Glucose Measurement Patents (Class 600/365)
  • Patent number: 10453568
    Abstract: A method of administering insulin includes receiving blood glucose measurements of a patient at a data processing device from a glucometer. Each blood glucose measurement is separated by a time interval and includes a blood glucose time associated with a time of measuring the blood glucose measurement. The method also includes receiving patient information at the data processing device and selecting a subcutaneous insulin treatment for tube-fed patients from a collection of subcutaneous insulin treatments. The selection is based on the blood glucose measurements and the patient information. The subcutaneous insulin treatment program for tube-fed patients determines recommended insulin doses based on the blood glucose times. The method also includes executing, using the data processing device, the selected subcutaneous insulin treatment.
    Type: Grant
    Filed: January 4, 2018
    Date of Patent: October 22, 2019
    Assignee: Aseko, Inc.
    Inventors: Robert C. Booth, Harry Hebblewhite
  • Patent number: 10448834
    Abstract: Method and system for providing diabetes management is provided.
    Type: Grant
    Filed: October 5, 2017
    Date of Patent: October 22, 2019
    Assignee: ABBOTT DIABETES CARE INC.
    Inventors: R. Curtis Jennewine, Kimberley J. Krapek
  • Patent number: 10446270
    Abstract: A data output device, a data output method, and a data output program capable of allowing a causal relationship in a plurality of items of time-series data to be simply recognized are provided. A data distribution server receives a distribution request from a client terminal, and generates a data display screen which is displayed by the client terminal. The data display screen includes a first display area in which time-series data indicating a transition of a state of a patient or content of medical care performed on the patient is displayed in a graph. In the first display area, association indicators which associate one arbitrary point of each of the plurality of pieces of time-series data can be assigned and displayed.
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: October 15, 2019
    Assignee: FUJIFILM Corporation
    Inventor: Akinari Tsugo
  • Patent number: 10434250
    Abstract: An infusion device (10) includes one or more of automatic insertion and retraction of an introducer needle (40) and catheter (28), introducer needle safety and extension set. The device (10) can further comprise a top-push button (16) activation feature, a side-push button (402) activation feature or a rotary-button (412) activation feature, and one or more of a manual interlock of an outer barrel and base, and a manual interlock for an extension set top and base. Packaging (500) for an integrated and/or removable inserter with activation button protection is also disclosed.
    Type: Grant
    Filed: September 28, 2016
    Date of Patent: October 8, 2019
    Assignee: Becton, Dickinson and Company
    Inventors: Ralph L. Sonderegger, Weston F. Harding
  • Patent number: 10413664
    Abstract: A model-based control scheme consisting of either a proportional-integral-derivative (IMC-PID) controller or a model predictive controller (MPC), with an insulin feedback (IFB) scheme personalized based on a priori subject characteristics and comprising a lower order control-relevant model to obtain PID or MPC controller for artificial pancreas (AP) applications.
    Type: Grant
    Filed: July 6, 2015
    Date of Patent: September 17, 2019
    Assignee: The Regents of the University of California
    Inventors: Francis J. Doyle, III, Eyal Dassau, Dale E. Seborg, Joon Bok Lee
  • Patent number: 10410740
    Abstract: A glycemic control system includes a physician processor, remote processor, and a portable telephone having a data input mechanism, a display, and an internal processor for bi-directional communication with the physician's processor and the remote processor. A patient inputs data to the internal processor responsive to input from the physician's processor and then transmits the information to the remote processor where an optimized number of units to be administered is sent back and displayed on the portable telephone.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: September 10, 2019
    Assignee: Aseko, Inc.
    Inventors: Robert C. Booth, Robert E. Fischell
  • Patent number: 10401234
    Abstract: Devices and methods are provided for determining the temperature of an object. Such devices and methods incorporate first and second thermally conductive members, with a heating member associated with the first thermally conductive member. The second thermally conductive member is positionable adjacent to the object. The heating member is heated to a known temperature and a probe member is alternately brought into contact with the first and second thermally conductive members. When the probe member is in contact with one of the thermally conductive members, it will send an input to the controller. The controller compares the inputs to each other and, if they are not substantially equal, changes the temperature of the heating member, and the probe member is again alternately brought into contact with the thermally conductive members. When the inputs are substantially equal, the controller generates an output based on the temperature of the heating member.
    Type: Grant
    Filed: August 25, 2017
    Date of Patent: September 3, 2019
    Assignee: AVERY DENNISON RETAIL INFORMATION SERVICES, LLC
    Inventor: Ian J. Forster
  • Patent number: 10395352
    Abstract: Melanin is an effective absorber of light and is able to dissipate the majority of light absorbed by the pigment. This can mask the absorbance of biomolecules of interest such as hemoglobin when imaging skin tissue. Melanin is the primary determinant of skin color which can vary between individuals as well as within individuals (due to the presence of portions of skin with more or less pigment as well as features such as freckles and moles). Described herein are methods for compensating for melanin absorption at the pixel level of an image, thereby allowing for more accurate imaging of concentration and distribution of biomolecules of interest in a tissue portion.
    Type: Grant
    Filed: May 18, 2016
    Date of Patent: August 27, 2019
    Assignee: KENT IMAGING
    Inventors: Andrew Barker, Donald Chapman, Elizabeth Dickin, Matt Cervi
  • Patent number: 10342469
    Abstract: Methods and apparatuses for determining an analyte value are disclosed.
    Type: Grant
    Filed: December 8, 2017
    Date of Patent: July 9, 2019
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Gary Alan Hayter, Erwin Satrya Budiman, Kenneth J. Doniger, John Charles Mazza
  • Patent number: 10346264
    Abstract: A frequency converter control unit has: a serial control unit interface, a control unit clock pulse generator for generating a control unit clock pulse, and a control unit processor which is designed to define a control parameter depending on an actual value. A power unit has a data connection to the control unit and has several power semiconductors, a power unit clock pulse generator for generating an adjustable power unit clock pulse, a serial power unit interface, a clock pulse generator adjustment unit which has a signal connection to the power unit interface and which adjusts the power unit clock pulse depending on signals received by the power unit on the power unit interface, a power unit processor which controls the power semiconductors depending on the control parameter and the power unit clock pulse, and a sensor unit that determines the actual value. The control unit transmits the control parameter via the control unit interface to the power unit.
    Type: Grant
    Filed: December 17, 2015
    Date of Patent: July 9, 2019
    Assignee: Schmidhauser AG
    Inventor: Thomas Bisig
  • Patent number: 10335075
    Abstract: Systems and methods for processing sensor data and calibration of the sensors are provided. In some embodiments, the method for calibrating at least one sensor data point from an analyte sensor comprises receiving a priori calibration distribution information; receiving one or more real-time inputs that may influence calibration of the analyte sensor; forming a posteriori calibration distribution information based on the one or more real-time inputs; and converting, in real-time, at least one sensor data point calibrated sensor data based on the a posteriori calibration distribution information.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: July 2, 2019
    Assignee: DexCom, Inc.
    Inventors: Stephen J. Vanslyke, Naresh C. Bhavaraju, Lucas Bohnett, Arturo Garcia, Apurv Ullas Kamath, Jack Pryor
  • Patent number: 10327682
    Abstract: Methods to provide glycemic control and therapy management based on monitored glucose data, and current and/or target HbA1C levels are provided. Systems to provide glycemic control and therapy management based on monitored glucose data, and current and/or target HbA1C levels are provided. Kits to provide glycemic control and therapy management based on monitored glucose data, and current and/or target HbA1C levels are provided.
    Type: Grant
    Filed: October 20, 2017
    Date of Patent: June 25, 2019
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Marc Barry Taub, Timothy Christian Dunn, Nathan Christopher Crouther
  • Patent number: 10327681
    Abstract: A glucose rate increase detector (GRID) for use in an artificial pancreas (AP), wherein the GRID detects in a person persistent increases in glucose associated with a meal, and either triggers a meal bolus to blunt meal peak safely, during closed-loop control, or alerts the person to bolus for a meal, during open-loop control.
    Type: Grant
    Filed: May 7, 2016
    Date of Patent: June 25, 2019
    Assignee: The Regents of the University of California
    Inventors: Francis J. Doyle, III, Rebecca Harvey, Eyal Dassau, Howard Zisser
  • Patent number: 10307538
    Abstract: A method may include generating a first plurality of insulin delivery profiles that include a first series of insulin delivery actions spanning a first time interval, projecting a first plurality of future blood glucose values for each profile of the first plurality of profiles using up-to-date blood glucose levels, selecting one of the first plurality of profiles based upon comparing future blood glucose values for each profile and target blood glucose levels, delivering insulin for a second time interval that corresponds to a first action of the first profile, generating a second plurality of insulin delivery profiles for a third time interval, projecting a second plurality of future blood glucose values for each profile of the second plurality of profiles for the third time interval, and delivering a second dose of insulin for a fourth time interval shorter than the third time interval.
    Type: Grant
    Filed: January 13, 2017
    Date of Patent: June 4, 2019
    Assignee: Bigfoot Biomedical, Inc.
    Inventors: Lane Desborough, Bryan Mazlish
  • Patent number: 10293109
    Abstract: A system for optimizing a patient's basal insulin dosage regimen over time, adapted to determine from blood glucose values whether and by how much to vary a patient's present recommended amount of the insulin-containing drug in order to maintain the patient's future blood glucose level measurements within a predefined range, and wherein a given blood glucose value is disregarded if no patient-actuated operation being indicative of the administration of a dose of an insulin containing drug has been detected in a pre-defined amount of time prior to the determination of the given blood glucose value.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: May 21, 2019
    Assignee: Novo Nordisk A/S
    Inventors: Henrik Bengtsson, Anders Dejgaard, Alan Moses
  • Patent number: 10290208
    Abstract: Methods, systems, and devices for short-range low-power wireless communication of analyte information are provided. In some implementations, short-range low-power wireless communication of analyte information may include receiving an electromagnetic wireless communication signal and harvesting energy from the electromagnetic wireless communication signal. In some implementations, short-range low-power wireless communication of analyte information may include enabling capabilities associated with an external sensor in response to detecting the external sensor. In some implementations, short-range low-power wireless communication of analyte information may include detecting an analyte sample; determining an analyte concentration associated with the detected analyte sample; and transmitting an indication of the analyte concentration to an external device.
    Type: Grant
    Filed: October 17, 2017
    Date of Patent: May 14, 2019
    Assignee: ABBOTT DIABETES CARE INC.
    Inventors: Lei He, Marc B. Taub
  • Patent number: 10271780
    Abstract: The present invention provides systems and methods employing a surface enhanced Raman biosensor and sensing devices for collecting spatially offset Raman spectra from the biosensor. In certain embodiments, the present invention provides systems and methods for quantifying the concentration of an analyte in a subject, and/or identifying the presence or absence of an analyte in a subject, from a plurality of spatially offset Raman spectra generated from a surface enhanced Raman biosensor implanted in a subject.
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: April 30, 2019
    Assignee: Northwestern University
    Inventors: Richard P. Van Duyne, Matthew R. Glucksberg, Joseph T. Walsh, Jr., Jonathan M. Yuen, Nilam C. Shah
  • Patent number: 10271797
    Abstract: Systems and methods for detecting a target cardiac condition such as events indicative of worsening heart failure are described. A system may include sensor circuits for sensing physiological signals and a signal processor for generating a predictor trend indicative of temporal change of the physiological signal. The predictor trend may be transformed into a sequence of transformed indices using a codebook that includes a plurality of threshold pairs each including onset and reset thresholds. The codebook may be constructed and updated using physiological data. The system may detect target cardiac condition using the transformed indices.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: April 30, 2019
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Yi Zhang, Pramodsingh Hirasingh Thakur, Viktoria A. Averina, Julie A. Thompson, Qi An, Jonathan Walter Krueger
  • Patent number: 10252002
    Abstract: An electronic insulin delivery device receives glucose data from a glucose monitor and sets a bolus dose amount. The device may take the form of an insulin pen with automatic priming and accurate dosing provided by a motor in connection with an encoder. The device may communicate with and be controlled by a smart phone device. The smart phone device provides a user interface to receive user data including patient weight, insulin to carbohydrate ratio and exercise factor, and to send instructions to the device, including dose amount. The dose amount is determined taking into account glucose level and trend, and other factors. The delivery device may be in continuous communication with the glucose monitor and smart phone to provide for near real-time adjustments in glucose treatment. Glucose data, insulin injection data, and other relevant data may be stored and accessible to interested parties.
    Type: Grant
    Filed: July 30, 2015
    Date of Patent: April 9, 2019
    Assignee: Becton, Dickinson and Company
    Inventors: M. Ishaq Haider, Noel Harvey, Sundeep Kankanala, Frank Martin, Ronald Pettis
  • Patent number: 10238324
    Abstract: Systems and methods disclosed here provide ways to discriminate fault types encountered in analyte sensors and systems and further provide ways to process such discriminated faults responsively based on sensor data, clinical context information, and other data about the patient or patient's environment. The systems and methods thus employ clinical context in detecting and/or responding to errors or faults associated with an analyte sensor system, and discriminating the type of fault, and its root cause, particularly as fault dynamics can appear similar to the dynamics of physiological systems, emphasizing the importance of discriminating the fault and providing appropriate responsive processing. Thus, the disclosed systems and methods consider the context of the patient's health condition or state in determining how to respond to the fault.
    Type: Grant
    Filed: May 20, 2015
    Date of Patent: March 26, 2019
    Assignee: DexCom, Inc.
    Inventors: Stephen J. Vanslyke, Naresh C. Bhavaraju, Sebastian Böhm, Leif N. Bowman, Michael J. Estes, Arturo Garcia, Apurv Ullas Kamath, Andrew Attila Pal, Thomas A. Peyser, Anna Leigh Rack-Gomer, Daiting Rong, Disha B. Sheth, Peter C. Simpson, Dmytro Sokolovsky
  • Patent number: 10238322
    Abstract: Systems and methods disclosed here provide ways to discriminate fault types encountered in analyte sensors and systems and further provide ways to process such discriminated faults responsively based on sensor data, clinical context information, and other data about the patient or patient's environment. The systems and methods thus employ clinical context in detecting and/or responding to errors or faults associated with an analyte sensor system, and discriminating the type of fault, and its root cause, particularly as fault dynamics can appear similar to the dynamics of physiological systems, emphasizing the importance of discriminating the fault and providing appropriate responsive processing. Thus, the disclosed systems and methods consider the context of the patient's health condition or state in determining how to respond to the fault.
    Type: Grant
    Filed: May 20, 2015
    Date of Patent: March 26, 2019
    Assignee: DexCom, Inc.
    Inventors: Stephen J. Vanslyke, Naresh C. Bhavaraju, Sebastian Böhm, Leif N. Bowman, Michael J. Estes, Arturo Garcia, Apurv Ullas Kamath, Andrew Attila Pal, Thomas A. Peyser, Anna Leigh Rack-Gomer, Daiting Rong, Disha B. Sheth, Peter C. Simpson, Dmytro Sokolovsky
  • Patent number: 10238323
    Abstract: Systems and methods disclosed here provide ways to discriminate fault types encountered in analyte sensors and systems and further provide ways to process such discriminated faults responsively based on sensor data, clinical context information, and other data about the patient or patient's environment. The systems and methods thus employ clinical context in detecting and/or responding to errors or faults associated with an analyte sensor system, and discriminating the type of fault, and its root cause, particularly as fault dynamics can appear similar to the dynamics of physiological systems, emphasizing the importance of discriminating the fault and providing appropriate responsive processing. Thus, the disclosed systems and methods consider the context of the patient's health condition or state in determining how to respond to the fault.
    Type: Grant
    Filed: May 20, 2015
    Date of Patent: March 26, 2019
    Assignee: DexCom, Inc.
    Inventors: Stephen J. Vanslyke, Naresh C. Bhavaraju, Sebastian Böhm, Leif N. Bowman, Michael J. Estes, Arturo Garcia, Apurv Ullas Kamath, Andrew Attila Pal, Thomas A. Peyser, Anna Leigh Rack-Gomer, Daiting Rong, Disha B. Sheth, Peter C. Simpson, Dmytro Sokolovsky
  • Patent number: 10231659
    Abstract: Systems and methods disclosed here provide ways to discriminate fault types encountered in analyte sensors and systems and further provide ways to process such discriminated faults responsively based on sensor data, clinical context information, and other data about the patient or patient's environment. The systems and methods thus employ clinical context in detecting and/or responding to errors or faults associated with an analyte sensor system, and discriminating the type of fault, and its root cause, particularly as fault dynamics can appear similar to the dynamics of physiological systems, emphasizing the importance of discriminating the fault and providing appropriate responsive processing. Thus, the disclosed systems and methods consider the context of the patient's health condition or state in determining how to respond to the fault.
    Type: Grant
    Filed: May 20, 2015
    Date of Patent: March 19, 2019
    Assignee: DexCom, Inc.
    Inventors: Stephen J. Vanslyke, Naresh C. Bhavaraju, Sebastian Böhm, Leif N. Bowman, Michael J. Estes, Arturo Garcia, Apurv Ullas Kamath, Andrew Attila Pal, Thomas A. Peyser, Anna Leigh Rack-Gomer, Daiting Rong, Disha B. Sheth, Peter C. Simpson, Dmytro Sokolovsky
  • Patent number: 10213139
    Abstract: Systems, devices, and methods are provided for the assembly and subsequent delivery of an in vivo analyte sensor. An applicator with sensor electronics is inserted into a tray containing an assembly that includes a sharp and an analyte sensor. The insertion causes the assembly to couple with the sensor electronics and form a deliverable sensor control device retained within the applicator, which can then be placed in position on a body of a user to monitor that user's analyte levels.
    Type: Grant
    Filed: May 13, 2016
    Date of Patent: February 26, 2019
    Assignee: ABBOTT DIABETES CARE INC.
    Inventors: Vivek Rao, Tuan Nguyen
  • Patent number: 10209237
    Abstract: Certain implementations have a main body case having a contact face of a biological information measurement device on its surface, and a first non-contact charging portion composed of a charging coil disposed opposite the contact face with the biological information measurement device inside the main body case. In addition, some may have a controller that is connected to the first non-contact charging portion, and a display section that is connected to the controller. Upon completion of the charging of the biological information measurement device via the first non-contact charging portion, the controller connected to the display section may display on the display section that the biological information measurement device will be incapable of measurement for a specific length of time.
    Type: Grant
    Filed: June 13, 2018
    Date of Patent: February 19, 2019
    Assignee: PHC HOLDINGS CORPORATION
    Inventor: Tatsuhiko Furukawa
  • Patent number: 10194850
    Abstract: A method, apparatus, and a kit are capable of improving accuracy of CGS devices using dynamic outputs of continuous glucose sensors.
    Type: Grant
    Filed: July 14, 2015
    Date of Patent: February 5, 2019
    Assignee: ABBOTT DIABETES CARE INC.
    Inventors: Boris P. Kovatchev, Christopher R. King
  • Patent number: 10194845
    Abstract: A continuous glucose monitoring system may include a hand-held monitor, a transmitter, an insulin pump, and an orthogonally redundant glucose sensor, which may comprise an optical glucose sensor and a non-optical glucose sensor. The former may be a fiber optical sensor, including a competitive glucose binding affinity assay with a glucose analog and a fluorophore-labeled glucose receptor, which is interrogated by an optical interrogating system, e.g., a stacked planar integrated optical system. The non-optical sensor may be an electrochemical sensor having a plurality of electrodes distributed along the length thereof. Proximal portions of the optical and electrochemical sensors may be housed inside the transmitter and operationally coupled with instrumentation for, e.g., receiving signals from the sensors, converting to respective glucose values, and communicating the glucose values.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: February 5, 2019
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Rajiv Shah, Jesper Svenning Kristensen, Katherine T. Wolfe, Soren Aasmul, Anubhuti Bansal
  • Patent number: 10194840
    Abstract: Embodiments of the invention provide analyte sensors having optimized electrodes and/or configurations of electrode elements as well as methods for making and using such sensors. Typical embodiments of the invention include glucose sensors used in the management of diabetes.
    Type: Grant
    Filed: December 6, 2012
    Date of Patent: February 5, 2019
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Daniel E. Pesantez, Xiaolong Li, Bradley Chi Liang
  • Patent number: 10188794
    Abstract: Methods, system and devices for monitoring a plurality of parameters associated with a closed loop control operation including continuously monitoring a physiological condition and automatic administration of a medication, detecting a signal level associated with the monitored physiological condition deviating from a predetermined threshold level, retrieving the medication level administered associated with a time period of the detected signal level, applying the retrieved medication level to the detected signal based on a predefined predictive model to generate a predictive signal, and comparing the detected signal to the predictive signal to determine whether a condition associated with the detected signal level is present are provided.
    Type: Grant
    Filed: June 16, 2016
    Date of Patent: January 29, 2019
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Gary Hayter, Erwin S. Budiman
  • Patent number: 10182751
    Abstract: Systems and methods for processing sensor data are provided. In some embodiments, systems and methods are provided for calibration of a continuous analyte sensor. In some embodiments, systems and methods are provided for classification of a level of noise on a sensor signal. In some embodiments, systems and methods are provided for determining a rate of change for analyte concentration based on a continuous sensor signal. In some embodiments, systems and methods for alerting or alarming a patient based on prediction of glucose concentration are provided.
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: January 22, 2019
    Assignee: DexCom, Inc.
    Inventors: Apurv Ullas Kamath, John Michael Dobbles, Aarthi Mahalingam
  • Patent number: 10173006
    Abstract: The invention relates to a methods and systems for determining an insulin dosing recommendation. The invention employs Linear Quadratic methodology to determine the insulin dosing recommendation based on a patient's present physiological state, which is estimated by an adaptive filter methodology employing a dynamic model, which utilizes real-time measurements of blood glucose concentration.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: January 8, 2019
    Assignee: UNIVERSITY OF VIRGINIA PATENT FOUNDATION
    Inventors: Stephen D. Patek, Marc D. Breton
  • Patent number: 10166333
    Abstract: The present invention relates to method for generating a monitoring signal by monitoring laboratory values of a patient using a medical app (122). The medical app (122) is executed on a mobile device (102) of the patient, wherein the execution of the medical app (122) on the mobile device (102) of the patient is supervised by a supervising entity or safety module (106, 128), the supervising entity or safety module (106, 128) comprising at least executable program instructions (130). The medical app (122) comprises executable instructions for executing at least one sequence of processes for generating the monitoring signal. The processes comprise safety critical processes. The sequence of processes is triggered by the measurement of the blood glucose level of the patient.
    Type: Grant
    Filed: September 11, 2015
    Date of Patent: January 1, 2019
    Assignee: Roche Diabetes Care, Inc.
    Inventors: Kurt Friedli, Carsten Mueglitz, Ralf Schmitz, Kai-Oliver Schwenker, Thomas Eissenloeffel
  • Patent number: 10136844
    Abstract: Disclosed herein are systems and methods for a continuous analyte sensor, such as a continuous glucose sensor. One such system utilizes first and second working electrodes to measure additional analyte or non-analyte related signal. Such measurements may provide a background and/or sensitivity measurement(s) for use in processing sensor data and may be used to trigger events such as digital filtering of data or suspending display of data.
    Type: Grant
    Filed: November 18, 2016
    Date of Patent: November 27, 2018
    Assignee: DexCom, Inc.
    Inventors: Peter C. Simpson, Mark Brister, Matthew Wightlin, Jack Pryor
  • Patent number: 10123752
    Abstract: Embodiments described herein relate to an analyte monitoring device having a user interface with a display and a plurality of actuators. The display is configured to render a plurality of display screens, including a home screen and an alert screen. The home screen is divided into a plurality of simultaneously displayed panels, with a first panel displays a rate of change of continuously monitored analyte levels in interstitial fluid, a second panel simultaneously displays a current analyte level and an analyte trend indicator, and a third panel displays status information of a plurality of components of the device. When an alarm condition is detected, the display renders the alert screen in place of the home screen, the alert screen displaying information corresponding to the detected alarm condition. Furthermore, the actuators are configured to affect further output of the analyte monitoring device corresponding to the detected condition.
    Type: Grant
    Filed: November 10, 2017
    Date of Patent: November 13, 2018
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Wesley Scott Harper, Annie C. Tan, Timothy Christian Dunn, Mark Kent Sloan, Kenneth J. Doniger, Michael Love, Phillip Yee, Gary Alan Hayter, R. Curtis Jennewine, Glenn Howard Berman
  • Patent number: 10111608
    Abstract: Methods and apparatus for providing data processing and control for use in a medical communication system are provided.
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: October 30, 2018
    Assignee: ABBOTT DIABETES CARE INC.
    Inventor: Gary Hayter
  • Patent number: 10105488
    Abstract: Infusion systems, infusion devices, and related operating methods are provided. An exemplary method of operating an infusion device capable of delivering fluid to a user involves determining a current value for a physiological condition of the user influenced by the fluid violates a first threshold value, determining a predicted value for the physiological condition of the user violates a second threshold value, and automatically altering operation of the infusion device to modify delivery of the fluid to the user after determining the predicted value violates the second threshold value when the current value violates the first threshold value.
    Type: Grant
    Filed: April 24, 2014
    Date of Patent: October 23, 2018
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Cesar C. Palerm, Louis J. Lintereur, Salman Monirabbasi, Kris R. Holtzclaw, Lane Desborough
  • Patent number: 10102344
    Abstract: A system and technique are enclosed for determining the effectiveness of a blood glucose therapy treatment. Examples of this technique include analyzing sufficiency of blood glucose data collected from a patient with a computing device, analyzing hypoglycemic risk based on the blood glucose data with the computing device, analyzing glycemic control for the blood glucose data with the computing device, analyzing glycemic variability of the blood glucose data with the computing device, and outputting results from said analyzing the sufficiency, said analyzing the hypoglycemic risk, said analyzing the glycemic control, and said analyzing the glycemic variability with the computing device.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: October 16, 2018
    Assignee: Roche Diabetes Care, Inc.
    Inventors: Christen A Rees, Robin Wagner, Nathan Wegmann
  • Patent number: 10090592
    Abstract: A communication device includes: a board having a first surface, a second surface opposite to the first surface, and a third surface different from both the first surface and the second surface; a first magnetic sheet disposed on a side of the first surface; a first coil disposed on the first magnetic sheet; a second magnetic sheet disposed on a side of the second surface; a second coil disposed on the second magnetic sheet; and a third coil disposed on the third surface. A part of the first magnetic sheet overlaps at least a part of the third coil in plan view.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: October 2, 2018
    Assignees: SONITUS TECHNOLOGIES INC., PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Hiroshi Yajima, Hiroyuki Satou, Shinichiro Ito, Bob Fowler, Michael Pare, Chris Pontiga
  • Patent number: 10078730
    Abstract: A point of care (POC) testing system and a method for configuration of a POC testing system are disclosed that provide a workflow solution for the configuration management of POC analyzers. The POC system and method provide for convenient assisted workflows that enable efficient replacement of POC analyzers and enable traceable relocation of POC analyzers within, for example, a hospital.
    Type: Grant
    Filed: April 28, 2016
    Date of Patent: September 18, 2018
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Diego Delgrande, Gillian Hall, Alejandro Morcillo Montejo, Stephanie Shufelt
  • Patent number: 10070808
    Abstract: A device for in vivo detecting and quantifying a concentration of an analyte in a peritoneal fluid of a subject. The device includes (a) a catheter having an open proximal end configured to be disposed external to the subject, an open distal end configured to be disposed within the peritoneal cavity comprising the peritoneal fluid, an anchor portion, an outer wall, and an inner wall, (b) a sensor disposed adjacent to the open distal end and configured to detect and quantify the concentration of the analyte in the peritoneal fluid, and (c) a main control unit disposed external to the subject, connected to the sensor via a wire, and configured to control the sensor, receive and store detection and quantification data from the sensor, and transmit the data to a second device. A portion of the wire is disposed between the inner wall and the outer wall of the catheter.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: September 11, 2018
    Assignees: National Guard Health Affairs, King Saud Bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center
    Inventor: Mahfooz Alam Farooqui
  • Patent number: 10067062
    Abstract: A controller (316) and method for establishing safe operation of an atomic emission spectrometer (AES) to analyze a sample (100) arranged on a sample holder (102) of the AES. The controller (316) is configured to receive a measurement of at least one test parameter indicative of the arrangement of the sample (100) on the sample holder (102). The at least one test parameter is then compared to a range of target values for that test parameter to determine if the sample (100) is arranged correctly on the sample holder (102). The test parameters may include an electrical parameter dependant on a current between a first and a second terminal at the sample holder (102), gas pressure in a gas chamber housing an electrode of the AES, or displacement of a portion of the sample holder.
    Type: Grant
    Filed: November 6, 2015
    Date of Patent: September 4, 2018
    Assignee: Thermo Fisher Scientific (Ecublens) SARL
    Inventors: Romain Farkas, Tony Maulaz
  • Patent number: 10022081
    Abstract: The present invention relates to a sampling device, a sampling system and a method of sampling, and in particular a method of analysis, for application to a living entity.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: July 17, 2018
    Assignee: TRACE ANALYTICS, GMBH
    Inventor: Wolfgang Künnecke
  • Patent number: 10016561
    Abstract: A computer implemented method of determining a clinical variables utilizing an insulin pump that includes initiating blood glucose measurements, initiating ingestion of carbohydrates and receiving input data based on the blood glucose measurements and the ingestion of carbohydrates and utilizing the data to calculate clinical variables. The invention may include presenting instructions to a patient to take various actions and to input various data. The clinical variables determined may be stored in memory and then used to calculate insulin doses and to send a signal to an insulin pump to infuse the insulin dose calculated.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: July 10, 2018
    Assignee: Tandem Diabetes Care, Inc.
    Inventors: Sean Saint, Mike Rosinko
  • Patent number: 10010274
    Abstract: The systems, methods, and devices described herein generally involve monitoring and/or quantification of various analyte levels in a biological fluid using one or more implantable sensors. In various aspects, systems, methods, and devices described herein can provide for the in situ calibration and/or cleaning of such sensors when implanted in the patient. The systems and devices disclosed herein can, for example, continuously or serially measure analytes within a biological fluid in vivo (e.g., without extracting the biological fluid from the patient) and periodically calibrate and/or clean the sensor without using finger sticks or additional, invasive calibration techniques. By way of non-limiting example, systems and devices disclosed herein can enable continuous monitoring of analyte concentrations (e.g., glucose) in subcutaneous interstitial fluid for several hours to a few days.
    Type: Grant
    Filed: December 17, 2012
    Date of Patent: July 3, 2018
    Inventor: James Winkelman
  • Patent number: 9999355
    Abstract: A device, system and method for determining vital signs of a subject is presented that improves accuracy and reliability, the device comprising a detection unit for contactless detection of light in at least two different wavelength ranges from a region of interest of a subject, wherein said detection unit is configured to detect a first light portion in a first wavelength range from light reflected from said region of interest in response to illumination by a first light source and to detect a second light portion in a second wavelength range from light transmitted through said region interest in response to illumination by a second light source, wherein said detection unit is configured to detect said first light portion and said second light portion simultaneously in response to illuminations that are at least temporarily simultaneous and wherein said first wavelength range and said second wavelength range are different.
    Type: Grant
    Filed: February 6, 2015
    Date of Patent: June 19, 2018
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventor: Ihor Olehovych Kirenko
  • Patent number: 9974903
    Abstract: Systems and methods are disclosed that provide smart alerts to users, e.g., alerts to users about diabetic states that are only provided when it makes sense to do so, e.g., when the system can predict or estimate that the user is not already cognitively aware of their current condition, e.g., particularly where the current condition is a diabetic state warranting attention. In this way, the alert or alarm is personalized and made particularly effective for that user. Such systems and methods still alert the user when action is necessary, e.g., a bolus or temporary basal rate change, or provide a response to a missed bolus or a need for correction, but do not alert when action is unnecessary, e.g., if the user is already estimated or predicted to be cognitively aware of the diabetic state warranting attention, or if corrective action was already taken.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: May 22, 2018
    Assignee: DexCom, Inc.
    Inventors: Anna Leigh Davis, Arturo Garcia, Thomas Hall, Hari Hampapuram, Christopher Robert Hannemann, Anna Claire Harley-Trochimczyk, Nathaniel David Heintzman, Andrea J. Jackson, Lauren Hruby Jepson, Apurv Ullas Kamath, Katherine Yerre Koehler, Scott M. Belliveau, Aditya Sagar Mandapaka, Samuel Jere Marsh, Gary A. Morris, Subrai Girish Pai, Andrew Attila Pal, Nicholas Polytaridis, Philip Thomas Pupa, Eli Reihman, Ashley Anne Rindfleisch, Sofie Wells Schunk, Naresh C. Bhavaraju, Peter C. Simpson, Daniel Smith, Stephen J. Vanslyke, Matthew T. Vogel, Tomas C. Walker, Benjamin Elrod West, Atiim Joseph Wiley, Leif N. Bowman, Rita M. Castillo, Alexandra Elena Constantin, Rian Draeger, Laura J. Dunn, Gary Brian Gable
  • Patent number: 9968302
    Abstract: Methods and devices for determining a measurement time period, receiving a plurality of signals associated with a monitored analyte level during the determined measurement time period from an analyte sensor, modulating the received plurality of signals to generate a data stream over the measurement time period, and accumulating the generated data stream to determine an analyte signal corresponding to the monitored analyte level associated with the measurement time period are provided. Systems and kits are also described.
    Type: Grant
    Filed: April 4, 2016
    Date of Patent: May 15, 2018
    Assignee: Abbott Diabetes Care Inc.
    Inventor: Martin J. Fennell
  • Patent number: 9965587
    Abstract: A method includes: measuring a blood glucose (bG) level in a blood sample; storing the bG level and a time of receipt of the blood sample; storing a classification of the blood sample; in response to the receipt of the blood sample, selecting a group of stored bG levels having the classification of the blood sample and that were received within a predetermined period before receipt of the blood sample; calculating a bG evaluation parameter from the selected bG levels; evaluating the bG evaluation parameter in relation to first predetermined criteria, the first predetermined criteria including a first threshold indicative of a high bG level or a low bG level; selectively displaying an indication of recognition of a pattern in the selected bG levels when the bG evaluation parameter is greater than or less than the first threshold; and selectively removing the indication from the display.
    Type: Grant
    Filed: July 8, 2013
    Date of Patent: May 8, 2018
    Assignee: Roche Diabetes Care, Inc.
    Inventors: Timothy N. Aykroyd, Amy C. Day, Paul J. Galley, Horst Merkle, Christen A. Rees, Michelle M. Stevens, Scott A. Wooldridge
  • Patent number: 9955881
    Abstract: An electrode system include a flowable and cohesive surface contact element comprising a hydrophilic polymer swollen with an electrolyte fluid, the contact element having a Q? ratio of at least 5 as defined by the equation Q ? = W W W G wherein WG is the dry weight of the hydrophilic polymer and WW is weight of water in the sample after absorption of the electrolyte fluid comprising water and an electrolyte salt. The surface contact element can consist essentially of the hydrophilic polymer swollen by the electrolyte fluid. Another electrode system includes a contact element including a crosslinked hydrophilic polymer matrix. The contact element has a Q? ratio of at least 5 as defined by the equation Q ? = W W W G . The contact elements can also have a Q? ratio of at least 6, at least 7, at least 10 or even at least 11.
    Type: Grant
    Filed: March 4, 2014
    Date of Patent: May 1, 2018
    Assignee: University of Pittsburgh—Of the Commonwealth System of Higher Education
    Inventors: Xinyan Cui, Nicolas Alexander Alba, Mingui Sun
  • Patent number: 9939422
    Abstract: In some embodiments, alerts are sent to appropriate parties if an insulated container is not properly packed out to insure the approximate safe temperature of the materials. In other embodiments, a countdown timer is used to keep track of the time that the biologic has been in transit, and ensure that the amount of time does not exceed the known shelf life of the biologic. In still other embodiments, the payload container is equipped with its own sensors, such as temperature sensors, and communications devices, such as a close range communication device, capable of transmitting information regarding a range of parameters, including, but not limited to, temperature, humidity, location and time, from the payload container to an end user. In other embodiments, shielding and/or radiation sensors are included in insulated shipping or storage containers, or payload containers, to shield and monitor the radiation exposure of the payload.
    Type: Grant
    Filed: May 19, 2016
    Date of Patent: April 10, 2018
    Assignee: Biologistex CCM, LLC
    Inventors: Michael Rice, Bruce McCormick