Electrode Placed In Or On Heart Patents (Class 600/374)
  • Patent number: 9033916
    Abstract: A catheter for use in a patient's heart, especially for mapping a tubular region of the heart, has a catheter body, a deflectable intermediate section and a distal mapping assembly that has a generally circular portion adapted to sit on or in a tubular region of the heart. A control handle of the catheter allows for single-handed manipulation of various control mechanisms that can deflect the intermediate section and contract the mapping assembly by means of a deflection control assembly and a rotational control assembly. The deflection control assembly has a deflection arm and a rocker member. The rotational control assembly has an outer rotational member, an inner rotational member and a cam. A pair of puller members are responsive to the deflection control assembly to bi-directionally deflect the intermediate section. A third puller member is responsive to the rotational control assembly to contract the generally circular portion of the mapping assembly.
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: May 19, 2015
    Assignee: Biosense Webster, Inc.
    Inventor: Jefferey William Schultz
  • Patent number: 9037264
    Abstract: A family of catheter electrode assemblies includes a flexible circuit having a plurality of electrical traces and a substrate; a ring electrode surrounding the flexible circuit and electrically coupled with at least one of the plurality of electrical traces; and an outer covering extending over at least a portion of the electrode. A non-contact electrode mapping catheter includes an outer tubing having a longitudinal axis, a deployment member, and a plurality of splines, at least one of the plurality of splines comprising a flexible circuit including a plurality of electrical traces and a substrate, a ring electrode surrounding the flexible circuit and electrically coupled with at least one of the plurality of electrical traces; and an outer covering extending over at least a portion of the ring electrode. A method of constructing the family of catheter electrode assemblies is also provided.
    Type: Grant
    Filed: September 26, 2013
    Date of Patent: May 19, 2015
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventors: Dale E. Just, Troy T. Tegg, Theodore A. Johnson, Sacha C. Hall
  • Publication number: 20150133759
    Abstract: Methods and systems for preparing electroanatomic maps of the heart operate using a probe that has been inserted into a heart chamber by emitting electrical calibration signals from external locations that are outside the subjects body, receiving the calibration signals in a plurality of intracardiac electrodes on the probe, and determining functional relationships between the emitted calibration signals and the received calibration signals. Thereafter, electrophysiological signals from respective origins in the heart are detected in the external locations, and the functional relationships are applied to the detected electrophysiological signals to calculate intracardiac potentials at the respective origins.
    Type: Application
    Filed: October 30, 2014
    Publication date: May 14, 2015
    Applicant: BIOSENSE WEBSTER (ISRAEL) LTD.
    Inventor: Assaf Govari
  • Publication number: 20150133760
    Abstract: A system for sensing multiple local electric voltages from endocardial surface of a heart, includes: an elongate tubular member having a lumen, a proximal end and a distal end; and a basket assembly including a plurality of flexible splines; an anchor for securably affixing proximal portions of the splines, where the anchor is securably affixed within the lumen of the elongate tubular member at the distal end of the elongate tubular member; and a tip for securably affixing the distal portions of the splines; where the tip is recessed within the basket assembly upon radial expansion of the basket assembly.
    Type: Application
    Filed: January 13, 2015
    Publication date: May 14, 2015
    Applicant: Topera, Inc.
    Inventors: Thomas F. Kordis, Ruchir Sehra, Eric T. Johnson, Darrin J. Kent, Robert Ryan Ragland
  • Patent number: 9031647
    Abstract: Cardiac lead implantation systems, devices, and methods for lead implantation are disclosed. An illustrative cardiac lead implantation system comprises a mapping guidewire including one or more electrodes configured for sensing cardiac electrical activity, a signal analyzer including an analysis module configured for analyzing an electrocardiogram signal sensed by the mapping guidewire, and a user interface configured for monitoring one or more hemodynamic parameters within the body. The sensed electrical activity signal can be used by the analysis module to compute a timing interval associated with ventricular depolarization.
    Type: Grant
    Filed: November 10, 2011
    Date of Patent: May 12, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Barun Maskara, Yinghong Yu, Bruce A. Tockman, Sunipa Saha, Martin McDaniel, Geng Zhang
  • Publication number: 20150126841
    Abstract: A method and system for determining activation times for electric potentials from complex electrograms to identify the location of arrhythmic sources or drivers. The method includes counting a number deflections in a recorded cardiac electrogram signal from at least one electrode for a predetermined amount of time. A deflection time is identified for each of the counted number of deflections. A most negative slope is identified between each of the identified deflections times. Each of the identified most negative slopes is correlated to a possible activation time. Each possible activation time is associated with a corresponding electrode from the at least one electrode. A spatial voltage gradient at each corresponding electrode is calculated for each possible activation time. The greatest spatial voltage gradient is identified. The greatest spatial voltage gradient is correlated to an activation time.
    Type: Application
    Filed: January 15, 2015
    Publication date: May 7, 2015
    Inventor: Subham GHOSH
  • Publication number: 20150126840
    Abstract: Medical devices and methods for using medical devices are disclosed. An example mapping medical device may include a catheter shaft with a plurality of electrodes. The plurality of electrodes may include a first pair of electrodes, a second pair of electrodes, a third pair of electrodes and a fourth pair of electrodes. The mapping medical device may further include a processor, wherein the processor may be configured to determine a first latency between the first pair of electrodes, determine a second latency between the second pair of electrodes, determine a third latency between the third pair of electrodes, determine a fourth latency between the fourth pair of electrodes, and determine a target signal by interpolating the first latency, the second latency, the third latency and the fourth latency.
    Type: Application
    Filed: October 30, 2014
    Publication date: May 7, 2015
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: PRAMODSINGH HIRASINGH THAKUR, BARUN MASKARA, SHIBAJI SHOME, ALLAN C. SHUROS, SHANTHA ARCOT-KRISHNAMURTHY, SUNIPA SAHA
  • Patent number: 9026196
    Abstract: A method of detecting whether a localization element is within or outside of an introducer sheath generally includes obtaining a localization signal from the localization element and detecting the state of the localization element relative to the sheath based upon the quadrature component of the localization signal. A baseline quadrature component is typically established with the localization element outside of the sheath. When the quadrature component deviates from this baseline value, it is indicative of the localization element being within the sheath. Conversely, when the quadrature component remains relatively close to the baseline value, it is indicative of the localization element being outside of the sheath. In an electrophysiology study, the state information can be used to take corrective action with respect to the data being collected.
    Type: Grant
    Filed: March 5, 2013
    Date of Patent: May 5, 2015
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventors: Timothy G. Curran, Anthony D. Hill
  • Publication number: 20150119670
    Abstract: Medical devices are described for performing mapping, ablating, pacing, and/or defibrillating procedures on one or more layers of the cardiac wall via an epicardial or extra-pericardial approach in a minimally invasive (e.g., orthoscopic) surgical procedure. One of the medical devices described includes a main support member and one or more secondary support members extending outwardly from the main support member having electrodes configured to receive electrical impulses. The secondary support member may include a support pad configured to be removably attached to a corresponding area of the epicardium for holding the medical device in place during a procedure, such as through application of vacuum pressure via a containment dome provided on each secondary support member. Further, an ablating electrode may be slidably disposed along the main support member for transmitting energy to a target site proximate the electrode. Other devices and associated methods are also described.
    Type: Application
    Filed: October 30, 2013
    Publication date: April 30, 2015
    Applicant: The Charlotte-Mecklenburg Hospital Authority d/b/a Carolinas Healthcare System
    Inventors: Jeko Metodiev Madjarov, John Michael Fedor, Jackie H. Kasell, Svetozar Madzharov
  • Publication number: 20150119672
    Abstract: Medical devices and methods for using medical devices are disclosed. An example mapping medical device may include a catheter shaft with a plurality of electrodes. The catheter shaft may be coupled to a processor. The processor may be capable of collecting a first set of signals from a first location, collecting a second set of signals from a second location, characterizing the first set of signals over a first time period, characterizing the second set of signals over a second time period, comparing the first set of signals to the second set of signals and matching a first signal from the first set of signals with a second signal from the second set of signals.
    Type: Application
    Filed: October 29, 2014
    Publication date: April 30, 2015
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: PRAMODSINGH HIRASINGH THAKUR, ALLAN C. SHUROS, BARUN MASKARA, SHIBAJI SHOME, SHANTHA ARCOT-KRISHNAMURTHY, SUNIPA SAHA, SCOTT A. MEYER
  • Publication number: 20150119671
    Abstract: Systems and methods are provided that can identify a mechanism of action of an arrhythmia in a chamber of the heart. A plurality of electrograms recorded by a plurality of electrodes contacting a wall of a chamber of the heart at a corresponding plurality of different locations within the chamber in response to an electrical perturbation can be received. An activation map of the chamber can be determined based on the plurality of electrograms. Based on the activation map, a location and a shape of a mechanism of action of the arrhythmia can be determined. A treatment plan can be developed based on a location and a size of the mechanism of action within the chamber. For example, the treatment plan can include guiding an ablation of the mechanism of action.
    Type: Application
    Filed: October 29, 2014
    Publication date: April 30, 2015
    Inventor: Niraj Varma
  • Patent number: 9020574
    Abstract: A lead for active implantable medical devices comprising a chip, notably for electrode multiplexing. The lead (10) includes an insulating supporting tube (20) interposed in a flexible elongated tube, with a central bore (22) coaxial with the lumen of the lead. The supporting tube comprises on its surface at least one crossing conductive strip (28) extending in the axial direction. A chip (18) on a flexible substrate is disposed with a bent or curved conformation in a receptacle of the supporting tube isolated from the conductive strip. An electrode, e.g., for cardiac sensing/pacing, (16) on the supporting tube (20) is electrically connected to an outer conductive pad (24) of the chip. The conductive strip is connected (i) at each end (28b), face to face to a conductive connection (12), housed in the sheath, and (ii) in a central region (28a), to an inner conductive pad (26) of the chip.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: April 28, 2015
    Assignee: Sorin CRM SAS
    Inventor: Jean-François Ollivier
  • Publication number: 20150112178
    Abstract: This invention relates to the determination and/or representation of physiological information relating to a heart surface.
    Type: Application
    Filed: December 31, 2014
    Publication date: April 23, 2015
    Inventors: Doron Harlev, Brian Stewart
  • Patent number: 9014822
    Abstract: A pacing lead for a left cavity of the heart, implanted in the coronary system. This lead (24) includes a lead body with a hollow sheath (26, 28) of deformable material, having a central lumen open at both ends, and at least one telescopic microcable (42) of conductive material. The microcable slides along the length of the lead body and extends beyond the distal end (32) thereof. The party emerging beyond the distal end is an active free part (34) comprising a plurality of distinct bare areas (36, 38, 50, 50?, 50?), intended to come into contact (40) with the wall of a target vein (22) of the coronary system (14-22), so as to form a network of stimulation electrodes electrically connected together in parallel. The microcable further comprises, proximally, a connector to a generator of active implantable medical device such as a pacemaker or a resynchronizer.
    Type: Grant
    Filed: August 6, 2013
    Date of Patent: April 21, 2015
    Assignee: Sorin CRM S.A.S.
    Inventor: Jean-François Ollivier
  • Publication number: 20150105645
    Abstract: Devices, systems, and methods for performing a mapping procedure on body tissue are disclosed. An example mapping device for mapping a tissue surface includes an elongate shaft and an electrode assembly. The electrode assembly includes a plurality of splines and a plurality of electrodes disposed on at least some of the splines. The electrode assembly is capable of moving between a collapsed configuration and an expanded configuration. In the expanded configuration, the electrode assembly may have a generally planar structure.
    Type: Application
    Filed: October 10, 2014
    Publication date: April 16, 2015
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: RAJ SUBRAMANIAM, JOSEF V. KOBLISH
  • Patent number: 9008746
    Abstract: A catheter with a tissue property sensor provides for localization of myocardial infarction (MI) by utilizing one or more differences between properties of infarcted myocardial tissue and properties of normal myocardial tissue. The tissue property sensor is to be placed on endocardial wall or epicardial wall during catheterization to sense at least one tissue property allowing for detection of MI. In one embodiment, the tissue property sensor includes a contractility sensor and senses a tissue property in various locations on endocardial wall or epicardial wall and detects substantial changes in the tissue property that indicate a boundary between infarcted tissue and normal tissue.
    Type: Grant
    Filed: December 1, 2009
    Date of Patent: April 14, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Joseph M. Pastore, Steven D. Girouard
  • Patent number: 8996135
    Abstract: A device and method for implanting a catheter between the left atrium and/or left ventricle of the heart from a prepectoral region through a less invasive and lower-risk approach is provided that allows the implantation of the catheter in the left cardiac chambers through a femoral approach atrial transseptal puncture, and the removal of the catheter proximal end by a retrograde venous route. The device includes a transseptal sheath for slidably carrying the catheter, an elongate pulling element attached to a proximal end of the catheter, a runner slidable within the transseptal sheath and operable for biasing against the proximal end of the cardiac catheter, and a loop catheter having a loop formed at one end thereof, wherein the loop is dimensioned for receiving the transseptal sheath and for receiving the elongate pulling element therein when the loop and the elongate pulling element are separated from the transseptal sheath.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: March 31, 2015
    Inventor: Benjamin Daniel Elencwajg
  • Patent number: 8996091
    Abstract: Embodiments of the present invention provide a catheter that comprises an elongated catheter body (16) and an electrode assembly (10) at the distal end of the catheter body. The electrode assembly comprises a plurality of spines (11), each of the spines having a proximal end connected to the distal end of the catheter and a distal end, the distal ends of the spines being connected at a spine tip junction (13). Each spine includes an elbow (20) having at least one discontinuity in stiffness at an intermediate position between the distal end and the proximal end thereof. The spines include a plurality of electrodes (12). The electrode assembly is collapsible to a collapsed arrangement to fit within a lumen of the elongated catheter body and expandable to an expanded arrangement with the elbows of the spines bending outwardly relative to the proximal and distal ends of the spines.
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: March 31, 2015
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventors: Alan de la Rama, Cary Hata
  • Patent number: 8996136
    Abstract: An implantable medical device, which is connected or is to be connected to at least two elongated electric function conductors for the transmission of treatment signals or diagnostic signals or both, and at least one electrode pole connected to at least one of the function conductors, via which electrode pole electric current can be delivered in the case of use to surrounding tissue of the body or with which electric potentials can be sensed in the surrounding tissue or both. Includes a wave transfer module connected to the function conductor and which is embodied to transform waves arriving via a function conductor and to switch them as transformed waves onto another function conductor or the same function conductor in such a controlled manner that the waves are destructively superimposed at the electrode pole.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: March 31, 2015
    Assignee: Biotronik SE & Co. KG
    Inventor: Ingo Weiss
  • Publication number: 20150080693
    Abstract: A catheter adapted for mapping and/or ablation in the atria has a basket-shaped electrode array with two or more location sensors with a deflectable expander. The catheter has comprises a catheter body, a basket electrode assembly at a distal end of the catheter body, and a control handle at a proximal end of the catheter body. The basket electrode assembly has a plurality of electrode-carrying spines and an expander that is adapted for longitudinal movement relative to the catheter body for expanding and collapsing the assembly via a proximal end portion extending past the control handle that can be pushed or pulled by a user. The expander is also adapted for deflection in responsive to an actuator on the control handle that allows a user to control at least one puller wire extending through the catheter body and the expander.
    Type: Application
    Filed: September 16, 2013
    Publication date: March 19, 2015
    Inventor: Mario Solis
  • Publication number: 20150073248
    Abstract: Described is an implantable lead comprising a flexible body extending between a proximal end and a distal end and a distal assembly coupled to the distal end of the body. The distal assembly includes a housing having a distal end and a proximal end, the proximal end fixedly coupled to the distal end of the lead body, a coupler rotatably disposed within the housing, the coupler having a proximal end and a distal end, and a helical electrode fixedly secured to the distal end of the coupler. The helical electrode comprises a proximal axial length portion that comprises a non-degradable material, and a distal axial length portion that comprises a biodegradable material. The coupler and the helical electrode are configured to rotate and therefore translate relative to the housing.
    Type: Application
    Filed: November 18, 2014
    Publication date: March 12, 2015
    Inventors: Bryan A. Clark, Thomas J. Herbst, Kimberly A. Jorgensen
  • Publication number: 20150073247
    Abstract: The present invention provides an implantable medical device having at least two electrodes coupled to the device housing. The electrodes may be configured for sensing physiological signals such as cardiac signals and alternatively for providing an electrical stimulation therapy such as a pacing or defibrillation therapy. In accordance with aspects of the disclosure, the device housing provides a hermetic enclosure that includes a battery case hermetically coupled to a circuit assembly case. At least one of the at least two electrodes is coupled to an exterior surface of the battery case. The battery case is electrically insulated from the cathode and anode of the battery.
    Type: Application
    Filed: October 23, 2013
    Publication date: March 12, 2015
    Applicant: MEDTRONIC, INC.
    Inventors: Charles R. Gordon, Kevin P. Kuehn, James D. Reinke, Michael B. Terry
  • Publication number: 20150073246
    Abstract: While detecting a cardiac arrhythmia, a mapping electrode of a probe is used to associate a local activation time with a first location in a region of interest in the heart. While detecting an absence of the cardiac arrhythmia, the local activation time is associated with a second location in the heart. Electrical data of the first location is assigned to the second location, and an electroanatomic map of the heart is generated that includes the second location in association with the assigned electrical data of the first location.
    Type: Application
    Filed: September 12, 2013
    Publication date: March 12, 2015
    Applicant: BIOSENSE WEBSTER (ISRAEL) LTD.
    Inventors: Yoram Chmiel, Gal Hayam
  • Patent number: 8977333
    Abstract: A shape-imparting mechanism for a catheter that includes an elongate element dimensioned to fit within a lumen of an electrode sheath of a catheter. An insertion facilitating arrangement is carried at a distal end of the elongate element for facilitating insertion of the distal end of the elongate element into the lumen of the electrode sheath of the catheter.
    Type: Grant
    Filed: May 4, 2007
    Date of Patent: March 10, 2015
    Assignee: Cathrx Ltd
    Inventors: Neil L. Anderson, Matthew Partlett
  • Patent number: 8977368
    Abstract: An implantable medical device having at least one first and one second longitudinally extended electrical functional conductor to transmit therapeutic signals or diagnostic signals or both. The implantable medical device includes one electrode pole connected to the functional conductor, wherein electrical current is delivered to the surrounded bodily tissue using the electrode pole. Electrical potentials may be sensed in the surrounding tissue using the electrode pole, such that the two electrical functional conductors are inductively coupled for defined resonant frequencies and such that RF energy of a first functional conductor is diverted to the second functional conductor. The RF energy is delivered to the surrounding tissue via the second functional conductor and via an electrode pole connected to the second functional conductor.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: March 10, 2015
    Assignee: Biotronik SE & Co. KG
    Inventors: Thomas Doerr, Ingo Weiss
  • Patent number: 8977334
    Abstract: Catheter systems for measuring at least one electrical property, e.g., impedance, of cardiac tissue of a living being are disclosed. The system includes a catheter having a tip with a sensing electrode, a guard electrode and an electrical shield. The sensing electrode is arranged to engage the cardiac tissue and is coupled to circuitry for measuring the at least one electrical property of the cardiac tissue, shielding the sensing electrode from bulk blood adjacent the cardiac tissue. The measurement can gated to the cardiac cycle. Additional embodiments include multi-electrode sensor catheter tips for high density mapping. Moreover, such tips may be dynamically configurable, i.e., their electrodes can be variably assigned as sensor electrodes or guard electrodes by associated circuitry. Such multi-electrode configuration and reconfiguration can be gated to the cardiac cycle.
    Type: Grant
    Filed: November 27, 2013
    Date of Patent: March 10, 2015
    Assignees: Albert Einstein Healthcare Network, The Trustees of the University of Pennsylvania
    Inventors: Allan M. Greenspan, Yale E. Goldman
  • Publication number: 20150065836
    Abstract: A system and method for mapping an anatomical structure includes sensing activation signals of physiological activity with a plurality of mapping electrodes disposed in or near the anatomical structure. Patterns among the sensed activation signals are identified based on a similarity measure generated between each unique pair of identified patterns which are classified into groups based on a correlation between the corresponding pairs of similarity measures. A characteristic representation is determined for each group of similarity measures and displayed as a summary plot of the characteristic representations.
    Type: Application
    Filed: August 28, 2014
    Publication date: March 5, 2015
    Inventors: Pramodsingh Hirasingh Thakur, Shibaji Shome, Allan C. Shuros, Shantha Arcot-Krishnamurthy, Barun Maskara, Sunipa Saha
  • Patent number: 8972228
    Abstract: Techniques for evaluating cardiac electrical dyssynchrony are described. In some examples, an activation time is determined for each of a plurality of torso-surface potential signals. The dispersion or sequence of these activation times may be analyzed or presented to provide variety of indications of the electrical dyssynchrony of the heart of the patient. In some examples, the locations of the electrodes of the set of electrodes, and thus the locations at which the torso-surface potential signals were sensed, may be projected on the surface of a model torso that includes a model heart. The inverse problem of electrocardiography may be solved to determine electrical activation times for regions of the model heart based on the torso-surface potential signals sensed from the patient.
    Type: Grant
    Filed: May 2, 2012
    Date of Patent: March 3, 2015
    Assignee: Medtronic, Inc.
    Inventors: Subham Ghosh, Jeffrey M. Gillberg, Robert W. Stadler
  • Publication number: 20150057522
    Abstract: In some embodiments, a system includes a near-field instrument to be placed inside a chamber of a heart, a far-field instrument to be placed in a stable position in relation to the heart (e.g., the coronary sinus), and a control unit. The control unit is configured to receive position coordinates of the near-field instrument and electrogram information from the far-field instrument. The control unit is configured to identify a unique pattern in the electrogram information from the far-field instrument. When the unique pattern is detected, the control unit is configured to receive electrogram information from the near-field instrument and store the associated near-field instrument position information with the unique pattern information and near-field instrument electrogram information. Upon moving the near-field instrument within the heart chamber, the control unit is configured to identify the unique pattern in the electrogram information from the far-field instrument again.
    Type: Application
    Filed: August 22, 2014
    Publication date: February 26, 2015
    Applicant: CardioNXT, Inc.
    Inventors: Bao Nguyen, Jerome Edwards, Paul Kessman, Thomas Kurian, Donald Conty, JR.
  • Publication number: 20150057521
    Abstract: Embodiments of the invention include a temporarily or permanently implantable medical device with an elongate electrical line, and a method of producing the implantable medical device. The elongate electrical line includes a first electrical component and a second component, wherein the first electrical component or part of the first electrical component includes a functional conductor. The second component includes at least one metal layer and at least one flexible plastic layer. The first electrical component is electrically connected in series to the at least one metal layer of the second component.
    Type: Application
    Filed: August 19, 2014
    Publication date: February 26, 2015
    Applicant: BIOTRONIK SE & CO. KG
    Inventors: Jens RUMP, Michael FRIEDRICH, Heinrich BUESSING
  • Patent number: 8958861
    Abstract: A catheter for the treatment of tissue, particularly for the treatment of cardiac tissue to alleviate cardiac arrhythmias includes a handle housing a combination of steering components, electronic circuitry and/or infusion tubing. An interior notch in the handle around a circumference of the handle perpendicular to the longitudinal axis of the handle provides a means for access to the sealed handle in case a repair to the interior components is necessary during manufacture or reprocessing. The circumferential frangible connection of the two halves of the handle provides access without the use of cutting or drilling devices that could damage the interior components.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: February 17, 2015
    Inventors: Rogelio Plascencia, Jr., Arnold Tuason, Mario A. Solis
  • Patent number: 8945110
    Abstract: An electrophysiology catheter includes an elongate catheter body having an elastically-deformable distal region predisposed to assume a spiral shape and a first plurality of electrodes disposed thereon. Each of the first plurality of electrodes includes an electrically active region limited to the inner surface of the spiral shape for use in non-contact electrophysiology studies. A second plurality of electrodes may also be disposed on the distal region interspersed (e.g., alternating) with the first plurality of electrodes, with each of the second plurality of electrodes having an electrically active region extending into the outer surface of the spiral shape for use in contact electrophysiology studies. The distal region may be deformed into a straight configuration for insertion into and navigation through the patient's vasculature, for example via use of a tubular introducer. As the distal region deploys beyond the distal end of the introducer, it resumes the spiral shape.
    Type: Grant
    Filed: April 9, 2014
    Date of Patent: February 3, 2015
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventors: Jeffrey M. Fish, Sacha C. Hall, Theodore A. Johnson
  • Patent number: 8948837
    Abstract: This invention relates to the determination and/or representation of physiological information relating to a heart surface.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: February 3, 2015
    Assignee: Rhythmia Medical, Inc.
    Inventors: Doron Harlev, Brian Stewart
  • Patent number: 8939153
    Abstract: A transponder string comprising multiple transponders is configured for injection into human tissue. In one embodiment, the transponders are sized to move through a needle for injection into the human tissue. Positions of the transponders with reference to one another may be maintained by coupling the transponders via a filament, adhesive backed substrate, shrink tubing, and/or any other suitable substrate. The transponders are configured to transmit data to a mobile computing device, e.g., a wand, smart phone or wireless tablet positioned outside the human tissue such that positions of the transponders are determinable, e.g., during an excision surgery.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: January 27, 2015
    Assignee: Health Beacons, Inc.
    Inventors: Murray A. Reicher, Robert Petcavich
  • Patent number: 8942826
    Abstract: Implantable medical device with at least one long extended electrical conductor that is insulated from the surrounding material by a dielectric. The implantable medical device includes an electrode pole that emits therapy signals or detects diagnostic signals, at least one first longitudinal section of a first characteristic impedance between a proximal end and the electrode pole; and at least one second longitudinal section adjacent to the at least one first longitudinal section. The at least one second longitudinal section includes a second characteristic impedance and is shorter than the first longitudinal section. The second characteristic impedance is either larger or smaller than a load characteristic impedance.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: January 27, 2015
    Assignee: Biotronik SE & Co. KG
    Inventor: Heinrich Buessing
  • Publication number: 20150025351
    Abstract: A method includes measuring electrical activity at multiple points on a surface of a heart of a patient. User input indicative of a spectral slice selected from a frequency band is received. Respective levels of the electrical activity within the selected spectral slice are calculated. The calculated levels are displayed on a map of the heart.
    Type: Application
    Filed: July 19, 2013
    Publication date: January 22, 2015
    Inventor: Assaf Govari
  • Publication number: 20150018658
    Abstract: Disclosed is a system for the detection of cardiac events that includes an implanted device called a cardiosaver, a physician's programmer and an external alarm system. The system is designed to provide early detection of cardiac events such as acute myocardial infarction or exercise induced myocardial ischemia caused by an increased heart rate or exertion. The system can also alert the patient with a less urgent alarm if a heart arrhythmia is detected. Using different algorithms, the cardiosaver can detect a change in the patient's electrogram that is indicative of a cardiac event within five minutes after it occurs and then automatically warn the patient that the event is occurring. To provide this warning, the system includes an internal alarm sub-system (internal alarm means) within the cardiosaver and/or an external alarm system (external alarm means) which are activated after the ST segment of the electrogram exceeds a preset threshold.
    Type: Application
    Filed: September 29, 2014
    Publication date: January 15, 2015
    Inventors: DAVID R. FISCHELL, TIM A. FISCHELL, JONATHAN HARWOOD, ROBERT E. FISCHELL, STEVEN R. JOHNSON
  • Patent number: 8934956
    Abstract: An intravascular electrode device for use in neuromodulation includes an anchor expandable from a radially compressed position to a radially expanded position. A lead extends from the anchor and has at least one conductor extending through it. A flex circuit is coupled to the anchor and comprises a flexible insulative substrate, a plurality of electrodes carried by the substrate, and a plurality of conductive traces carried by the substrate, each trace electrically coupled to an electrode and a conductor. Expansion of the anchor within a blood vessel biases the electrodes into contact with the surrounding blood vessel wall. An exemplary anchor includes a first portion having expansion forces sufficient to bias the electrodes against the vessel wall for mapping and chronic stimulation, and a second portion having greater radial expansion forces sufficient to chronically engage the vessel wall once an optimal electrode location has been selected.
    Type: Grant
    Filed: October 25, 2011
    Date of Patent: January 13, 2015
    Assignee: Interventional Autonomics Corporation
    Inventors: Richard A. Glenn, Jeffrey A. Smith, Geoffrey A. Orth, Kevin Holbrook, Michael S. Williams
  • Patent number: 8925191
    Abstract: In one embodiment, a method of fabrication of a stimulation lead comprising a plurality of segmented electrodes for stimulation of tissue of a patient, the method comprises: providing an elongated, substantially cylindrical substrate, the substrate comprising a plurality of recesses defined in an outer surface of the substrate; coating the substrate with conductive material; patterning conductive material on the substrate to form a plurality of electrode surfaces for at least the plurality of segmented electrodes and a plurality of traces connected to the plurality of electrode surfaces, wherein each electrode surface and its corresponding trace are defined in the recesses on the outer surface of the substrate and are electrically isolated from other electrode surfaces and traces; providing insulative material over at least the plurality of traces; and electrically coupling the plurality of traces to conductive wires of a lead body.
    Type: Grant
    Filed: April 18, 2012
    Date of Patent: January 6, 2015
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventors: John Swanson, Kevin Turner, Jerome Boogaard
  • Publication number: 20140378806
    Abstract: A method, consisting of passing a cylindrical carbon fiber through a press so as to produce a flat ribbon. The method further includes weaving multiple strands of the flat ribbon together to create a cylindrical braid.
    Type: Application
    Filed: September 12, 2014
    Publication date: December 25, 2014
    Applicant: BIOSENSE WEBSTER (ISRAEL) LTD.
    Inventors: Assaf Govari, Christopher Thomas Beeckler, Athanassios Papaioannou, Ariel Garcia
  • Publication number: 20140378805
    Abstract: Methods and systems of catheterization include a flexible catheter adapted for insertion into a heart of a living subject. The catheter has a lumen for passing an electrically conductive fluid therethrough, which is propelled by a peristaltic pump. A fluid reservoir connected to the lumen supplies the fluid to the catheter. Electrocardiogram circuitry is connectable to the subject for monitoring electrical activity in the heart. An electrically conductive cable diverts induced charges in the fluid from the catheter electrodes, for example by shorting to a rotating element in the peristaltic pump.
    Type: Application
    Filed: June 25, 2013
    Publication date: December 25, 2014
    Inventors: John Hardy Ashton, George Kamin, Jose G. Ramos
  • Patent number: 8918158
    Abstract: The invention discloses a method, a system, a computer program and a device for determining the surface charge and/or dipole densities on heart walls. Using the foregoing, a table of dipole densities ?(P?, t) and/or a table of surface charge densities ?(P?, t) of a given heart chamber can be generated.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: December 23, 2014
    Inventors: Christoph Scharf, Gunter Scharf
  • Publication number: 20140371563
    Abstract: Apparatus, which consists of a plurality of modules. Each of the modules has: an insulating frame, a pair of electrodes fixed to the frame at respective locations that are spaced apart, and circuitry configured to receive signals from the pair of electrodes and in response output a differential signal. The apparatus further consists of an insertion tube having distal and proximal ends and containing the plurality of modules in locations spaced longitudinally in proximity to the distal end. There is cabling running through the tube that is connected to convey differential signals from the modules to the proximal end.
    Type: Application
    Filed: June 17, 2013
    Publication date: December 18, 2014
    Inventor: Yoav Lichtenstein
  • Patent number: 8906011
    Abstract: A device positionable in a cavity of a bodily organ (e.g., a heart) may discriminate between fluid (e.g., blood) and non-fluid tissue (e.g., wall of heart) to provide information or a mapping indicative of a position and/or orientation of the device in the cavity. Discrimination may be based on flow, or some other characteristic, for example electrical permittivity or force. The device may selectively ablate portions of the non-fluid tissue based on the information or mapping. The device may detect characteristics (e.g., electrical potentials) indicative of whether ablation was successful. The device may include a plurality of transducers, intravascularly guided in an unexpanded configuration and positioned proximate the non-fluid tissue in an expanded configuration. Expansion mechanism may include helical member(s) or inflatable member(s).
    Type: Grant
    Filed: November 16, 2007
    Date of Patent: December 9, 2014
    Assignee: Kardium Inc.
    Inventors: Daniel Gelbart, Doug Goertzen, Fernando Lopes
  • Patent number: 8905925
    Abstract: Systems and methods permit remotely-monitored rehabilitation of a patient. A system can comprise a patient monitor configured to monitor a patient's physiological data. The patient monitor can monitor using a first monitoring mode. A patient communication device can be configured to present, to the patient, an option to perform an exercise regimen, and to receive a response indicating whether the patient will perform the exercise regimen. A configuration module coupled to the patient communication device can be configured to activate a second monitoring mode when the response indicates that the patient will perform the exercise regimen. When the exercise regimen is complete, the first monitoring mode can be re-established. When the response indicates that the patient will not perform the exercise regimen, the response can be recorded as a negative response, and the option to perform the exercise regimen can be presented again.
    Type: Grant
    Filed: June 10, 2009
    Date of Patent: December 9, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Kenneth C. Beck, Ramesh Wariar, Viktoria A. Averina
  • Patent number: 8903510
    Abstract: An exemplary method includes positioning a lead in a patient where the lead has a longitudinal axis that extends from a proximal end to a distal end and where the lead includes an electrode with an electrical center offset from the longitudinal axis of the lead body; measuring electrical potential in a three-dimensional potential field using the electrode; and based on the measuring and the offset of the electrical center, determining lead roll about the longitudinal axis of the lead body where lead roll may be used for correction of field heterogeneity, placement or navigation of the lead or physiological monitoring (e.g., cardiac function, respiration, etc.). Various other methods, devices, systems, etc., are also disclosed.
    Type: Grant
    Filed: January 28, 2010
    Date of Patent: December 2, 2014
    Assignee: Pacesetter, Inc.
    Inventors: Stuart Rosenberg, Thao Thu Nguyen, Kyungmoo Ryu, Kjell Noren, Allen Keel, Wenbo Hou, Steve Koh, Michael Yang
  • Patent number: 8903514
    Abstract: A medical implantable lead comprises a conduction controlling means, which at least during an initial stage after implantation is capable of rendering a first contact surface electrically inactive and which is capable of rendering the first contact surface electrically active after the initial stage. By means of the inventive lead it is possible to detect whether the helix is sufficiently screwed into the tissue or not.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: December 2, 2014
    Assignee: St. Jude Medical AB
    Inventors: Sara Hallander, Marcus Helgesson
  • Publication number: 20140350374
    Abstract: A catheter for use in a patient's heart, especially for mapping a tubular region of the heart, has a catheter body, a deflectable intermediate section and a distal a mapping assembly that has a generally circular portion adapted to sit on or in a tubular region of the heart. A control handle of the catheter allows for single-handed manipulation of various control mechanisms that can deflect the intermediate section and contract the mapping assembly by means of a deflection control assembly and a linear control assembly. The deflection control assembly has a deflection arm and a rocker member. The linear control assembly has a linear control member, an inner rotational member and a cam. A pair of puller members are responsive to the deflection control assembly to bi-directionally deflect the intermediate section. A third puller member is responsive to the linear control assembly to contract the generally circular portion of the mapping assembly.
    Type: Application
    Filed: June 9, 2014
    Publication date: November 27, 2014
    Inventor: Jeffrey William Schultz
  • Patent number: 8896462
    Abstract: The present invention is directed to an implantable medical device and a method for power management for power efficient use of RF telemetry during, for example, conditions where long periods of continuous monitoring of the device and the patient is desired such as during MRI procedures. A protocol module adapted to, at receipt of a low power protocol indication, activate and use a low power protocol for communication between the device and external units. The protocol module is capable of switching between different communication protocols including a low power communication protocol and a default RF communication protocol depending on, for example, whether continuous long-term monitoring of the patient is performed.
    Type: Grant
    Filed: November 27, 2009
    Date of Patent: November 25, 2014
    Assignee: St. Jude Medical AB
    Inventors: Niklas Skoldengen, Hans Abrahamson, Therese Danielsson
  • Publication number: 20140343388
    Abstract: A method and system for mapping an anatomical structure includes sensing activation signals of intrinsic physiological activity with a plurality of mapping electrodes disposed in or near the anatomical structure, each of the plurality of mapping electrodes having an electrode location. A vector field map which represents a direction of propagation of the activation signals at each electrode location is generated to identify a signature pattern and a location in the vector field map according to at least one vector field template. A target location of the identified signature pattern is identified according to a corresponding electrode location.
    Type: Application
    Filed: May 14, 2014
    Publication date: November 20, 2014
    Applicant: Boston Scientific Scimed Inc.
    Inventors: Pramodsingh H. Thakur, Shibaji Shome, Shantha Arcot-Krishnamurthy, Allan C. Shuros, Barun Maskara, Sunipa Saha