard C. Yang, Jacob S. Leach, Nelson Quintana
  • Patent number: 10390707
    Abstract: Disclosed is a biosensor needle including a light-transmissive main body having a width that is less than a length so as to be inserted into a testee, and a plurality of metal particles provided at at least a part of the main body and generating a surface enhanced Raman scattering (SERS) effect of light incident through the main body.
    Type: Grant
    Filed: May 11, 2016
    Date of Patent: August 27, 2019
    Assignee: Samsung Electronics Co., Ltd
    Inventors: Kwang-bok Kim, Young-jae Oh, Seong-je Cho, Jae-geol Cho, Chul-ho Cho, Sun-tae Jung, Hyoung-seon Choi
  • Patent number: 10368847
    Abstract: A sweat sensing device includes a plurality of sweat collection pads communicating with a sensor. Each of the pads is activated by a timing circuit which allows one or more of the pads to be activated at a selected time and subsequent deactivated after a defined period of time. This allows for selective collection of sweat from a plurality of pads over a prolonged period of time. An impedance measuring circuit can be employed to determine if one or more of the pads becomes disconnected, in order to avoid irritation. Further, the devices can use a common microfluidic device which both transports sweat activating substance, such as pilocarpine, to the surface of the skin and directs sweat away from the skin to a sensing device.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: August 6, 2019
    Assignee: University of Cincinnati
    Inventors: Jason Charles Heikenfeld, Zachary Cole Sonner
  • Patent number: 10362973
    Abstract: Systems and methods for analyte monitoring, particularly systems and methods for monitoring and managing life of a battery in an analyte sensor system worn by a user, are provided.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: July 30, 2019
    Assignee: DexCom, Inc.
    Inventors: Jose Hector Hernandez-Rosas, Mark Dervaes, Peter C. Simpson, Apurv Ullas Kamath, Tom Miller, Shawn Larvenz, Stephen J. Vanslyke
  • Patent number: 10349877
    Abstract: Methods and apparatus for providing data processing and control for use in a medical communication system are provided.
    Type: Grant
    Filed: April 3, 2015
    Date of Patent: July 16, 2019
    Assignee: Abbott Diabetes Care inc.
    Inventors: Gary Alan Hayter, Benjamin Jay Feldman
  • Patent number: 10342698
    Abstract: An implantable medical device is described. The implantable medical device includes a small molecule generator, a small molecule diffusor, and a cannula that connects the two. The small molecule generator includes an electrolyte reservoir and a set of electrodes. A first portion of the electrolyte reservoir is impermeable to a predetermined class of small molecules. A second portion of the electrolyte reservoir is permeable to the small molecules. The set of electrodes is disposed inside the electrolyte reservoir and is configured to facilitate electrolysis of the small molecules based on an electric power application to the set of electrodes and on presence of electrolyte inside the electrolyte reservoir. At least a portion of the small molecule diffusor is permeable to the small molecules.
    Type: Grant
    Filed: August 24, 2017
    Date of Patent: July 9, 2019
    Assignees: CALIFORNIA INSTITUTE OF TECHNOLOGY, UNIVERSITY OF SOUTHERN CALIFORNIA, DOHENY EYE INSTITUTE
    Inventors: Yu-Chong Tai, Nicholas E. Scianmarello, Karthik Murali, Mark S. Humayun, Ramiro Magalhaes Ribeiro
  • Patent number: 10314527
    Abstract: Disclosed herein is a sensor comprising a conduit; the conduit comprising an organic polymer; a working electrode; the working electrode being etched and decorated with a nanostructured material; a reference electrode; and a counter electrode; the working electrode, the reference electrode and the counter electrode being disposed in the conduit; the working electrode, the reference electrode and the counter electrode being separated from each other by an electrically insulating material; and wherein a cross-sectional area of the conduit that comprises a section of the working electrode, a section of the reference electrode and a section of the counter electrode is exposed to detect analytes.
    Type: Grant
    Filed: August 2, 2016
    Date of Patent: June 11, 2019
    Assignee: THE UNIVERSITY OF CONNECTICUT
    Inventors: Liangliang Qiang, Santhisagar Vaddiraju, Fotios Papadimitrakopoulos
  • Patent number: 10285633
    Abstract: Correction for initial variation in thickness of a polymer layer and for changes in the coating thickness that occur after implantation of a biosensor and therefore provides substantial increase in the accuracy and lifetime of implantable sensors is done using a factor derived from the decay of potential.
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: May 14, 2019
    Assignee: AgaMatrix, Inc.
    Inventors: Sridhar Iyengar, Ian Harding
  • Patent number: 10285632
    Abstract: Method and system for determining real time analyte concentration including an analyte sensor having a portion in fluid contact with an interstitial fluid under a skin layer, an on-body electronics including a housing coupled to the analyte sensor and configured for positioning on the skin layer, the on-body electronics housing including a plurality of electrical contacts, on the housing; and a data analysis unit having a data analysis unit housing and a plurality of probes, on the housing. Each of the probes configured to electrically couple to a respective electrical contact when the data analysis unit is positioned in physical contact with the on-body electronics. The one or more signals on the probes correspond to one or more of a substantially real time monitored analyte concentration level (MACL), MACL over a predetermined time period, or a rate of change of the MACL, or combinations thereof, are provided.
    Type: Grant
    Filed: July 25, 2017
    Date of Patent: May 14, 2019
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Udo Hoss, Benjamin J. Feldman, Zenghe Liu, Hyun Cho, Benjamin M. Rush
  • Patent number: 10222632
    Abstract: A contact lens for lens-to-lens communication includes blink detection circuitry, one or more electrodes, a logic engine, and data transmission circuitry. The blink detection circuitry is configured to generate a blink signal in response to a blinking of an eye. The logic engine is coupled to receive the blink signal from the blink detection circuitry. The data transmission circuitry is coupled between the one or more electrodes and the logic engine. The logic engine causes the data transmission circuitry to drive electrical data signals onto the one or more electrodes in response to the blink signal reaching a pre-determined threshold.
    Type: Grant
    Filed: October 1, 2015
    Date of Patent: March 5, 2019
    Assignee: Verily Life Sciences LLC
    Inventor: Shungneng Lee
  • Patent number: 10213141
    Abstract: Systems, devices, and methods are provided for changing the power state of a sensor control device in an in vivo analyte monitoring system in various manners, such as through the use of external stimuli (light, magnetics) and RF transmissions.
    Type: Grant
    Filed: April 29, 2014
    Date of Patent: February 26, 2019
    Assignee: ABBOTT DIABETES CARE INC.
    Inventors: Jean-Pierre Cole, Lei He, Michael R. Love, Jeffrey M. Sicurello
  • Patent number: 10182752
    Abstract: A system for transdermal alcohol sensing to be worn near a skin surface of a user, including: an alcohol sensor; a microporous membrane; a housing coupled to the alcohol sensor and the membrane, defining a volume between the alcohol sensor and a first membrane side, and fluidly isolating the volume from a second membrane side opposing the first membrane side; an electronics subsystem electrically coupled to the alcohol sensor, operable to power and receive signals from the alcohol sensor; and a fastener operable to position the second membrane side proximal the skin surface.
    Type: Grant
    Filed: August 1, 2017
    Date of Patent: January 22, 2019
    Assignee: KHN Solutions, Inc.
    Inventors: Keith Harry Nothacker, Will Tammen, Imraan Aziz