Electrode Attached To Or Positioned Relative To A Specific External Body Portion Patents (Class 600/382)
  • Patent number: 10342443
    Abstract: An automated system, method, apparatus, device and/or computer program product for detecting positioning effect is set forth, the apparatus according to an exemplary embodiment may include an output operable to couple to one or more stimulating electrodes to stimulate one or more peripheral nerves of the patient, an input operable to couple to one or more recording electrodes to record resultant electrical waveforms generated by a nervous system of a patient in response to the stimulating module, and one or more processors operable to identify the positioning effect based on the resultant electrical waveforms.
    Type: Grant
    Filed: December 14, 2015
    Date of Patent: July 9, 2019
    Assignee: SafeOp Surgical, Inc.
    Inventors: Samuel Johnson, Richard A O'Brien
  • Patent number: 10327703
    Abstract: The present disclosure describes a vital sign monitoring device configured for monitoring one or more patient vital signs. The device includes a disposable patch assembly attachable to a reusable electronics package. The patch assembly includes an adhesive layer for adhering to a patient's skin. A vital sign sensor is embedded within the adhesive layer. A flexible circuit connects to the sensor on an upper side of the adhesive layer, and provides electrical contact between the sensor and the electronics package. The electronics package includes a battery and microcontroller for powering and controlling the sensor.
    Type: Grant
    Filed: April 4, 2017
    Date of Patent: June 25, 2019
    Assignee: WACIAN, LLC
    Inventors: Stefan Julius Niederauer, Azmi Alaaeldin Ahmad, Benjamin Reed Fogg
  • Patent number: 10314509
    Abstract: The invention provides a sensor for measuring both impedance and ECG waveforms that is configured to be worn around a patient's neck. The sensor features 1) an ECG system that includes an analog ECG circuit, in electrical contact with at least two ECG electrodes, that generates an analog ECG waveform; and 2) an impedance system that includes an analog impedance circuit, in electrical contact with at least two (and typically four) impedance electrodes, that generates an analog impedance waveform. Also included in the neck-worn system are a digital processing system featuring a microprocessor, and an analog-to-digital converter. During a measurement, the digital processing system receives and processes the analog ECG and impedance waveforms to measure physiological information from the patient. Finally, a cable that drapes around the patient's neck connects the ECG system, impedance system, and digital processing system.
    Type: Grant
    Filed: December 31, 2013
    Date of Patent: June 11, 2019
    Assignee: TOSENSE, INC.
    Inventors: Matthew Banet, Susan Meeks Pede, Marshal Singh Dhillon, Kenneth Robert Hunt
  • Patent number: 10307605
    Abstract: A gel deployment device for use with an electrotherapy system is provided. The device includes a plurality of gel reservoirs disposed on a substrate, each of the plurality of gel reservoirs containing conductive gel. Each of the gel reservoirs are positioned adjacent to at least one seal such that the seal restricts flow of the conductive gel. The seal can be configured to release the conductive gel from the gel reservoir in response to pressure being applied about a perimeter of the seal at, for example, multiple points about the perimeter or substantially equally about the perimeter of the seal. In an example, each gel reservoir can be shaped such that the gel reservoir partially or fully surrounds a seal. In another example, multiple gel reservoirs can be arranged in clusters such that the multiple gel reservoirs are positioned about a single seal.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: June 4, 2019
    Assignee: ZOLL Medical Corporation
    Inventors: Robert J Hulings, Scott D Quinnell, Dale Ballard, Ronald A Seman
  • Patent number: 10296085
    Abstract: A finger operated control device includes at least one finger portion that covers at least 30% of a surface area of skin around a distal phalanx of a finger and piezoelectric sensors coupled to the finger portion and having a plurality of electrodes, where at least two of the electrodes are separated by a material with piezoelectric properties. The at least one finger portion may be thimble shaped and may be made of polymer. The at least one finger portion may be a piezoelectric polymer or polyvinylidene fluoride. A distance between at least 50% of the electrodes may be between 0.1 and 5 mm or between 0.5 and 2 mm. A number of electrodes may be between 5 and 2000 or between 20 and 200. The finger operated control device may also include a computing device coupled to the finger portion using at least a wireless and/or wired connection.
    Type: Grant
    Filed: March 4, 2015
    Date of Patent: May 21, 2019
    Assignee: Markantus AG
    Inventor: Dirk Hamm
  • Patent number: 10293152
    Abstract: Devices, systems, and methods for automated optimization of muscle stimulation energy. In some embodiments the disclosure optimizes stimulation parameters and/or stimulation location.
    Type: Grant
    Filed: April 5, 2016
    Date of Patent: May 21, 2019
    Assignee: Sage Products, LLC
    Inventor: Brian J. Fahey
  • Patent number: 10244959
    Abstract: A vital information measurement device and a vehicle seat which improves the durability of sheet-shaped sensors configured to detect vital information of a seated passenger can stably measure the heart rate of the seated passenger. A vehicle seat includes sheet-shaped sensors attached to a seat back, and can measure the heart rate of a seated passenger based on vital signals of the seated passenger detected by the sheet-shaped sensors. At each sheet-shaped sensor, a sensor overlap reduction section is provided to reduce partial overlapping of the sheet-shaped sensor when the seated passenger leans on the seat back. Specifically, each sheet-shaped sensor includes a first cutout extending toward the center of the sheet-shaped sensor at an outer peripheral portion of the sheet-shaped sensor, and a second cutout formed continuously from the first cutout and extending opposite to the center along the outer peripheral portion of the sheet-shaped sensor.
    Type: Grant
    Filed: May 16, 2014
    Date of Patent: April 2, 2019
    Assignee: TS Tech Co., Ltd.
    Inventor: Shinji Sugiyama
  • Patent number: 10244961
    Abstract: A wearable device for measuring an edema index includes: a band, wearable on a wrist; an electrode module including a pair of current electrodes and a pair of voltage electrodes; and a main module applying an alternating current (AC) to the pair of current electrodes, and obtaining an edema index of a human body from an AC voltage measured from the pair of voltage electrodes, wherein each of the pair of current electrodes and the pair of voltage electrodes is attached to one surface of the band in a row in a length direction of the band, and protrudes from the surface of the band to be in direct contact with the skin of the wrist when the band is worn on the wrist.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: April 2, 2019
    Assignee: Industry-Academic Cooperation Foundation, Chosun University
    Inventors: Youn Tae Kim, Jae Hyo Jung, Si Ho Shin
  • Patent number: 10210721
    Abstract: In the present invention, an electrophysiology (EP) mapping or recording device for obtaining and recording information on a patient connected to the EP system includes a central processing unit (CPU), a display connected to the CPU, a cable lead connected to the CPU and configured to supply a physiological signal to the CPU from an electrode disposed on a patient, such as an electrocardiogram (ECG) surface electrode. A signal quality indication system includes a CPU capable of determining the EC signal quality and a light source disposed on the cable lead in close proximity to the patient. The light source is operated by the CPU to emit light in varying colors and/or in varying intensities or configuration corresponding to the quality of the physiological signal to visually represent the presence and quality of the physiological signal on the cable lead.
    Type: Grant
    Filed: December 9, 2016
    Date of Patent: February 19, 2019
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Rodger F. Schmit, Adrian F. Warner, Daniel R. Schneidewend, Timothy P. Stiemke
  • Patent number: 10143835
    Abstract: Provided is a biological electrode and a biological electrode-equipped wearing tool, in which a contact surface having a certain surface area is suitably brought into intimate contact with a living body, and a suitable electrical distribution is obtained. A biological electrode includes: an electrode sheet having a plurality of electrode bodies spaced apart from each other; and a conductive cloth portion superimposed on the electrode sheet. The electrode sheet includes stretching wires that link the neighboring electrode bodies, has a shape of a stretchable and flexible mesh sheet, and can follow a living body to be suitably deformed.
    Type: Grant
    Filed: June 19, 2017
    Date of Patent: December 4, 2018
    Assignee: SMK Corporation
    Inventors: Koichiro Ejiri, Haruhiko Kondo
  • Patent number: 10117589
    Abstract: A vehicle seat includes sheet-shaped sensors configured to detect electric signals associated with the biopotential of a seated passenger, the vehicle seat being configured to remove noise caused due to static electricity to stably measure a bioelectric signal (e.g., heart rate) of the passenger. A seat back includes the sheet-shaped sensors. A cushion pad placed on a seat back frame is covered with a trim cover. Vertically-extending conductive fabric in a belt shape is disposed on an outer surface of the trim cover. The portion where the conductive fabric is disposed has a three-layer structure of the conductive fabric, a skin, and a wadding. A free end of the conductive fabric drawn into the seat back is provided with a J-hook hooked onto a lower frame bridging portion, thus part of the conductive fabric and the lower frame bridging portion contact each other to be electrically conductive with each other.
    Type: Grant
    Filed: December 25, 2014
    Date of Patent: November 6, 2018
    Assignee: TS Tech Co., Ltd.
    Inventor: Shinji Sugiyama
  • Patent number: 10111598
    Abstract: Various embodiments are described herein for a system, method, and device for identifying focal source locations of electrophysiological activity in an organ. The system, method and device may also be used to guide catheter ablation of the organ. An electrogram signal can be obtained from a location in the organ, and it can be determined if the electrogram is periodic and, if so, the corresponding periodicity cycle length. A plurality of peaks associated with the cycle length can be identified. The location can be identified as a focal source location when the periodicity cycle length and the plurality of peaks have focal source characteristics. Methods are also described for identifying a direction of wave propagation and identifying multiple periodicities within an electrogram signal.
    Type: Grant
    Filed: March 31, 2015
    Date of Patent: October 30, 2018
    Assignee: University Health Network
    Inventors: Vijay Singh Chauhan, Sigfus Gizurarson, Rupin Haily Dalvi
  • Patent number: 10092211
    Abstract: Electrode sensor comprising an array of spaced apart individual contact elements (27?, 41), and an interface structure (30, 35) for forming contact between said contact elements and the skin; said interface structure comprising an interface layer of an essentially electrically insulating or poorly electrically conducting material (20?, 29, 37) defining a skin (31) contact surface on one side and an array contact surface on the other side of the interface layer, a first pattern of an electrically conducting material on the array contact surface, a second pattern of an electrically conducting material on the skin contact surface, and electrical pathways (21?, 39) connecting the first pattern with the second pattern; whereas, the first pattern comprises pattern elements, each individual contact element (27?, 41) comprises a contacting surface area large enough to cover several pattern elements of said first pattern when contacting the array contact surface of the interface structure, and by contacting distinct s
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: October 9, 2018
    Assignee: SWISSTOM AG
    Inventors: Josef X. Brunner, Pascal Gaggero
  • Patent number: 10037485
    Abstract: Provided is an IC tag favorably applicable even to linen products. An IC tag 100 using a magnetic field type tag unit 110 in which an IC chip and a coil antenna to be electrically connected to the IC chip are embedded inside a hard resin material. The IC tag includes: a flexible film made of resin (a base film 121, a cover film 123, and a protective film 124); and an auxiliary antenna 122 formed on the film, wherein the magnetic field type tag unit 110 is fixed to the film by an adhesive 130 with elasticity at a position that enables communication by electromagnetic coupling between the coil antenna and the auxiliary antenna 122.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: July 31, 2018
    Assignee: NOK CORPORATION
    Inventors: Tomoko Nakano, Naohiro Fujisawa, Keiichi Miyajima
  • Patent number: 10030992
    Abstract: An activity monitoring and recording device may include a smartphone, a magnet, a hall-effect sensor, a Global Positioning System (GPS) device, a microprocessor and proprietary software supported to a bicycle. The software may determine bicycle and rider information including speeds, distance traveled, average speed, and calories burned by the rider during a ride.
    Type: Grant
    Filed: April 8, 2014
    Date of Patent: July 24, 2018
    Inventor: Seyed Amin Ghorashi Sarvestani
  • Patent number: 10004415
    Abstract: An extended wear electrocardiography patch is provided. A flexible backing is formed of an elongated strip of stretchable spunlace material. A layer of stretchable adhesive is applied on at least a portion of a contact surface of the flexible backing, which defines a pair of openings on both ends. A non-stretchable circuit is axially affixed to an outward-facing surface of the flexible backing and has a pair of circuit traces. The flexible backing acts as a buffer between the non-stretchable circuit and the stretchable adhesive and prevents disadhesion of the flexible backing during bending. A pair of electrocardiographic electrodes are electrically coupled to each of the circuit traces. Conductive gel is provided in each of the openings and in electrical contact with the pair of electrocardiographic electrodes as the electrodes shift away from the openings in the flexible backing during the bending.
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: June 26, 2018
    Assignee: Bardy Diagnostics, Inc.
    Inventors: Jon Mikalson Bishay, Gust H. Bardy, Jason Felix
  • Patent number: 9918678
    Abstract: A physiological monitoring system features a Floormat and Handheld Sensor connected by a cable. A user stands on the Floormat and grips the Handheld Sensor. These components measure time-dependent physiological waveforms from a user over a conduction pathway extending from the user's hand or wrist to their feet. The Handheld Sensor and Floormat use a combination of electrodes that inject current into the user's body and collect bioelectric signals that, with processing, yield ECG, impedance, and bioreactance waveforms. Simultaneously, the Handheld Sensor measures photoplethysmogram waveforms with red and infrared radiation and pressure waveforms from the user's fingers and wrist, while the Floormat measures signals from load cells to determine ‘force’ waveforms to determine the user's weight, and ballistocardiogram waveforms to determine parameters related to cardiac contractility.
    Type: Grant
    Filed: January 5, 2016
    Date of Patent: March 20, 2018
    Assignee: TOSENSE, INC.
    Inventors: Matthew Banet, Marshal Singh Dhillon, Susan Meeks Pede, Lauren Nicole Miller Hayward, Arthur Deptala, Jonas Dean Cochran
  • Patent number: 9913591
    Abstract: A device is provided that includes a housing and a mount configured to mount the housing to a wrist of a wearer. The device also includes a first electrical contact disposed on an inner surface of the mount and configured to contact skin at a first external body surface. The device also includes a second electrical contact disposed on an outer surface of the mount and configured to be contacted by skin of a second external body surface. The device also includes a signal conditioner disposed in the housing. The signal conditioner is configured to determine data indicative of a biological state of the wearer based on voltage fluctuations between the first electrical contact and the second electrical contact.
    Type: Grant
    Filed: July 2, 2015
    Date of Patent: March 13, 2018
    Assignee: Verily Life Sciences LLC
    Inventors: John Lapetina, Shannon Fong, Jeff Weintraub, David Palchak
  • Patent number: 9861280
    Abstract: A physiologic sensor pod comprises a housing including first and second electrodes on a bottom surface thereof, and a third electrode on a top surface thereof. Within the housing is a battery, a battery charging circuit, an ECG sensor circuit, switch circuitry, and a controller adapted to control at least a portion of the switch circuitry. When the switch circuitry is in a first configuration the first and second electrodes are connected to the battery charging circuit. When the switch circuitry is in a second configuration, the first and second electrodes are connected, respectively, to first and second inputs of the ECG sensor circuit. When the switch circuitry is in a third configuration, one or both of the first and second electrodes is/are coupled to a first input of an ECG sensor circuit and the third electrode is coupled to a second input of the ECG sensor circuit.
    Type: Grant
    Filed: March 18, 2015
    Date of Patent: January 9, 2018
    Assignee: SALUTRON INC.
    Inventor: Yong Jin Lee
  • Patent number: 9833159
    Abstract: A wearable electronic device includes a device body and a wearing element. The wearing element is connected to the device body. The device body includes a conductive upper cover, a conductive lower cover, an insulating frame and a circuit system. The insulating frame is disposed between the conductive upper cover and the conductive lower cover and forms an accommodating space therewith. The circuit system is disposed in the accommodating space. The conductive upper cover has a first feeding point. The conductive lower cover has a second feeding point. The circuit system is coupled to the first feeding point and the second feeding point respectively.
    Type: Grant
    Filed: April 16, 2015
    Date of Patent: December 5, 2017
    Assignee: ASUSTeK COMPUTER INC.
    Inventors: Fang-Hsien Chu, Chih-Chung Lin, Yi-Ting Hsieh, Chia-Min Chuang, Saou-Wen Su, Bin-Chyi Tseng, Jian-Sheng Hsieh, Tsung-Chieh Yen
  • Patent number: 9827434
    Abstract: A wearable medical device includes a water-resistant/waterproof housing configured to be continuously or nearly continuously worn by a patient and formed from a water-resistant/waterproof material, and configured to prevent ingress of water in a wet environment; a plurality of ECG sensing electrodes configured to be removably coupled to the patient and to monitor an ECG of the patient; a plurality of therapy electrodes configured to be removably coupled to the patient and to deliver at least one therapeutic pulse to the patient; and a control unit disposed within the water-resistant/waterproof housing and configured to be electrically coupled to the plurality of ECG sensing electrodes and the plurality of therapy electrodes, the control unit configured to receive the monitored ECG of the patient, and responsive to detection of a cardiac arrhythmia, provide the at least one therapeutic pulse to the patient via the at least one therapy electrode.
    Type: Grant
    Filed: October 17, 2016
    Date of Patent: November 28, 2017
    Assignee: ZOLL MEDICAL CORPORATION
    Inventors: Thomas E. Kaib, Shane S. Volpe, John G. Clark
  • Patent number: 9814402
    Abstract: Electrode systems for use with neuromuscular monitoring systems are provided herein. An example electrode system for use with a monitoring system can include a flexible substrate, a connector interface, one or more stimulating electrodes, one or more recording electrodes and a plurality of conductive traces carried on the flexible substrate. The connector interface can be configured to communicatively connect the electrode system with the monitoring system. In addition, the one or more stimulating electrodes can be configured to deliver an electrical pulse, and the one or more recording electrodes can be configured to receive an electrical signal. The plurality of conductive traces can electrically connect at least one stimulating electrode or at least one recording electrode with the connector interface. Further, each of the one or more stimulating electrodes can have an elongate shape with a length dimension that is substantially greater than a width dimension.
    Type: Grant
    Filed: February 14, 2014
    Date of Patent: November 14, 2017
    Assignee: Acacia Designs BV
    Inventor: Peter Donald Gadsby
  • Patent number: 9795299
    Abstract: A modular holder or patch is described that may be used with or as part of a wireless physiological sensing device. The wireless physiological sensing device may include a holder or patch, first and second electrodes, and an electronics package that may be removably coupled with the holder or patch and which may be in electrical contact with the first and second electrodes. The electronics package may include a housing, a wireless transceiver and electronic circuitry configured to process signals received via the first and second electrodes and the wireless transceiver.
    Type: Grant
    Filed: September 24, 2014
    Date of Patent: October 24, 2017
    Assignee: Covidien LP
    Inventor: Brian Keith Russell
  • Patent number: 9782578
    Abstract: A support garment for a patient-worn energy delivery apparatus. A vest-type garment holds an electrode belt in contact with a wearer's ribcage. A removable electrode harness may be attachable to the support garment to accurately position sensing electrodes on the body of the wearer and energy delivery electrodes for transfer of an electrode therapy pulse to the wearer of the garment. The chest garment includes adjustable shoulder straps and a band to accommodate any body size or shape. One-sided assembly and coding of components facilitates use by a patient. A technique for sizing the support garment is also disclosed.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: October 10, 2017
    Assignee: ZOLL MEDICAL CORPORATION
    Inventors: Thomas E. Kaib, Emil Oskin, Philip C. Skalos, Jason T. Whiting
  • Patent number: 9753492
    Abstract: A wrist-worn input device measuring a biopotential for use in gesture inputting, includes a band that forms at least part of a tubular structure having a first opening and a second opening at the two ends thereof in an axial direction thereof, an electrode open to an internal surface of the band, a position determination unit disposed close to the first opening and having a shape to be engaged with at least part of a periphery of the styloid process of ulna of a user, a biopotential measurement unit that measures the biopotential of the user using the electrode, and a measured potential transmitter that outputs the biopotential of the user.
    Type: Grant
    Filed: July 23, 2015
    Date of Patent: September 5, 2017
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Tsuyoshi Inoue, Jun Ozawa, Hiroyuki Motoyama
  • Patent number: 9731108
    Abstract: The present application relates to an electrode pad comprising at least one electrode with an electrode terminal. A contact member such as a hydrogel is disposed on said electrode terminal and covered by a retainer mesh. The electrode terminal may be, for example, a silver electrode disposed on a flexible foil, and the contact member may be disposed in the aperture of a backing layer. The retainer mesh is designed to allow for an electrical contact of the contact member to an object such as the body of a person while at the same time mechanically retaining the contact member. Moreover, the electrode pad may comprise an array of several electrodes disposed on a carrier, said carrier having a slit separating at least two neighboring electrodes.
    Type: Grant
    Filed: September 10, 2014
    Date of Patent: August 15, 2017
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Denny Mathew, Severin Luc Ramses Harvey, Marnix The
  • Patent number: 9717433
    Abstract: Physiological monitoring can be provided through a lightweight wearable monitor that includes two components, a flexible extended wear electrode patch and a reusable monitor recorder that removably snaps into a receptacle on the electrode patch. The wearable monitor sits centrally on the patient's chest along the sternum oriented top-to-bottom. The placement of the wearable monitor in a location at the sternal midline, with its unique narrow “hourglass”-like shape, significantly improves the ability of the wearable monitor to cutaneously sense cardiac electrical potential signals, particularly the P-wave and the QRS interval signals indicating ventricular activity in the ECG waveforms. In particular, the ECG electrodes on the electrode patch are tailored to be positioned axially along the midline of the sternum for capturing action potential propagation in an orientation that corresponds to the aVF lead used in a conventional 12-lead ECG that is used to sense positive or upright P-waves.
    Type: Grant
    Filed: September 16, 2014
    Date of Patent: August 1, 2017
    Assignee: Bardy Diagnostics, Inc.
    Inventors: Jason Felix, Jon Mikalson Bishay, Gust H. Bardy
  • Patent number: 9700223
    Abstract: A health-monitor patch comprising at least one physiological sensor and digital processor is configured to be adhered to the skin of a subject. A health-monitor patch may further include an accelerometer and may detect cardiac waveforms, activity performed by the subject, and a body orientation of the subject. A health-monitor patch may be disposable, in some embodiments, and used for outpatient monitoring. Aspects of noise cancellation and reel-to-reel manufacturing are also described.
    Type: Grant
    Filed: September 15, 2016
    Date of Patent: July 11, 2017
    Assignee: LumiraDx UK Ltd
    Inventors: Thomas J. Quinlan, Paul J. Gaudet, David Peabody Goodall, III, John Edgar MacLean
  • Patent number: 9615790
    Abstract: A sensor device for monitoring bioelectric data from a human body includes a flexible dielectric substrate, a plurality of sensors (electrodes) distributed on the substrate for sensing the bioelectric data, and an electrically conductive network distributed on the substrate connecting the sensors to a terminal portion of the substrate. Integrated flexible joints permit a certain amount of elasticity in and allow relative movement between at least two of the sensors when the sensor device is placed onto the human body.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: April 11, 2017
    Assignee: Verathon Inc.
    Inventors: Matthew Caprio, Vanessa Beasley, Gerald J. McMorrow, Andrew Clay, Jeffrey William Ladwig
  • Patent number: 9610016
    Abstract: This multipurpose, modular system provides diagnostic-quality, wireless, multichannel monitoring in diverse settings, including interventional procedures guided by X-ray and MRI, with variable electromagnetic interference (EMI) and eliminates the need for multiple detachments/reattachments of patient cables when the patient is moved from one room/procedure to another. The system includes: 1) multiple filterbanks (filtering procedures) for recording both diagnostic-quality (broad-band) signals in the absence of EMI and narrow-band signals in the presence of EMI, with subsequent reconstruction of diagnostic-quality signals from the narrow-band signals; 2) filtering of EMI, using a priori and adaptive criteria about differences between the EMI and physiological signals' characteristics; 3) filtering of the magneto-hydrodynamic effect, using physiological measurements at different distances from the magnet (i.e.
    Type: Grant
    Filed: August 27, 2014
    Date of Patent: April 4, 2017
    Inventor: Vladimir Shusterman
  • Patent number: 9610227
    Abstract: Disclosed is an NGT system, the system comprises a nasogastric tube having a diameter and length configured to pass through an esophagus such that the lumen of the NGT maintains fluid communication with a portion of the digestive tract, and a digestive tract sensor operatively associated with the NGT, the digestive tract sensor configured to sense from inside the body and transmit signals in response to one or both of conditions relating to nourishment states of the digestive tract, and positioning of the NGT.
    Type: Grant
    Filed: March 27, 2016
    Date of Patent: April 4, 2017
    Assignee: ART Healthcare Ltd.
    Inventor: Liron Elia
  • Patent number: 9585602
    Abstract: Systems, methods, computer-readable media (e.g., transitory and non-transitory) and apparatus are described herein for obtaining medical diagnostic measurements that are accurate and/or consistent over time.
    Type: Grant
    Filed: October 7, 2014
    Date of Patent: March 7, 2017
    Assignee: Intellirod Spine Inc.
    Inventors: Richard R. Navarro, Steven E. Wilder
  • Patent number: 9572506
    Abstract: The present invention relates to a physiological recording electrode, a method, and apparatus for attaching the physiological electrode to a subject. The physiological electrode comprises a substrate having an upper and a lower surface, and at least one penetrator(s) protruding from the upper surface of the substrate. The penetrator(s) is capable of piercing through the stratum corneum or outer layer of the skin, and transmitting an electric potential from the lower layers of the epidermis through the penetrator(s) which can be measured, or detecting agents from the lower layers of the epidermis primarily the stratum germinativum layer. At least one epidermis stop may be provided resulting in the formation of detritus troughs interposed between adjacent penetrator(s) and epidermis stops. The physiological electrode is attached to a subject by means of the apparatus and method for attaching same. The present invention also includes a method of sensing biopotentials in the skin.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: February 21, 2017
    Assignee: Orbital Research Inc.
    Inventors: Robert N. Schmidt, Frederick J. Lisy, Gerard G. Skebe, Troy S. Prince
  • Patent number: 9474482
    Abstract: A method for diagnosing motility disorders of a gastrointestinal tract of a body. The method can include measuring electrical signals from the gastrointestinal tract while the patient is engaged in normal daily activities, recording the measured electrical signals on a portable electronic device carried by the body, recording by the patient in real time one or more symptoms of the body and analyzing characteristics of the recorded electrical signals with the recorded symptoms of the body to diagnosis gastrointestinal disorders of the body. Apparatus for use therewith and methods for treatment thereof are provided.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: October 25, 2016
    Assignee: G-Tech Medical, Inc.
    Inventor: Udaya Sankar Devanaboyina
  • Patent number: 9457178
    Abstract: A wearable therapeutic device that includes a garment configured to contain an external defibrillator. The garment is configured to house at least one of an alarm module and a monitor and to house a first therapy electrode and a second therapy electrode. The garment is also configured to releasably receive a receptacle that contains a conductive fluid proximate to at least one of the first therapy electrode and the second therapy electrode, and to electrically couple the receptacle with the garment.
    Type: Grant
    Filed: February 19, 2015
    Date of Patent: October 4, 2016
    Assignee: ZOLL MEDICAL CORPORATION
    Inventors: Thomas E. Kaib, Shane S. Volpe, Emil Oskin
  • Patent number: 9439599
    Abstract: A body associated device comprises a housing, an adhesive layer configured to be applied to a body of a living subject, and at least one standoff located between the housing and the adhesive layer. An electronic module may be located within the housing of the body associated device. A personal communication system comprises a body associated device including an electronic module and further comprises a feedback portion coupled to the housing and to the electronic module. The feedback portion is configured to communicate information between the living subject and the body associated device. An external local node is operative to provide at least one of transmit communications to and receive communications from the body associated device.
    Type: Grant
    Filed: March 8, 2012
    Date of Patent: September 13, 2016
    Assignee: Proteus Digital Health, Inc.
    Inventors: Todd Thompson, Olivier Colliou, Robert Duck, Yashar Behzadi
  • Patent number: 9314609
    Abstract: A device for providing electrical stimulation of a human knee. One example device includes first, second, third, and fourth surface electrodes, a wrap configured to be wrapped around the human knee, and an electrical device. The wrap includes a wrap positioning indicator configured to be positioned over a specified portion of the human knee. The wrap also includes first, second, third, and fourth electrode attachment locations corresponding to acupuncture points Stomach 34, Stomach 36, Spleen 9, and Spleen 10. The electrical device is configured to automatically send, to the first, second, third, and fourth surface electrodes, during a single treatment, a first current at a first frequency for a first time period followed by a second current at a second frequency for a second time period, with the first frequency being different from the second frequency.
    Type: Grant
    Filed: October 25, 2012
    Date of Patent: April 19, 2016
    Inventor: Martin Brown
  • Patent number: 9277864
    Abstract: A wearable sensor and method for providing a wearable sensor are disclosed. In a first aspect, the wearable sensor comprises at least one power source and a first module coupled to the at least one power source. The first module includes a first outer shell and a first printed circuit board (PCB) within the first outer shell. The wearable sensor further comprises a second module coupled to the first module. The second module includes a second outer shell and a second PCB within the second outer shell. One of the first and second modules is disposable and the other of the first and second modules is reusable.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: March 8, 2016
    Assignee: VITAL CONNECT, INC.
    Inventors: Yun Yang, Azin Sahabi
  • Patent number: 9241629
    Abstract: A wearable sensor and method for providing a wearable sensor are disclosed. In a first aspect, the wearable sensor comprises at least one power source and a first module coupled to the at least one power source. The first module includes a first outer shell and a first printed circuit board (PCB) within the first outer shell. The wearable sensor further comprises a second module coupled to the first module. The second module includes a second outer shell and a second PCB within the second outer shell. One of the first and second modules is disposable and the other of the first and second modules is reusable.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: January 26, 2016
    Assignee: VITAL CONNECT, INC.
    Inventors: Yun Yang, Azin Sahabi
  • Patent number: 9226678
    Abstract: An apparatus for measuring a health condition and connectable to existing medical devices may include a cable. The cable may include a plurality of conductors enclosed within an exterior covering and may include a plurality of mating devices, the plurality of mating devices located along a length of the cable. Each mating device may be coupled to a conductor of the cable. Cable apparatus may further include a connector device, the connector device coupled to an end of the cable and configured to couple the cable with the recording/monitoring device by coupling with an existing set of leads associated with the recording/monitoring device. Connector device may allow quick attachment of the cable, detachment of the cable and otherwise extend functionality of the cable.
    Type: Grant
    Filed: January 11, 2012
    Date of Patent: January 5, 2016
    Inventor: Dariush Ghaffari
  • Patent number: 9220436
    Abstract: Remanufactured BIS sensors and methods for remanufacturing used BIS sensors are provided. Such a remanufactured sensor may include certain components from a used medical sensor and certain new components. For example, a remanufactured BIS sensor may include a backing layer and at least first, second, and third electrodes disposed on the backing layer having a conductive ink. The first, second, and third electrodes are adapted to be in electrical contact with a patient to perform BIS measurements. A foam layer may be disposed on at least a portion of the backing layer, and an adhesive may be attached to the foam layer and is configured to secure the remanufactured BIS sensor to the patient. The first electrode, the second electrode, the third electrode, the backing layer, or a combination thereof, may be new and the foam layer, the adhesive, or a combination thereof, may be from a used medical sensor.
    Type: Grant
    Filed: September 26, 2011
    Date of Patent: December 29, 2015
    Assignee: Covidien LP
    Inventors: Donald R. Sandmore, David P. Besko
  • Patent number: 9174061
    Abstract: External electromagnetic stimulation of the interior of the body by applying three or more electrodes to the exterior of the patient to establish at least two electrical paths across the interior of the patient, determining impedance information representative of an impedance distribution across the interior of the body, delivering an electromagnetic waveform across each of the at least two electrical paths, wherein at least one parameter of the waveform is selected using the impedance information to produce a selected current density distribution at one or more locations within the interior of the body.
    Type: Grant
    Filed: October 6, 2004
    Date of Patent: November 3, 2015
    Assignee: ZOLL Medical Corporation
    Inventors: Gary A. Freeman, James E. Brewer, Michael L. Lopin
  • Patent number: 9167981
    Abstract: Embodiments of the invention disclose an ECG device, an ECG signal processing method, an ECG lead signal generating circuit, an ECG signal generating method, another ECG device, another ECG signal processing method, and an ECG electrode assembly. The ECG device has an electrode assembly and an ECG lead signal generating circuit. The electrode assembly has three cardio enclosure electrodes for acquiring three cardio enclosure voltages, respectively. The ECG lead signal generating circuit has a first precordial lead generator. The first precordial lead generator is configured to generate a first modified precordial lead according to the three cardio enclosure voltages, wherein the three cardio enclosure voltages are sufficient for generating the first modified precordial lead.
    Type: Grant
    Filed: October 8, 2013
    Date of Patent: October 27, 2015
    Assignee: MEDIATEK INC.
    Inventors: Jing-Lin Kuo, Chien-Hua Hsu, Chien-Chih Lee
  • Patent number: 9126033
    Abstract: Several embodiments of a battlefield defibrillation system (2) comprising external defibrillator (6) and at least one electrode (8) connected thereto are described. The system includes direct cardiac access (8), or indirect subcutaneous electrodes (30). The direct cardiac access electrodes (26) engage the heart muscle directly via the intercostal space. Indirect subcutaneous electrodes are positioned under patient's skin. Several design features are implemented to aid precise electrode positioning and facilitate system operation by an untrained personnel.
    Type: Grant
    Filed: March 18, 2014
    Date of Patent: September 8, 2015
    Inventor: Igor Abramov
  • Publication number: 20150148618
    Abstract: Physiological monitors are disclosed, as are systems and methods in which they are used. The physiological monitors are generally horseshoe-shaped and are sized and adapted to fit around the base of the neck. They have forward ends that extend downwardly and inwardly in some embodiments. In systems according to embodiments of the invention, monitors may be wirelessly connected to a device that receives, records, analyzes, and displays physiological and environmental information. Monitors may also be controlled by touch and gestures on touch-sensitive areas of the inner and outer surfaces. In some embodiments, the monitors may be used for long-term, stand-alone monitoring of patients in need of medical monitoring, and allow multiple vital signs, including a three-lead electrocardiogram (EKG) to be recorded from a single location near the base of the neck.
    Type: Application
    Filed: September 26, 2014
    Publication date: May 28, 2015
    Inventors: Krzysztof Sitko, George Chen, Justin Rubin
  • Patent number: 9042957
    Abstract: A device for electroimpedance tomography with an electrode belt (2), which has electrodes (E1 . . . E16), wherein at least two groups (5, 6) of electrodes located next to each other are formed and the electrodes of one group are contacted with at least one, multiwire feed cable (7, 8). For a reduced noise level during data acquisition, provisions are made for at least one electrode (E9) of two mutually adjacently located electrodes (E8, E9) of two different groups (5, 6) to have an additional electrode feed line (15), which is led over the feed cable (7) of the adjacent group (5).
    Type: Grant
    Filed: February 3, 2012
    Date of Patent: May 26, 2015
    Assignee: Dräger Medical GmbH
    Inventors: Jianhua Li, Thomas Gallus
  • Patent number: 9042956
    Abstract: The system for displaying muscle force data includes a wearable patch and a remote visual display. The wearable patch carries electrodes suitable for sensing electromyographic signals on the skin of the patient. The patch carries circuitry which converts the detected electromyographic signal to a digital output which can be transmitted to the remote visual display. The circuitry relies on filtering to produce a usable digital signal at very low power consumption. The transmitted signal can be used to drive a variety of visual displays, including a conventional hand-held personal communicators and entertainment devices which had been programmed to suitably process the visual display.
    Type: Grant
    Filed: May 22, 2014
    Date of Patent: May 26, 2015
    Assignee: TECH TEAM LLC
    Inventors: Christopher R. Clare, Denise F. Gottfried, Jonathan Gottfried
  • Publication number: 20150126844
    Abstract: A wearable device applied to a human body is provided. The wearable device includes at least one sensing electrode, a conductive wire, a monitor device, and a shield element. The sensing electrode receives a physiological signal from the human body. The sensing electrode is coupled through the conductive wire to the monitor device. The monitor device is configured to process the physiological signal. The shield element includes metal fiber composition. The shield element covers the sensing electrode and the conductive wire so as to avoid electrostatic interference. The shield element is at least partially exposed to the human body.
    Type: Application
    Filed: February 3, 2014
    Publication date: May 7, 2015
    Applicant: Quanta Computer Inc.
    Inventors: Rong-Chin Yang, Yu-Min Wu, Yung-Ming Chung, Chih-Hsiung Yu
  • Patent number: 9026190
    Abstract: Methods, devices and kits for monitoring a physiological parameter using a portable physiological parameter detection and monitoring device. The devices include a removably adherable transparent film with an insulating upper surface that has two or more conductive elements within the film. The film can be adhered to a mobile device, such as a cell phone, to facilitate detecting a biological parameter such as a heart rhythm.
    Type: Grant
    Filed: November 16, 2011
    Date of Patent: May 5, 2015
    Assignee: Rhythm Check, Inc.
    Inventors: Mohammad Shenasa, Shahid K. Siddiqui, Naeem M. Ansari
  • Patent number: 9014779
    Abstract: A device for gathering data has first and second electrodes. The first electrode is coupled to a surface of interest, and the second electrode is coupled to “everything else” or “the air”. The first electrode is shielded from the second, and from most sources of parasitic capacitance, by a shield that is driven by an active driver that drives the shield to track, and ideally to match, the instantaneous potential of the electrode. The second electrode is likewise shielded in a similar way from most sources of parasitic capacitance. These shields likewise help to limit the extent to which RFI from the device electronics couples with either of the electrodes. In this way the sensing device achieves a markedly better signal-to-noise ratio at frequency bands of interest.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: April 21, 2015
    Assignee: Proteus Digital Health, Inc.
    Inventors: Mark Zdeblick, James Hutchison, Lawrence Arne