Glucose Measurement Patents (Class 600/365)
  • Patent number: 10772552
    Abstract: A wearable device for the quantification of regulatory substances produced in the body, such as analytes and hormones, is disclosed. The wearable device includes contact sensors formed on an outer portion of a casing of the wearable device, and those contact sensors are positioned to contact skin of a wearer of the device and configured to measure galvanic skin response and temperature. The wearable device also includes a microprocessor in the casing of the wearable device adapted to control programs and execute algorithms, a system memory in the casing of the wearable device adapted to store data, an entry port in the casing of the wearable device adapted to receive a biological-assay cartridge containing a biological sample, and a biological-assay reader placed inside the casing of the device and configured to read the biological sample.
    Type: Grant
    Filed: February 2, 2018
    Date of Patent: September 15, 2020
    Inventor: Alfred H. Bedell, Jr.
  • Patent number: 10761347
    Abstract: An ophthalmic device includes an enclosure that is compatible for wearing in or on an eye. An adjustable lens is disposed within the enclosure. Driver circuitry is disposed within the enclosure and coupled to drive the adjustable lens and change its optical power. Built-in-self-test (BIST) circuitry is disposed within the enclosure and coupled to the adjustable lens. The BIST circuitry includes an impedance measurement circuit coupled to selectively measure an impedance of the adjustable lens. A controller is disposed within the enclosure and includes BIST control logic that measures the impedance of the adjustable lens with the impedance measurement circuit to determine a health status of the adjustable lens.
    Type: Grant
    Filed: February 20, 2018
    Date of Patent: September 1, 2020
    Assignee: Verily Life Sciences LLC
    Inventor: Shungneng Lee
  • Patent number: 10746693
    Abstract: A device includes a biosensor, a sensing circuit electrically connected to the biosensor, a quantizer electrically connected to the sensing circuit, a digital filter electrically connected to the quantizer, a selective window electrically connected to the digital filter, and a decision unit electrically connected to the selective window.
    Type: Grant
    Filed: July 10, 2017
    Date of Patent: August 18, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Jui-Cheng Huang, Yi-Shao Liu, Chun-Wen Cheng, Tung-Tsun Chen, Chin-Hua Wen
  • Patent number: 10736549
    Abstract: An example continuous glucose monitor includes a printed circuit board (“PCB”) having first and second outer layers and an inner layer; a semiconductor package having a plurality of pins coupled to the first outer layer of the PCB; an electrical contact formed on the second outer layer of the PCB; a trace having a first portion disposed on the first outer layer, a second portion disposed on the inner layer, and a third portion disposed on the second outer layer, the trace having a first end coupled to a first pin of the plurality of pins and a second end coupled to the electrical contact; and an encapsulant disposed around a perimeter of the semiconductor package, the encapsulant covering the plurality of pins, the first portion of the sensor trace, the third portion of the sensor trace, wherein an upper surface of the semiconductor package remains exposed.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: August 11, 2020
    Assignee: Verily Life Sciences LLC
    Inventors: Mandy Philippine, Scott Matula, Johan Vanderhaegen, Louis Jung, Nivi Arumugam
  • Patent number: 10724066
    Abstract: Devices and methods capable of detecting glucose in saliva (FIG. 12). The devices feature a sensor having a substrate containing electrodes and one or more reagents on the electrodes. A detection device is operably coupled with the sensor to detect glucose based on measurement of an electrical parameter when electricity is applied to the electrode.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: July 28, 2020
    Assignee: Arizona Board of Regents on behalf of Arizona State University
    Inventors: Jeffrey LaBelle, Chi Lin, Jonus Reyna, Amnah Alkhan, Cael Muggeridge, Susan Sheffield
  • Patent number: 10709978
    Abstract: An example system includes a physiological sensor for generating physiological data associated with a user bearing the physiological sensor. The physiological sensor is configured to wirelessly communicate the physiological data. A portable device includes a touch input device; an accelerometer for generating accelerometer data indicative of activity of the user; wireless communication circuitry for receiving the physiological data; memory for storing the accelerometer data and the physiological sensor data; and a vibrator for providing tactile output to the user. The wireless communication circuitry transmits the physiological data and the accelerometer data to a computer device for use in a presentation application.
    Type: Grant
    Filed: September 3, 2015
    Date of Patent: July 14, 2020
    Assignees: NINTENDO CO., LTD., TOHOKU UNIVERSITY
    Inventors: Makoto Yoshizawa, Tomoyuki Yambe, Norihiro Sugita, Norikatsu Furuta
  • Patent number: 10714212
    Abstract: A portable data-management system based on an analyte testing device which communicates wirelessly with a mobile device. The mobile device runs an application to manage and analyze data obtained by the analyte testing device. The mobile device may assist the user in displaying testing data, identifying patterns to assist healthy behavior or issue warnings based on the collected data. The mobile device may be connected to a network to store user health data for use by other parties.
    Type: Grant
    Filed: November 13, 2015
    Date of Patent: July 14, 2020
    Assignee: Ascensia Diabetes Care Holding AG
    Inventors: Jun Chen, Harris Lieber, Erik Nelson, Jeffery S. Reynolds, Kevin Curran, Aseem Mehta, Dawn Rountree
  • Patent number: 10702165
    Abstract: The invention in at least one embodiment includes a method for determining the core body temperature of a person by setting an initial core body temperature with a processor; receiving a heart rate of the person with the processor; calculating a predicted core body temperature with the processor using an extended Kalman filter based on the heart rate and the initial core body temperature; and providing the predicted core body temperature. In another embodiment, a system for performing the method.
    Type: Grant
    Filed: March 4, 2017
    Date of Patent: July 7, 2020
    Assignee: The Government of the United States, as Represented by the Secretary of the Army
    Inventor: Mark J. Buller
  • Patent number: 10702198
    Abstract: In some aspects, an apparatus for a biosensor includes a sensor wire and a rigid member. The rigid member may be coupled to the sensor wire and include a contact surface. The contact surface may be sized to enable a suction head of a robotic placement device to create a vacuum seal on the contact surface for lifting the sensor wire and rigid member.
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: July 7, 2020
    Assignee: DexCom, Inc.
    Inventors: Ohseung Kwon, Xianyan Wang, Timothy Stowe
  • Patent number: 10653344
    Abstract: Methods and apparatus for providing data processing and control for use in a medical communication system are provided.
    Type: Grant
    Filed: November 19, 2018
    Date of Patent: May 19, 2020
    Assignee: Abbott Diabetes Care Inc.
    Inventor: Gary Alan Hayter
  • Patent number: 10642960
    Abstract: A system and method for controlling medication-dispensing patches by a wearable device is provided. The method comprises receiving a transmission at a wearable device, wherein the transmission identifies a medication-dispensing patch; transmitting information corresponding to the identified medication-dispensing patch to an external computing device; receiving information at the wearable device from the external computing device, wherein the received information corresponds to a dosage of a medication that should be dispensed by the medication-dispensing patch; and transmitting information from the wearable device, wherein the transmission is configured for controlling a medication dosage that is dispensed by the medication-dispensing patch.
    Type: Grant
    Filed: December 17, 2015
    Date of Patent: May 5, 2020
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventor: Jonathan T. Goguen
  • Patent number: 10638979
    Abstract: Apparatus and methods for error modeling and correction in a blood analyte sensor or system. In one exemplary embodiment, the apparatus employs: (i) a training mode of operation, whereby the apparatus conducts “machine learning” to model one or more errors (e.g., unmodeled variable system errors) associated with the blood analyte measurement process, and (ii) generation of an operational model (based at least in part on data collected/received in the training mode), which is applied to correct or compensate for the errors during normal operation and collection of blood analyte data. This enhances device signal stability and accuracy over extended periods, thereby enabling among other things extended periods of blood analyte sensor implantation, and “personalization” of the sensor apparatus to each user receiving an implant. In one variant, the blood analyte is glucose, and the implanted sensor utilizes an oxygen-based molecular measurement principle.
    Type: Grant
    Filed: July 10, 2017
    Date of Patent: May 5, 2020
    Assignee: GlySens Incorporated
    Inventors: Piyush Gupta, Joseph Lucisano
  • Patent number: 10624221
    Abstract: Introduced here is an attachable unit that connects to a base unit through a snap-fitting mechanism. The attachable unit can include a top housing structure and a bottom housing structure that are ultrasonically welded together. The top housing structure can include the toe portion that is integral with remaining portions of the top housing structure, where the toe portion is configured to provide the snap-fit with the base unit.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: April 14, 2020
    Assignee: Verily Life Sciences LLC
    Inventors: Arthur Lin, Sean Frick
  • Patent number: 10617822
    Abstract: Methods, devices, algorithms, and systems controlling insulin delivery employ velocity-weighting. Predicted glucose outcomes are penalized with a cost modulated by a factor that is a function of the glucose velocity, wherein glucose outcomes are penalized increasingly less for increasingly negative glucose velocities, when glucose level is high, and/or wherein a hyperglycemic glucose value that is already converging to the euglycemic zone results in less corrective action by the controller than were the hyperglycemic state steady.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: April 14, 2020
    Assignee: The Regents of the University of California
    Inventors: Ravi L. Gondhalekar, Eyal Dassau, Francis J. Doyle, III
  • Patent number: 10610154
    Abstract: A flexible system capable of utilizing data from different monitoring techniques and capable of providing assistance to patients with diabetes at several scalable levels, ranging from advice about long-term trends and prognosis to real-time automated closed-loop control (artificial pancreas). These scalable monitoring and treatment strategies are delivered by a unified system called the Diabetes Assistant (DiAs) platform. The system provides a foundation for implementation of various monitoring, advisory, and automated diabetes treatment algorithms or methods. The DiAs recommendations are tailored to the specifics of an individual patient, and to the patient risk assessment at any given moment.
    Type: Grant
    Filed: June 23, 2012
    Date of Patent: April 7, 2020
    Assignee: UNIVERSITY OF VIRGINIA PATENT FOUNDATION
    Inventors: Boris P. Kovatchev, Patrick T. Keith-Hynes, Marc D. Breton, Stephen D. Patek
  • Patent number: 10595754
    Abstract: A system and method for monitoring body chemistry of a user, the system comprising: a housing supporting: a microsensor comprising a first and second working electrode, a reference electrode, and a counter electrode, and configured to access interstitial fluid of the user, and an electronics subsystem comprising a signal conditioning module that receives a signal stream, from the microsensor, wherein the electronics subsystem is configured to detect an impedance signal derived from two of the first working electrode, the second working electrode, the reference electrode, and the counter electrode; and a processing subsystem comprising: a first module configured to generate an analysis indicative of an analyte parameter of the user and derived from the signal stream and the impedance signal, and a second module configured to transmit information derived from the analysis to the user, thereby facilitating monitoring of body chemistry of the user.
    Type: Grant
    Filed: May 22, 2017
    Date of Patent: March 24, 2020
    Assignee: Sano Intelligence, Inc.
    Inventors: Ashwin Pushpala, Dominic Pitera, Matthew Chapman, Michael Gifford
  • Patent number: 10596295
    Abstract: An adhesive patch arrangement for a sensor includes a flexible patch, a sensor-affixing feature located in a sensor mounting region of the component-facing side of the flexible patch, the sensor-affixing feature securing the sensor to the flexible patch, and a device-affixing feature located in a device mounting region of the component-facing side of the flexible patch. The device-affixing feature secures a device to the flexible patch. The sensor mounting and device mounting regions are distinct and separate regions. The arrangement also includes a removable reinforcement liner adhered to, and covering, the device-affixing feature, and shaped to define a cutout area that partially surrounds the sensor-affixing feature. The arrangement also includes a removable backing liner adhered to, and covering, the adhesive skin-facing side of the flexible adhesive patch.
    Type: Grant
    Filed: August 28, 2017
    Date of Patent: March 24, 2020
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Eric Allan Larson, Voltaire Isaac Lebron
  • Patent number: 10589019
    Abstract: An IV line identification system to enable ready identification of an IV line and its associated fluid source and output and to enable distinguishing the IV line from other IV lines and their fluid sources and outputs. The IV line identification system includes a first light source and a second light source communicatively coupled to one another via a wireless connection. The light sources are configured such that when one is activated so as to generate a light signal, the other is automatically activated to generate a corresponding light signal. Each light source may be placed on opposite ends of an IV line to enable ready identification of each end of the same IV line.
    Type: Grant
    Filed: August 2, 2018
    Date of Patent: March 17, 2020
    Assignee: MJ Stewart Investments
    Inventors: Wayne A. Provost, Jeffrey D. Stewart
  • Patent number: 10575790
    Abstract: A patient diabetes monitoring system with an efficient unsupervised daily monitoring profile clustering algorithm, a method, and a computer product thereof are disclosed. The system may include a physiological data input device or sensor which receives a plurality of physiological measurements to generate a dataset, a memory which stores a clustering algorithm, and a processor. The clustering algorithm when executed by the processor, causes the processor to automatically pre-process the dataset to control an amount of bias/aggressiveness from the collected unsupervised daily monitoring profiles, thereby generating a pre-processed dataset, build a similarity matrix from the pre-processed dataset, and output an optimum number of similarity clusters found by the processor from the similarity matrix.
    Type: Grant
    Filed: March 2, 2016
    Date of Patent: March 3, 2020
    Assignee: Roche Diabetes Care, Inc.
    Inventors: David L. Duke, Bernd Steiger, Chinmay Uday Manohar
  • Patent number: 10568511
    Abstract: A handheld diabetes management device for managing blood glucose test data and continuous glucose monitoring data includes a port configured to receive a test strip, a wireless transceiver, a communications processor, and a user interface processor. The communications processor communicates with the wireless transceiver to periodically collect glucose measurement data from a continuous glucose monitoring device and to store the glucose measurement data in a first data storage module. The communications processor is operable to consume electrical power at a first rate. The user interface processor communicates with the communication processor to receive the glucose measurement data and operable to display the glucose measurement data on the device. The communications processor operates asynchronously from operation of the user interface processor to collect the glucose measurement data and the user interface processor operates to consume electrical power at a second rate that is higher than the first rate.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: February 25, 2020
    Assignee: Roche Diabetes Care, Inc.
    Inventors: Timothy P. Engelhardt, Gerhard Frisch, Robert E. Reinke, Wilfried Schmidt, Michael Schoemaker, Uwe Wittmann
  • Patent number: 10528701
    Abstract: Systems and methods are disclosed for sepsis care management. First data regarding a patient and second data regarding a clinician's treatment of a patient are received by at least one processor. The first data regarding the patient is processed to assess a likelihood that the patient would benefit from administration of each of one or more critical actions for treatment of sepsis, wherein at least one of the one or more critical actions relates to a request for at least one additional diagnostic action. A target treatment protocol, comprising a decision for each of the one or more critical actions, is determined based on the assessed likelihoods. The second data regarding a clinician's treatment of the patient is compared to the target treatment protocol and a notification is provided to the clinician if the second data is incompatible with the target treatment protocol.
    Type: Grant
    Filed: February 16, 2016
    Date of Patent: January 7, 2020
    Assignees: Massachusetts Institute of Technology, The General Hospital Corporation
    Inventors: Thomas Heldt, Andrew Tomas Reisner, Michael Filbin
  • Patent number: 10478100
    Abstract: A medical device and a method for configuring a process for determining a dose of insulin to be administered for glycemic control is provided, wherein the dose is stepwise adapted, comprising defining different dose adjustment profiles for stepwise adapting the dose, wherein each of the different dose adjustment profiles is based at least on a specific initial dose value, a specific time interval for increasing the dose, a specific dose increase step and a specific low blood glucose threshold value, storing the different dose adjustment profiles, selecting one of the stored different dose adjustment profiles based on specific requirements for stepwise adapting the dose, and personalizing the selected dose adjustment profile by defining at least a specific target blood glucose value for a specific user.
    Type: Grant
    Filed: February 3, 2010
    Date of Patent: November 19, 2019
    Assignee: Sanofi-Aventis Deutschland GmbH
    Inventor: Andrew Tubb
  • Patent number: 10463789
    Abstract: A technique for treating diabetes that recognizes patient insulin sensitivity is a time-varying physiological parameter. The described techniques for treating diabetes include measuring interstitial fluid glucose concentration, reading insulin delivery data, determining patient insulin sensitivity based on the interstitial fluid glucose concentration and insulin delivery data, and a time-varying physiological parameter, and dispensing an insulin dose from an insulin delivery device based on the determined patient insulin sensitivity.
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: November 5, 2019
    Assignee: UNIVERSITY OF VIRGINIA PATENT FOUNDATION
    Inventors: Marc D. Breton, Boyi Jiang, Chiara Fabris
  • Patent number: 10463786
    Abstract: A device for infusing liquid medicaments such as insulin includes an infusion pump. The device can modify an insulin delivery protocol stored in memory to delivery an alternative insulin delivery protocol with the pump.
    Type: Grant
    Filed: November 1, 2016
    Date of Patent: November 5, 2019
    Assignee: Tandem Diabetes Care, Inc.
    Inventor: Sean Saint
  • Patent number: 10456090
    Abstract: This invention relates to a method and a device for predicting the glucose concentration of a subject and recommending therapeutic action. The responses of the user's glucose to administered doses of insulin, dietary carbohydrates, and other factors influencing glucose concentration are measured individually for a given user. Once these responses are learned as a function of time, the method and device can receive information about the factors which that have been recently or will soon be administered and can recommend which other factors should also be administered.
    Type: Grant
    Filed: November 20, 2015
    Date of Patent: October 29, 2019
    Assignee: Bigfoot Biomedical, Inc.
    Inventors: Dayton Gray Thorpe, Jonathan S. Landy
  • Patent number: 10462277
    Abstract: A mobile terminal includes a communicator configured to communicate with wearable devices; a memory configured to store capability information indicating capabilities of the wearable devices; and a processor configured to determine a first wearable device and a second wearable device among the wearable devices capable of executing a function of the mobile terminal, based on the capability information, the first wearable device being configured to perform a first sub-function for executing the function of the mobile terminal, the second wearable device being configured to perform a second sub-function to be executed together with the first sub-function to execute the function of the mobile terminal, the processor being configured to control the first wearable device to perform the first sub-function and to control the second wearable device to perform the second sub-function.
    Type: Grant
    Filed: October 20, 2017
    Date of Patent: October 29, 2019
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Dae-ho Lee, Jung-hye Min, Kyung-ho Jeong
  • Patent number: 10453568
    Abstract: A method of administering insulin includes receiving blood glucose measurements of a patient at a data processing device from a glucometer. Each blood glucose measurement is separated by a time interval and includes a blood glucose time associated with a time of measuring the blood glucose measurement. The method also includes receiving patient information at the data processing device and selecting a subcutaneous insulin treatment for tube-fed patients from a collection of subcutaneous insulin treatments. The selection is based on the blood glucose measurements and the patient information. The subcutaneous insulin treatment program for tube-fed patients determines recommended insulin doses based on the blood glucose times. The method also includes executing, using the data processing device, the selected subcutaneous insulin treatment.
    Type: Grant
    Filed: January 4, 2018
    Date of Patent: October 22, 2019
    Assignee: Aseko, Inc.
    Inventors: Robert C. Booth, Harry Hebblewhite
  • Patent number: 10448834
    Abstract: Method and system for providing diabetes management is provided.
    Type: Grant
    Filed: October 5, 2017
    Date of Patent: October 22, 2019
    Assignee: ABBOTT DIABETES CARE INC.
    Inventors: R. Curtis Jennewine, Kimberley J. Krapek
  • Patent number: 10446270
    Abstract: A data output device, a data output method, and a data output program capable of allowing a causal relationship in a plurality of items of time-series data to be simply recognized are provided. A data distribution server receives a distribution request from a client terminal, and generates a data display screen which is displayed by the client terminal. The data display screen includes a first display area in which time-series data indicating a transition of a state of a patient or content of medical care performed on the patient is displayed in a graph. In the first display area, association indicators which associate one arbitrary point of each of the plurality of pieces of time-series data can be assigned and displayed.
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: October 15, 2019
    Assignee: FUJIFILM Corporation
    Inventor: Akinari Tsugo
  • Patent number: 10434250
    Abstract: An infusion device (10) includes one or more of automatic insertion and retraction of an introducer needle (40) and catheter (28), introducer needle safety and extension set. The device (10) can further comprise a top-push button (16) activation feature, a side-push button (402) activation feature or a rotary-button (412) activation feature, and one or more of a manual interlock of an outer barrel and base, and a manual interlock for an extension set top and base. Packaging (500) for an integrated and/or removable inserter with activation button protection is also disclosed.
    Type: Grant
    Filed: September 28, 2016
    Date of Patent: October 8, 2019
    Assignee: Becton, Dickinson and Company
    Inventors: Ralph L. Sonderegger, Weston F. Harding
  • Patent number: 10413664
    Abstract: A model-based control scheme consisting of either a proportional-integral-derivative (IMC-PID) controller or a model predictive controller (MPC), with an insulin feedback (IFB) scheme personalized based on a priori subject characteristics and comprising a lower order control-relevant model to obtain PID or MPC controller for artificial pancreas (AP) applications.
    Type: Grant
    Filed: July 6, 2015
    Date of Patent: September 17, 2019
    Assignee: The Regents of the University of California
    Inventors: Francis J. Doyle, III, Eyal Dassau, Dale E. Seborg, Joon Bok Lee
  • Patent number: 10410740
    Abstract: A glycemic control system includes a physician processor, remote processor, and a portable telephone having a data input mechanism, a display, and an internal processor for bi-directional communication with the physician's processor and the remote processor. A patient inputs data to the internal processor responsive to input from the physician's processor and then transmits the information to the remote processor where an optimized number of units to be administered is sent back and displayed on the portable telephone.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: September 10, 2019
    Assignee: Aseko, Inc.
    Inventors: Robert C. Booth, Robert E. Fischell
  • Patent number: 10401234
    Abstract: Devices and methods are provided for determining the temperature of an object. Such devices and methods incorporate first and second thermally conductive members, with a heating member associated with the first thermally conductive member. The second thermally conductive member is positionable adjacent to the object. The heating member is heated to a known temperature and a probe member is alternately brought into contact with the first and second thermally conductive members. When the probe member is in contact with one of the thermally conductive members, it will send an input to the controller. The controller compares the inputs to each other and, if they are not substantially equal, changes the temperature of the heating member, and the probe member is again alternately brought into contact with the thermally conductive members. When the inputs are substantially equal, the controller generates an output based on the temperature of the heating member.
    Type: Grant
    Filed: August 25, 2017
    Date of Patent: September 3, 2019
    Assignee: AVERY DENNISON RETAIL INFORMATION SERVICES, LLC
    Inventor: Ian J. Forster
  • Patent number: 10395352
    Abstract: Melanin is an effective absorber of light and is able to dissipate the majority of light absorbed by the pigment. This can mask the absorbance of biomolecules of interest such as hemoglobin when imaging skin tissue. Melanin is the primary determinant of skin color which can vary between individuals as well as within individuals (due to the presence of portions of skin with more or less pigment as well as features such as freckles and moles). Described herein are methods for compensating for melanin absorption at the pixel level of an image, thereby allowing for more accurate imaging of concentration and distribution of biomolecules of interest in a tissue portion.
    Type: Grant
    Filed: May 18, 2016
    Date of Patent: August 27, 2019
    Assignee: KENT IMAGING
    Inventors: Andrew Barker, Donald Chapman, Elizabeth Dickin, Matt Cervi
  • Patent number: 10342469
    Abstract: Methods and apparatuses for determining an analyte value are disclosed.
    Type: Grant
    Filed: December 8, 2017
    Date of Patent: July 9, 2019
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Gary Alan Hayter, Erwin Satrya Budiman, Kenneth J. Doniger, John Charles Mazza
  • Patent number: 10346264
    Abstract: A frequency converter control unit has: a serial control unit interface, a control unit clock pulse generator for generating a control unit clock pulse, and a control unit processor which is designed to define a control parameter depending on an actual value. A power unit has a data connection to the control unit and has several power semiconductors, a power unit clock pulse generator for generating an adjustable power unit clock pulse, a serial power unit interface, a clock pulse generator adjustment unit which has a signal connection to the power unit interface and which adjusts the power unit clock pulse depending on signals received by the power unit on the power unit interface, a power unit processor which controls the power semiconductors depending on the control parameter and the power unit clock pulse, and a sensor unit that determines the actual value. The control unit transmits the control parameter via the control unit interface to the power unit.
    Type: Grant
    Filed: December 17, 2015
    Date of Patent: July 9, 2019
    Assignee: Schmidhauser AG
    Inventor: Thomas Bisig
  • Patent number: 10335075
    Abstract: Systems and methods for processing sensor data and calibration of the sensors are provided. In some embodiments, the method for calibrating at least one sensor data point from an analyte sensor comprises receiving a priori calibration distribution information; receiving one or more real-time inputs that may influence calibration of the analyte sensor; forming a posteriori calibration distribution information based on the one or more real-time inputs; and converting, in real-time, at least one sensor data point calibrated sensor data based on the a posteriori calibration distribution information.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: July 2, 2019
    Assignee: DexCom, Inc.
    Inventors: Stephen J. Vanslyke, Naresh C. Bhavaraju, Lucas Bohnett, Arturo Garcia, Apurv Ullas Kamath, Jack Pryor
  • Patent number: 10327682
    Abstract: Methods to provide glycemic control and therapy management based on monitored glucose data, and current and/or target HbA1C levels are provided. Systems to provide glycemic control and therapy management based on monitored glucose data, and current and/or target HbA1C levels are provided. Kits to provide glycemic control and therapy management based on monitored glucose data, and current and/or target HbA1C levels are provided.
    Type: Grant
    Filed: October 20, 2017
    Date of Patent: June 25, 2019
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Marc Barry Taub, Timothy Christian Dunn, Nathan Christopher Crouther
  • Patent number: 10327681
    Abstract: A glucose rate increase detector (GRID) for use in an artificial pancreas (AP), wherein the GRID detects in a person persistent increases in glucose associated with a meal, and either triggers a meal bolus to blunt meal peak safely, during closed-loop control, or alerts the person to bolus for a meal, during open-loop control.
    Type: Grant
    Filed: May 7, 2016
    Date of Patent: June 25, 2019
    Assignee: The Regents of the University of California
    Inventors: Francis J. Doyle, III, Rebecca Harvey, Eyal Dassau, Howard Zisser
  • Patent number: 10307538
    Abstract: A method may include generating a first plurality of insulin delivery profiles that include a first series of insulin delivery actions spanning a first time interval, projecting a first plurality of future blood glucose values for each profile of the first plurality of profiles using up-to-date blood glucose levels, selecting one of the first plurality of profiles based upon comparing future blood glucose values for each profile and target blood glucose levels, delivering insulin for a second time interval that corresponds to a first action of the first profile, generating a second plurality of insulin delivery profiles for a third time interval, projecting a second plurality of future blood glucose values for each profile of the second plurality of profiles for the third time interval, and delivering a second dose of insulin for a fourth time interval shorter than the third time interval.
    Type: Grant
    Filed: January 13, 2017
    Date of Patent: June 4, 2019
    Assignee: Bigfoot Biomedical, Inc.
    Inventors: Lane Desborough, Bryan Mazlish
  • Patent number: 10293109
    Abstract: A system for optimizing a patient's basal insulin dosage regimen over time, adapted to determine from blood glucose values whether and by how much to vary a patient's present recommended amount of the insulin-containing drug in order to maintain the patient's future blood glucose level measurements within a predefined range, and wherein a given blood glucose value is disregarded if no patient-actuated operation being indicative of the administration of a dose of an insulin containing drug has been detected in a pre-defined amount of time prior to the determination of the given blood glucose value.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: May 21, 2019
    Assignee: Novo Nordisk A/S
    Inventors: Henrik Bengtsson, Anders Dejgaard, Alan Moses
  • Patent number: 10290208
    Abstract: Methods, systems, and devices for short-range low-power wireless communication of analyte information are provided. In some implementations, short-range low-power wireless communication of analyte information may include receiving an electromagnetic wireless communication signal and harvesting energy from the electromagnetic wireless communication signal. In some implementations, short-range low-power wireless communication of analyte information may include enabling capabilities associated with an external sensor in response to detecting the external sensor. In some implementations, short-range low-power wireless communication of analyte information may include detecting an analyte sample; determining an analyte concentration associated with the detected analyte sample; and transmitting an indication of the analyte concentration to an external device.
    Type: Grant
    Filed: October 17, 2017
    Date of Patent: May 14, 2019
    Assignee: ABBOTT DIABETES CARE INC.
    Inventors: Lei He, Marc B. Taub
  • Patent number: 10271797
    Abstract: Systems and methods for detecting a target cardiac condition such as events indicative of worsening heart failure are described. A system may include sensor circuits for sensing physiological signals and a signal processor for generating a predictor trend indicative of temporal change of the physiological signal. The predictor trend may be transformed into a sequence of transformed indices using a codebook that includes a plurality of threshold pairs each including onset and reset thresholds. The codebook may be constructed and updated using physiological data. The system may detect target cardiac condition using the transformed indices.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: April 30, 2019
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Yi Zhang, Pramodsingh Hirasingh Thakur, Viktoria A. Averina, Julie A. Thompson, Qi An, Jonathan Walter Krueger
  • Patent number: 10271780
    Abstract: The present invention provides systems and methods employing a surface enhanced Raman biosensor and sensing devices for collecting spatially offset Raman spectra from the biosensor. In certain embodiments, the present invention provides systems and methods for quantifying the concentration of an analyte in a subject, and/or identifying the presence or absence of an analyte in a subject, from a plurality of spatially offset Raman spectra generated from a surface enhanced Raman biosensor implanted in a subject.
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: April 30, 2019
    Assignee: Northwestern University
    Inventors: Richard P. Van Duyne, Matthew R. Glucksberg, Joseph T. Walsh, Jr., Jonathan M. Yuen, Nilam C. Shah
  • Patent number: 10252002
    Abstract: An electronic insulin delivery device receives glucose data from a glucose monitor and sets a bolus dose amount. The device may take the form of an insulin pen with automatic priming and accurate dosing provided by a motor in connection with an encoder. The device may communicate with and be controlled by a smart phone device. The smart phone device provides a user interface to receive user data including patient weight, insulin to carbohydrate ratio and exercise factor, and to send instructions to the device, including dose amount. The dose amount is determined taking into account glucose level and trend, and other factors. The delivery device may be in continuous communication with the glucose monitor and smart phone to provide for near real-time adjustments in glucose treatment. Glucose data, insulin injection data, and other relevant data may be stored and accessible to interested parties.
    Type: Grant
    Filed: July 30, 2015
    Date of Patent: April 9, 2019
    Assignee: Becton, Dickinson and Company
    Inventors: M. Ishaq Haider, Noel Harvey, Sundeep Kankanala, Frank Martin, Ronald Pettis
  • Patent number: 10238323
    Abstract: Systems and methods disclosed here provide ways to discriminate fault types encountered in analyte sensors and systems and further provide ways to process such discriminated faults responsively based on sensor data, clinical context information, and other data about the patient or patient's environment. The systems and methods thus employ clinical context in detecting and/or responding to errors or faults associated with an analyte sensor system, and discriminating the type of fault, and its root cause, particularly as fault dynamics can appear similar to the dynamics of physiological systems, emphasizing the importance of discriminating the fault and providing appropriate responsive processing. Thus, the disclosed systems and methods consider the context of the patient's health condition or state in determining how to respond to the fault.
    Type: Grant
    Filed: May 20, 2015
    Date of Patent: March 26, 2019
    Assignee: DexCom, Inc.
    Inventors: Stephen J. Vanslyke, Naresh C. Bhavaraju, Sebastian Böhm, Leif N. Bowman, Michael J. Estes, Arturo Garcia, Apurv Ullas Kamath, Andrew Attila Pal, Thomas A. Peyser, Anna Leigh Rack-Gomer, Daiting Rong, Disha B. Sheth, Peter C. Simpson, Dmytro Sokolovsky
  • Patent number: 10238322
    Abstract: Systems and methods disclosed here provide ways to discriminate fault types encountered in analyte sensors and systems and further provide ways to process such discriminated faults responsively based on sensor data, clinical context information, and other data about the patient or patient's environment. The systems and methods thus employ clinical context in detecting and/or responding to errors or faults associated with an analyte sensor system, and discriminating the type of fault, and its root cause, particularly as fault dynamics can appear similar to the dynamics of physiological systems, emphasizing the importance of discriminating the fault and providing appropriate responsive processing. Thus, the disclosed systems and methods consider the context of the patient's health condition or state in determining how to respond to the fault.
    Type: Grant
    Filed: May 20, 2015
    Date of Patent: March 26, 2019
    Assignee: DexCom, Inc.
    Inventors: Stephen J. Vanslyke, Naresh C. Bhavaraju, Sebastian Böhm, Leif N. Bowman, Michael J. Estes, Arturo Garcia, Apurv Ullas Kamath, Andrew Attila Pal, Thomas A. Peyser, Anna Leigh Rack-Gomer, Daiting Rong, Disha B. Sheth, Peter C. Simpson, Dmytro Sokolovsky
  • Patent number: 10238324
    Abstract: Systems and methods disclosed here provide ways to discriminate fault types encountered in analyte sensors and systems and further provide ways to process such discriminated faults responsively based on sensor data, clinical context information, and other data about the patient or patient's environment. The systems and methods thus employ clinical context in detecting and/or responding to errors or faults associated with an analyte sensor system, and discriminating the type of fault, and its root cause, particularly as fault dynamics can appear similar to the dynamics of physiological systems, emphasizing the importance of discriminating the fault and providing appropriate responsive processing. Thus, the disclosed systems and methods consider the context of the patient's health condition or state in determining how to respond to the fault.
    Type: Grant
    Filed: May 20, 2015
    Date of Patent: March 26, 2019
    Assignee: DexCom, Inc.
    Inventors: Stephen J. Vanslyke, Naresh C. Bhavaraju, Sebastian Böhm, Leif N. Bowman, Michael J. Estes, Arturo Garcia, Apurv Ullas Kamath, Andrew Attila Pal, Thomas A. Peyser, Anna Leigh Rack-Gomer, Daiting Rong, Disha B. Sheth, Peter C. Simpson, Dmytro Sokolovsky
  • Patent number: 10231659
    Abstract: Systems and methods disclosed here provide ways to discriminate fault types encountered in analyte sensors and systems and further provide ways to process such discriminated faults responsively based on sensor data, clinical context information, and other data about the patient or patient's environment. The systems and methods thus employ clinical context in detecting and/or responding to errors or faults associated with an analyte sensor system, and discriminating the type of fault, and its root cause, particularly as fault dynamics can appear similar to the dynamics of physiological systems, emphasizing the importance of discriminating the fault and providing appropriate responsive processing. Thus, the disclosed systems and methods consider the context of the patient's health condition or state in determining how to respond to the fault.
    Type: Grant
    Filed: May 20, 2015
    Date of Patent: March 19, 2019
    Assignee: DexCom, Inc.
    Inventors: Stephen J. Vanslyke, Naresh C. Bhavaraju, Sebastian Böhm, Leif N. Bowman, Michael J. Estes, Arturo Garcia, Apurv Ullas Kamath, Andrew Attila Pal, Thomas A. Peyser, Anna Leigh Rack-Gomer, Daiting Rong, Disha B. Sheth, Peter C. Simpson, Dmytro Sokolovsky
  • Patent number: 10213139
    Abstract: Systems, devices, and methods are provided for the assembly and subsequent delivery of an in vivo analyte sensor. An applicator with sensor electronics is inserted into a tray containing an assembly that includes a sharp and an analyte sensor. The insertion causes the assembly to couple with the sensor electronics and form a deliverable sensor control device retained within the applicator, which can then be placed in position on a body of a user to monitor that user's analyte levels.
    Type: Grant
    Filed: May 13, 2016
    Date of Patent: February 26, 2019
    Assignee: ABBOTT DIABETES CARE INC.
    Inventors: Vivek Rao, Tuan Nguyen