Blood Glucose Patents (Class 600/347)
  • Publication number: 20120296186
    Abstract: Embodiments of the present disclosure relate to analyte determining methods and devices (e.g., electrochemical analyte monitoring systems) that have a membrane with low temperature sensitivity. The sensing layer is disposed on a working electrode of in vivo and/or in vitro analyte sensors, e.g., continuous and/or automatic in vivo monitoring using analyte sensors and/or test strips. Also provided are systems and methods of using the, for example electrochemical, analyte sensors in analyte monitoring.
    Type: Application
    Filed: December 20, 2011
    Publication date: November 22, 2012
    Inventors: Tianmei Ouyang, Zenghe Liu, Yohannes Goti, Benjamin J. Feldman, Udo Hoss
  • Patent number: 8314613
    Abstract: Disclosed are an electrochemical biosensor which comprises a production lot information identification portion, on which information is recorded in a magnetization mark, and a measuring device which can automatically identify the production lot information of the biosensor with the insertion of the electrochemical biosensor into the measuring device. The electrochemical biosensor and the measuring device thereof can record production lot information in the form of magnetization marks on an electrochemical biosensor strip and read the information as digital signals through a magnetoresistance sensor device, which can be mounted on the surface of a circuit board using Surface Mounted Technology (SMT). Without the need for a high-priced filter or a complicated calculation system, the magnetic detector system has a simple construction and realizes economic efficiency in the construction of the measuring device.
    Type: Grant
    Filed: February 26, 2008
    Date of Patent: November 20, 2012
    Assignee: i-SENS, Inc.
    Inventors: Gang Cui, Keun Ki Kim, Dong Hoon Han, Moon Hwan Kim, Hakhyun Nam, Geun Sig Cha
  • Patent number: 8313434
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host and associated methods of manufacture. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host and associated methods of manufacture.
    Type: Grant
    Filed: March 1, 2007
    Date of Patent: November 20, 2012
    Assignee: DexCom, Inc.
    Inventors: Mark Brister, Daniel S. Kline, Steve Masterson, Sean Saint
  • Patent number: 8309362
    Abstract: A process is described for the preparation of modified electrodes useful for the measurement of analytes in biological fluids, comprising the deposition of Prussian blue on screen printed electrodes, and the modified electrodes prepared via said process; the enzymatic electrodes and the biosensors comprising said modified electrodes and the method for the determination of analytes in biological fluids which uses said modified electrodes are also described.
    Type: Grant
    Filed: December 13, 2007
    Date of Patent: November 13, 2012
    Assignee: A. Menarini Industrie Farmaceutiche Riunite S.R.L.
    Inventors: Giuseppe Palleschi, Francesco Ricci, Danila Moscone, Alessandro Poscia
  • Publication number: 20120283538
    Abstract: Embodiments of the invention provide analyte sensors and sensor systems such as amperometric glucose sensors used in the management of diabetes as well as optimized methods for monitoring analytes using such sensors and sensor systems.
    Type: Application
    Filed: May 6, 2011
    Publication date: November 8, 2012
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: Jefferson Rose, Ashwin K. Rao, Ning Yang, Chia-Hung Chiu, Ying Luo, Rebecca K. Gottlieb
  • Patent number: 8306598
    Abstract: An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte.
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: November 6, 2012
    Assignee: Abbott Diabetes Care Inc.
    Inventors: James Say, Michael F. Tomasco, Adam Heller, Yoram Gal, Behrad Aria, Ephraim Heller, Phillip John Plante, Mark S. Vreeke, Keith A. Friedman, Fredric C. Colman
  • Publication number: 20120277562
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Application
    Filed: July 12, 2012
    Publication date: November 1, 2012
    Applicant: DexCom, Inc.
    Inventors: Mark Brister, Paul V. Neale, Sean Saint, James R. Petisce, Thomas F. McGee, Daniel Shawn Codd, David Michael Petersen, Daniel S. Kline
  • Patent number: 8298142
    Abstract: Systems and methods of use for continuous analyte measurement of a host's vascular system are provided. In some embodiments, a continuous glucose measurement system includes a vascular access device, a sensor and sensor electronics, the system being configured for insertion into communication with a host's circulatory system.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: October 30, 2012
    Assignee: DexCom, Inc.
    Inventors: Peter C. Simpson, Michael J. Estes, Paul V. Neale, Robert Boock, Jacob S. Leach, Richard C. Yang, Mark Brister
  • Patent number: 8298389
    Abstract: In vitro electrochemical sensor that provide accurate and repeatable analysis of a sample of biological fluid are provided. In some embodiments, the sensors have a measurement zone that has a volume less than the volume of the sample chamber. The measurement zone could have a volume of no more than about 0.2 ?L.
    Type: Grant
    Filed: September 12, 2005
    Date of Patent: October 30, 2012
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Ting Chen, Alexander G. Ghesquiere
  • Patent number: 8301395
    Abstract: The present invention includes analyte measurement systems, analyte measurement meters, analyte testing devices, cartridges thereof and integrated circuits for use therewith, and further includes methods related to the use of the integrated circuits and, in certain embodiments, to the counting or tracking of parameters related to the cartridges and analyte test devices.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: October 30, 2012
    Assignee: Abbott Diabetes Care Inc.
    Inventors: William Matievich, Jr., Alexander G. Ghesquiere, Ting Chen
  • Patent number: 8298158
    Abstract: The present disclosure provides electrode structures and integrated electrode structures having one or more conductive materials coextruded with one or more dielectric materials. The disclosed electrode structures can be configured for use as analyte sensors. Also provided, are methods of making and using the electrode structures and integrated electrode structures described herein.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: October 30, 2012
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Songbiao Zhang, John C. Mazza
  • Patent number: 8292808
    Abstract: Systems and methods for non-vascular sensor implantation and for measuring physiological parameters in areas of a body where the physiological parameters are heterogeneous. An implant unit is implanted in an area of a body and a foreign body capsule is allowed to form around the implant unit area. A sensor may be directed into a body cavity such as, for example, the peritoneal space, subcutaneous tissues, the foreign body capsule, or other area. A subcutaneous area of the body may be tunneled for sensor placement. Spatially separated sensing elements may be used for detecting individual amounts of the physiological parameter. An overall amount of the physiological parameter may be determined by calculating a statistical measurement of the individual sensed amounts in the area. Another embodiment of the invention, a multi-analyte measuring device, may include a substrate having an electrode array on one side and an integrated circuit on another side.
    Type: Grant
    Filed: September 16, 2008
    Date of Patent: October 23, 2012
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Michael E. Miller, Rajiv Shah
  • Patent number: 8292810
    Abstract: Systems and methods for minimizing or eliminating transient non-glucose related signal noise due to non-glucose rate limiting phenomenon such as ischemia, pH changes, temperatures changes, and the like. The system monitors a data stream from a glucose sensor and detects signal artifacts that have higher amplitude than electronic or diffusion-related system noise. The system replaces some or the entire data stream continually or intermittently including signal estimation methods that particularly address transient signal artifacts. The system is also capable of detecting the severity of the signal artifacts and selectively applying one or more signal estimation algorithm factors responsive to the severity of the signal artifacts, which includes selectively applying distinct sets of parameters to a signal estimation algorithm or selectively applying distinct signal estimation algorithms.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: October 23, 2012
    Assignee: DexCom, Inc.
    Inventors: Paul V. Goode, Jr., James H. Brauker, Apurv U. Kamath, James Patrick Thrower, Victoria Carr-Brendel
  • Publication number: 20120265042
    Abstract: A device and method for delivering a device such as a sensor or fluid transport structure or a fluid transport structure sensor combination into, for example, mammalian skin. Such a device allows a sensor to penetrate mammalian skin without the use of an introducer device such as a needle. A device in accordance with embodiments of the present disclosure includes a housing for attachment to mammalian skin including an exit port for receiving the distal end of a biosensor and an injection activation device including a mechanism for forcing the sensing device from a first position within the housing, through the exit port to a second position, with sufficiently high velocity to partially penetrate the mammalian skin.
    Type: Application
    Filed: March 8, 2012
    Publication date: October 18, 2012
    Applicant: iSense Corporation
    Inventors: Mark Neinast, Robert Bruce, W. Kenneth Ward, Richard G. Sass, Jon Fortuna
  • Patent number: 8290562
    Abstract: Systems and methods for processing sensor analyte data, including initiating calibration, updating calibration, evaluating clinical acceptability of reference and sensor analyte data, and evaluating the quality of sensor calibration. During initial calibration, the analyte sensor data is evaluated over a period of time to determine stability of the sensor. The sensor may be calibrated using a calibration set of one or more matched sensor and reference analyte data pairs. The calibration may be updated after evaluating the calibration set for best calibration based on inclusion criteria with newly received reference analyte data. Fail-safe mechanisms are provided based on clinical acceptability of reference and analyte data and quality of sensor calibration. Algorithms provide for optimized prospective and retrospective analysis of estimated blood analyte data from an analyte sensor.
    Type: Grant
    Filed: May 3, 2010
    Date of Patent: October 16, 2012
    Assignee: DexCom, Inc.
    Inventors: Paul V. Goode, Jr., James H. Brauker, Apurv U. Kamath, Victoria Carr-Brendel
  • Patent number: 8290560
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Grant
    Filed: November 18, 2008
    Date of Patent: October 16, 2012
    Assignee: DexCom, Inc.
    Inventors: Apurv Ullas Kamath, James H. Brauker, J. Michael Dobbles
  • Patent number: 8290561
    Abstract: Systems and methods for dynamically and intelligently estimating analyte data from a continuous analyte sensor, including receiving a data stream, selecting one of a plurality of algorithms, and employing the selected algorithm to estimate analyte values. Additional data processing includes evaluating the selected estimative algorithms, analyzing a variation of the estimated analyte values based on statistical, clinical, or physiological parameters, comparing the estimated analyte values with corresponding measure analyte values, and providing output to a user. Estimation can be used to compensate for time lag, match sensor data with corresponding reference data, warn of upcoming clinical risk, replace erroneous sensor data signals, and provide more timely analyte information encourage proactive behavior and preempt clinical risk.
    Type: Grant
    Filed: September 23, 2009
    Date of Patent: October 16, 2012
    Assignee: DexCom, Inc.
    Inventors: James H. Brauker, Victoria Carr-Brendel, Paul V. Goode, Apurv U. Kamath, James P. Thrower, Ben Xavier
  • Patent number: 8290559
    Abstract: Systems and methods for processing sensor data are provided. In some embodiments, systems and methods are provided for calibration of a continuous analyte sensor. In some embodiments, systems and methods are provided for classification of a level of noise on a sensor signal. In some embodiments, systems and methods are provided for determining a rate of change for analyte concentration based on a continuous sensor signal. In some embodiments, systems and methods for alerting or alarming a patient based on prediction of glucose concentration are provided.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: October 16, 2012
    Assignee: DexCom, Inc.
    Inventors: Mohammad Ali Shariati, Ying Li, Apurv Ullas Kamath, Aarthi Mahalingam
  • Patent number: 8287453
    Abstract: Systems and methods of use for continuous analyte measurement of a host's vascular system are provided. In some embodiments, a continuous glucose measurement system includes a vascular access device, a sensor and sensor electronics, the system being configured for insertion into communication with a host's circulatory system.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: October 16, 2012
    Assignee: DexCom, Inc.
    Inventors: Ying Li, Apurv Ullas Kamath, Mark Brister
  • Publication number: 20120255875
    Abstract: Systems and methods for continuous measurement of an analyte in a host are provided. The system generally includes a continuous analyte sensor configured to continuously measure a concentration of analyte in a host and a sensor electronics module physically connected to the continuous analyte sensor during sensor use, wherein the sensor electronics module is further configured to directly wirelessly communicate sensor information to one or more display devices. Establishment of communication between devices can involve using a unique identifier associated with the sensor electronics module to authenticate communication. Times tracked at the sensor electronics module and the display module can be at different resolutions, and the different resolutions can be translated to facilitate communication. In addition, the frequency of establishing communication channels between the sensor electronics module and the display devices can vary depending upon whether reference calibration information is being updated.
    Type: Application
    Filed: April 6, 2012
    Publication date: October 11, 2012
    Applicant: DexCom, Inc.
    Inventors: Kenneth San Vicente, Indrawati Gauba, Siddharth Waichal, Andrew Walker
  • Patent number: 8282550
    Abstract: A system is provided for monitoring glucose in a host, including a continuous glucose sensor that produces a data stream indicative of a host's glucose concentration and an integrated receiver that receives the data stream from the continuous glucose sensor and calibrates the data stream using a single point glucose monitor that is integral with the integrated receiver. The integrated receiver obtains a glucose value from the single point glucose monitor, calibrates the sensor data stream received from the continuous glucose sensor, and displays one or both of the single point glucose measurement values and the calibrated continuous glucose sensor values on the user interface.
    Type: Grant
    Filed: July 29, 2008
    Date of Patent: October 9, 2012
    Assignee: DexCom, Inc.
    Inventors: Andrew P. Rasdal, James H. Brauker, Paul V. Neale, Peter C. Simpson, Apurv Ullas Kamath, Paul V. Goode
  • Patent number: 8285354
    Abstract: Systems and methods for processing sensor analyte data, including initiating calibration, updating calibration, evaluating clinical acceptability of reference and sensor analyte data, and evaluating the quality of sensor calibration. During initial calibration, the analyte sensor data is evaluated over a period of time to determine stability of the sensor. The sensor may be calibrated using a calibration set of one or more matched sensor and reference analyte data pairs. The calibration may be updated after evaluating the calibration set for best calibration based on inclusion criteria with newly received reference analyte data. Fail-safe mechanisms are provided based on clinical acceptability of reference and analyte data and quality of sensor calibration. Algorithms provide for optimized prospective and retrospective analysis of estimated blood analyte data from an analyte sensor.
    Type: Grant
    Filed: March 23, 2010
    Date of Patent: October 9, 2012
    Assignee: DexCom, Inc.
    Inventors: Paul V. Goode, James Brauker, Apurv U. Kamath, Victoria E. Carr-Brendel
  • Patent number: 8280476
    Abstract: One aspect of the invention provides a glucose monitor having a plurality of tissue piercing elements, each tissue piercing element having a distal opening, a proximal opening and interior space extending between the distal and proximal openings; a sensing area in fluid communication with the proximal openings of the tissue piercing elements; sensing fluid extending from the sensing area into substantially the entire interior space of the tissue piercing elements; and a glucose sensor adapted to detect a concentration of glucose in the sensing fluid within the sensing area.
    Type: Grant
    Filed: March 28, 2006
    Date of Patent: October 2, 2012
    Assignee: Arkal Medical, Inc.
    Inventor: Arvind N. Jina
  • Patent number: 8280475
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Grant
    Filed: February 23, 2009
    Date of Patent: October 2, 2012
    Assignee: DexCom, Inc.
    Inventors: Mark Brister, Daniel Kline, Steve Masterson, Sean Saint
  • Patent number: 8277713
    Abstract: An implantable analyte sensor including a sensing region for measuring the analyte and a non-sensing region for immobilizing the sensor body in the host. The sensor is implanted in a precisely dimensioned pocket to stabilize the analyte sensor in vivo and enable measurement of the concentration of the analyte in the host before and after formation of a foreign body capsule around the sensor. The sensor further provides a transmitter for RF transmission through the sensor body, electronic circuitry, and a power source optimized for long-term use in the miniaturized sensor body.
    Type: Grant
    Filed: May 3, 2004
    Date of Patent: October 2, 2012
    Assignee: DexCom, Inc.
    Inventors: James R. Petisce, Mark Brister, Mark Shults, James H. Brauker, Paul V. Neale
  • Patent number: 8280474
    Abstract: The present application provides Ag/AgCl based reference electrodes having an extended lifetime that are suitable for use in long term amperometric sensors. Electrochemical sensors equipped with reference electrodes described herein demonstrate considerable stability and extended lifetime in a variety of conditions.
    Type: Grant
    Filed: June 2, 2008
    Date of Patent: October 2, 2012
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Zenghe Liu, Benjamin J. Feldman, Brian Cho, Udo Hoss
  • Patent number: 8275439
    Abstract: An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte.
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: September 25, 2012
    Assignee: Abbott Diabetes Care Inc.
    Inventors: James Say, Michael F. Tomasco, Adam Heller, Yoram Gal, Behrad Aria, Ephraim Heller, Phillip John Plante, Mark S. Vreeke, Keith A. Friedman, Fredric C. Colman
  • Patent number: 8275437
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Grant
    Filed: March 23, 2007
    Date of Patent: September 25, 2012
    Assignee: DexCom, Inc.
    Inventors: James H. Brauker, Apurv U. Kamath, Paul V. Goode, Mark Brister
  • Patent number: 8275438
    Abstract: Systems and methods of use for continuous analyte measurement of a host's vascular system are provided. In some embodiments, a continuous glucose measurement system includes a vascular access device, a sensor and sensor electronics, the system being configured for insertion into communication with a host's circulatory system.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: September 25, 2012
    Assignee: DexCom, Inc.
    Inventors: Peter C. Simpson, Michael J. Estes, Paul V. Neale, Robert Boock, Jacob S. Leach, Richard C. Yang
  • Publication number: 20120238833
    Abstract: An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor.
    Type: Application
    Filed: March 23, 2012
    Publication date: September 20, 2012
    Applicant: Abbott Diabetes Care Inc.
    Inventors: James Say, Michael F. Tomasco, Adam Heller, Yoram Gal, Behrad Aria, Ephraim Heller, Phillip John Plante, Mark S. Vreeke, Keith A. Friedman, Fredric C. Colman
  • Publication number: 20120238841
    Abstract: A test strip is provided with sample capture that provides for a one step process to achieve a lancing event, sample capture and sample transport in a sensor design that supports one step testing. In various embodiments, the present invention provides for one step testing by, (i) analyte sample capture layout; (ii) analyte sample capture and transport configurations; (iii) structures of sample capture; (iv) processes for forming sample transport, and the like.
    Type: Application
    Filed: April 14, 2011
    Publication date: September 20, 2012
    Inventors: Mark Castle, Jeffrey Perry, Thomas Shoup, Rodney Kugizaki
  • Publication number: 20120238850
    Abstract: An integrated lancet and testing striplet for measuring a body analyte level in a health care regimen includes a skin piercing member and an analyte sensor coupled together.
    Type: Application
    Filed: January 3, 2012
    Publication date: September 20, 2012
    Applicant: Abbott Diabetes Care, Inc.
    Inventors: Alexander Ghesquiere, Clive Nicholls, John J. Cabrall, Scott A. Matula, Simon Andrew Hector, Javier Prieto, Adrian Petyt, Geoffrey Roger Chambers
  • Patent number: 8271064
    Abstract: A transdermal test sensor assembly adapted to determine an analyte concentration of a fluid sample is disclosed. The assembly comprises a sensor support including at least one reservoir adapted to hold a liquid. The assembly further comprises a test sensor being coupled to the sensor support. The test sensor forms at least one aperture therein. At least a portion of the at least one aperture is adjacent to the at least one reservoir. The assembly further comprises a hydrogel composition positioned on the test sensor. The hydrogel composition is linked to the at least one reservoir via the at least one aperture.
    Type: Grant
    Filed: December 14, 2006
    Date of Patent: September 18, 2012
    Assignee: Bayer Healthcare LLC
    Inventor: Allen J. Brenneman
  • Patent number: 8265726
    Abstract: An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte.
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: September 11, 2012
    Assignee: Abbott Diabetes Care Inc.
    Inventors: James Say, Michael F. Tomasco, Adam Heller, Yoram Gal, Behrad Aria, Ephraim Heller, Phillip John Plante, Mark S. Vreeke, Keith A. Friedman, Fredric C. Colman
  • Patent number: 8262995
    Abstract: The invention concerns a pluggable data transfer module and a method that can be used to transfer data from an analytical system to a data processing unit in a galvanically decoupled manner. This invention is particularly suitable for medical fields of application in which recently it has become more and more desirable to process analytical data of a patient.
    Type: Grant
    Filed: December 11, 2002
    Date of Patent: September 11, 2012
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Udo Manser, Dieter Schaefer, Michael Schabbach, Peter Kuenstler
  • Patent number: 8265725
    Abstract: Systems and methods for dynamically and intelligently estimating analyte data from a continuous analyte sensor, including receiving a data stream, selecting one of a plurality of algorithms, and employing the selected algorithm to estimate analyte values. Additional data processing includes evaluating the selected estimative algorithms, analyzing a variation of the estimated analyte values based on statistical, clinical, or physiological parameters, comparing the estimated analyte values with corresponding measure analyte values, and providing output to a user. Estimation can be used to compensate for time lag, match sensor data with corresponding reference data, warn of upcoming clinical risk, replace erroneous sensor data signals, and provide more timely analyte information encourage proactive behavior and preempt clinical risk.
    Type: Grant
    Filed: October 12, 2009
    Date of Patent: September 11, 2012
    Assignee: DexCom, Inc.
    Inventors: James H. Brauker, Victoria E. Carr-Brendel, Paul V. Goode, Apurv Ullas Kamath, James Patrick Thrower, Ben Xavier
  • Publication number: 20120226121
    Abstract: Disclosed herein are systems and methods for calibrating a continuous analyte sensor, such as a continuous glucose sensor. One such system utilizes one or more electrodes to measure an additional analyte. Such measurements may provide a baseline or sensitivity measurement for use in calibrating the sensor. Furthermore, baseline and/or sensitivity measurements may be used to trigger events such as digital filtering of data or suspending display of data.
    Type: Application
    Filed: May 16, 2012
    Publication date: September 6, 2012
    Applicant: DexCom, Inc.
    Inventors: Apurv Ullas Kamath, Peter C. Simpson, James H. Brauker, Paul V. Goode, JR.
  • Patent number: 8257258
    Abstract: A sensor array designed to be continuously indexed through a compatible blood glucose test monitor for the purpose of conducting multiple consecutive blood glucose measurements. The sensor array can be configured to substantially conform to a non-planar surface. In one embodiment, the sensor array includes first and second test sensors which are hingedly coupled together through a pin and socket interconnection. In another embodiment, the sensor array includes a unitary, non-conductive substrate which is scored to define one or more fold lines, a first set electrodes deposited on the substrate to define a first test sensor, and a second set of electrodes deposited on the substrate to define a second test sensor.
    Type: Grant
    Filed: July 30, 2007
    Date of Patent: September 4, 2012
    Assignee: Abbott Laboratories
    Inventor: Michael R. Zocchi
  • Patent number: 8257259
    Abstract: Systems and methods for dynamically and intelligently estimating analyte data from a continuous analyte sensor, including receiving a data stream, selecting one of a plurality of algorithms, and employing the selected algorithm to estimate analyte values. Additional data processing includes evaluating the selected estimative algorithms, analyzing a variation of the estimated analyte values based on statistical, clinical, or physiological parameters, comparing the estimated analyte values with corresponding measure analyte values, and providing output to a user. Estimation can be used to compensate for time lag, match sensor data with corresponding reference data, warn of upcoming clinical risk, replace erroneous sensor data signals, and provide more timely analyte information encourage proactive behavior and preempt clinical risk.
    Type: Grant
    Filed: October 16, 2008
    Date of Patent: September 4, 2012
    Assignee: DexCom, Inc.
    Inventors: James H. Brauker, Victoria E. Carr-Brendel, Paul V. Goode, Apurv Ullas Kamath, James Patrick Thrower, Ben Xavier
  • Patent number: 8260393
    Abstract: Systems and methods for detecting noise episodes and processing analyte sensor data responsive thereto. In some embodiments, processing analyte sensor data includes filtering the sensor data to reduce or eliminate the effects of the noise episode on the signal.
    Type: Grant
    Filed: June 13, 2007
    Date of Patent: September 4, 2012
    Assignee: DexCom, Inc.
    Inventors: Apurv Ullas Kamath, Aarthi Mahalingam, James H. Brauker
  • Patent number: 8260558
    Abstract: Methods and apparatus for providing data processing and control for use in a medical communication system are provided.
    Type: Grant
    Filed: May 14, 2008
    Date of Patent: September 4, 2012
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Gary Hayter, Geoffrey V. McGarraugh, Kenneth J. Doniger
  • Patent number: 8260392
    Abstract: An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte.
    Type: Grant
    Filed: June 9, 2008
    Date of Patent: September 4, 2012
    Assignee: Abbott Diabetes Care Inc.
    Inventors: James Say, Michael F. Tomasco, Adam Heller, Yoram Gal, Behrad Aria, Ephraim Heller, Phillip John Plante, Mark S. Vreeke, Keith A. Friedman, Fredric C. Colman
  • Patent number: 8260427
    Abstract: A garment is provided with a tube that may be used to facilitate placement of needle electrodes into a patient to facilitate intraoperative monitoring during surgical procedures.
    Type: Grant
    Filed: July 7, 2010
    Date of Patent: September 4, 2012
    Assignee: ProNerve, LLC
    Inventors: Jeff Thramann, James Higgins
  • Patent number: 8255034
    Abstract: The present invention is directed to membranes composed liquid crystals having continuous aqueous channels, such as a lyotropic liquid crystal, including a cubic phase lyotropic liquid crystal, and to electrochemical sensors equipped with such membranes. The membranes are useful in limiting the diffusion of an analyte to a working electrode in an electrochemical sensor so that the sensor does not saturate and/or remains linearly responsive over a large range of analyte concentrations. Electrochemical sensors equipped with membranes of the present invention demonstrate considerable sensitivity and stability, and a large signal-to-noise ratio, in a variety of conditions.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: August 28, 2012
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Adam Heller, Pawel Rowinski, Benjamin J. Feldman
  • Patent number: 8252229
    Abstract: In one aspect, there is provided assembling an analyte sensor with an analyte sensor insertion device, packaging the assembled analyte sensor and sensor insertion device in a substantially airtight seal, and irradiating the packaged assembled analyte sensor and sensor insertion device at a predetermined dose using one or more electron beam accelerators.
    Type: Grant
    Filed: April 10, 2009
    Date of Patent: August 28, 2012
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Christopher Allen Thomas, Jasmin Y. Zhao
  • Patent number: 8251906
    Abstract: Systems and methods for dynamically and intelligently estimating analyte data from a continuous analyte sensor, including receiving a data stream, selecting one of a plurality of algorithms, and employing the selected algorithm to estimate analyte values. Additional data processing includes evaluating the selected estimative algorithms, analyzing a variation of the estimated analyte values based on statistical, clinical, or physiological parameters, comparing the estimated analyte values with corresponding measure analyte values, and providing output to a user. Estimation can be used to compensate for time lag, match sensor data with corresponding reference data, warn of upcoming clinical risk, replace erroneous sensor data signals, and provide more timely analyte information encourage proactive behavior and preempt clinical risk.
    Type: Grant
    Filed: April 15, 2009
    Date of Patent: August 28, 2012
    Assignee: DexCom, Inc.
    Inventors: James H. Brauker, Victoria Carr-Brendel, Paul V. Goode, Apurv U. Kamath, James P. Thrower, Ben Xavier
  • Patent number: 8255030
    Abstract: The present invention relates generally to systems and methods for increasing oxygen availability to implantable devices. The preferred embodiments provide a membrane system configured to provide protection of the device from the biological environment and/or a catalyst for enabling an enzymatic reaction, wherein the membrane system includes a polymer formed from a high oxygen soluble material. The high oxygen soluble polymer material is disposed adjacent to an oxygen-utilizing source on the implantable device so as to dynamically retain high oxygen availability to the oxygen-utilizing source during oxygen deficits. Membrane systems of the preferred embodiments are useful for implantable devices with oxygen-utilizing sources and/or that function in low oxygen environments, such as enzyme-based electrochemical sensors and cell transplantation devices.
    Type: Grant
    Filed: April 25, 2006
    Date of Patent: August 28, 2012
    Assignee: DexCom, Inc.
    Inventors: James Petisce, Mark A. Tapsak, Peter C. Simpson, Victoria Carr-Brendel, James H. Brauker
  • Patent number: 8255032
    Abstract: The present invention relates generally to systems and methods for increasing oxygen availability to implantable devices. The preferred embodiments provide a membrane system configured to provide protection of the device from the biological environment and/or a catalyst for enabling an enzymatic reaction, wherein the membrane system includes a polymer formed from a high oxygen soluble material. The high oxygen soluble polymer material is disposed adjacent to an oxygen-utilizing source on the implantable device so as to dynamically retain high oxygen availability to the oxygen-utilizing source during oxygen deficits. Membrane systems of the preferred embodiments are useful for implantable devices with oxygen-utilizing sources and/or that function in low oxygen environments, such as enzyme-based electrochemical sensors and cell transplantation devices.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: August 28, 2012
    Assignee: DexCom, Inc.
    Inventors: James R. Petisce, Mark A. Tapsak, Peter C. Simpson, Victoria E. Carr-Brendel, James H. Brauker
  • Patent number: 8251907
    Abstract: In certain embodiments, a method of maintaining health of a patient uses an analyte detection system. The analyte detection system is coupled to the patient such that a bodily fluid of the patient is accessible to the analyte detection system. The method includes automatically initiating and conducting a measurement of an analyte in the bodily fluid using the analyte detection system. The method further includes determining a treatment dose for the patient based on the measurement using the analyte detection system.
    Type: Grant
    Filed: February 8, 2010
    Date of Patent: August 28, 2012
    Assignee: OptiScan Biomedical Corporation
    Inventors: Bernhard B. Sterling, James R. Braig, Peter Rule, Richard A. King
  • Patent number: 8255033
    Abstract: The present invention relates generally to systems and methods for increasing oxygen availability to implantable devices. The preferred embodiments provide a membrane system configured to provide protection of the device from the biological environment and/or a catalyst for enabling an enzymatic reaction, wherein the membrane system includes a polymer formed from a high oxygen soluble material. The high oxygen soluble polymer material is disposed adjacent to an oxygen-utilizing source on the implantable device so as to dynamically retain high oxygen availability to the oxygen-utilizing source during oxygen deficits. Membrane systems of the preferred embodiments are useful for implantable devices with oxygen-utilizing sources and/or that function in low oxygen environments, such as enzyme-based electrochemical sensors and cell transplantation devices.
    Type: Grant
    Filed: April 25, 2006
    Date of Patent: August 28, 2012
    Assignee: DexCom, Inc.
    Inventors: James Petisce, Mark A. Tapsak, Peter C. Simpson, Victoria Carr-Brendel, James H. Brauker