Radiolucent Patents (Class 600/385)
  • Patent number: 11959876
    Abstract: A cap for use with devices, such as sensors. The cap includes protrusions on its underside, to restrict the movement of a liquid or a gel placed under cap. The protrusions may take the form of walls or pillars, depending on the application. As such, the cap retains the liquid or gel in a specified position on the device. For example, an electrochemical sensor may require a liquid electrolyte to remain in place over one or more electrodes. The protrusions may not extend far enough to touch the device, but rather leave a small gap. However, because of the surface tension of the liquid, the liquid generally stays within the protrusions.
    Type: Grant
    Filed: May 7, 2021
    Date of Patent: April 16, 2024
    Assignee: Analog Devices International Unlimited Company
    Inventors: Alfonso Berduque, Donal McAuliffe, Brendan Cawley, Raymond J. Speer, Youri Ponomarev
  • Patent number: 10716490
    Abstract: A wound sensor comprising at least one electrode (10a, 10b) and a non-adherent porous layer (25) proximate at least part of the electrode.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: July 21, 2020
    Assignee: University of Strathclyde
    Inventor: Patricia Connolly
  • Patent number: 10555769
    Abstract: The disclosure provides a method of manufacturing a flexible circuit electrode assembly and an apparatus manufactured by said method. According to the method, an electrically conductive sheet is laminated to an electrically insulative sheet. An electrode is formed on the electrically conductive sheet. An electrically insulative layer is formed on a tissue contacting surface of the electrode. The individual electrodes are separated from the laminated electrically insulative sheet and the electrically conductive sheet. In another method, a flexible circuit is vacuum formed to create a desired profile. The vacuum formed flexible circuit is trimmed. The trimmed vacuum formed flexible circuit is attached to a jaw member of a clamp jaw assembly.
    Type: Grant
    Filed: February 22, 2016
    Date of Patent: February 11, 2020
    Assignee: Ethicon LLC
    Inventors: Barry C. Worrell, David C. Yates, Joseph D. Dennis, Mark A. Davison, Geoffrey S. Strobl
  • Patent number: 9451897
    Abstract: In one configuration, an adherent device to adhere to a skin of a subject includes a stretchable base layer having an upper side and a lower side and an adhesive coating on the lower side to adhere the base layer to the skin of the subject. The base layer has at least two openings extending therethrough, each of the at least two openings having a size. The adherent device also includes a stretchable covering layer positioned above and adhered to the base layer with an adhesive to define at least two pockets. The adherent device also includes at least two gels, each gel having a size larger than the size of openings to retain the gel substantially within the pocket, and a circuit carrier supported with the stretchable base layer to measure at least one physiologic signal of the subject. Other configurations and methods are also claimed.
    Type: Grant
    Filed: December 2, 2010
    Date of Patent: September 27, 2016
    Assignee: Medtronic Monitoring, Inc.
    Inventors: Scott T. Mazar, Senthil Swaminathan, Jonathan Engel, Arthur Lai
  • Patent number: 9375179
    Abstract: A patch and sensor assembly has a biosensor housed in a reusable portion that connects to a mapping and localization system (MLS) via biosensor wires. A disposable portion has an electrode layer through which signals are transmitted to the MLS via ACL wires. The biosensor and ACL wires extend through a single cable exiting the reusable portion. The disposable portion includes an adhesive layer for adhering the electrode layer to a foam layer on the electrode layer, and an engagement element for detachably receiving at least a portion of the housing of the reusable portion. The reusable portion includes a housing in which the biosensor has biosensor wires that exit the reusable portion. The housing is also adapted to carry and/or provide support to an ACL contact member responsive to the electrode layer of the disposable portion, and ACL wires that exit the reusable portion.
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: June 28, 2016
    Assignee: Biosense Webster, Inc.
    Inventors: Jeffrey W. Schultz, Keshava Datta
  • Publication number: 20130345539
    Abstract: A lightweight, disposable and substantially radiolucent electrode or sensor assembly for that universally connects to separate, non-integrated electrodes or sensors for the monitoring of the physiological parameters of a live subject wherein the electrode assembly is comprised of one or more radiolucent electrical connectors for connecting the electrode assembly to the sensors. The present invention also discloses a method of positioning the electrode assembly on a patient whose physiological signs are being monitored such that access to the patient's chest is substantially unimpeded so as not to obstruct the electromagnetic imaging of the patient's chest, the application of defibrillation paddles or surgical procedures that require access to the chest area.
    Type: Application
    Filed: May 6, 2013
    Publication date: December 26, 2013
    Applicant: LifeSync Corporation
    Inventor: LifeSync Corporation
  • Patent number: 8612163
    Abstract: Methods and apparatus for providing data processing and control for use in a medical communication system are provided.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: December 17, 2013
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Gary Hayter, Geoffrey V. McGarraugh, Kenneth J. Doniger
  • Patent number: 8577439
    Abstract: A system for positioning electrodes on a patient body includes an image capturing system, a memory device, a processing system and an indicator system. The image capturing system generates an actual image of the patient body. The memory device stores a reference image, the reference image including a reference body and a reference position on the reference body. The processing system compares the actual image and the reference image and for determining an electrode position on the patient body by matching the reference position on the reference body. The indicator system indicates the electrode position on the patient body.
    Type: Grant
    Filed: September 3, 2007
    Date of Patent: November 5, 2013
    Assignee: Koninklijke Philips N.V.
    Inventors: Robert Pinter, Jens Muehlsteff, Guido Josef Muesch
  • Patent number: 8428684
    Abstract: A medical electrode includes a backing layer having a top face and a bottom face, and a shrinkable layer covering at least a portion of the top face of the backing layer. Shrinkage of the shrinkable layer results in flexing of a portion of the backing layer to aid placement and attachment of the electrode to the patient.
    Type: Grant
    Filed: November 17, 2010
    Date of Patent: April 23, 2013
    Assignee: Covidien LP
    Inventor: Scott R. Coggins
  • Patent number: 8326434
    Abstract: A medical electrical lead electrode assembly includes an insulative carrier and at least one conductive component. The at least one conductive component includes an electrode portion disposed on a first side of the carrier and at least one tab extending away from the electrode portion, through the carrier to a second side of the carrier. The electrode portion of the at least one component includes an outward facing contact surface and an inward facing surface, the inward facing surface being disposed opposite the contact surface and against a surface of the first side of the carrier. The electrode assembly further includes a joint coupling a flexible elongate conductor to the tab of the at least one component on the second side of the carrier, and an insulative layer extending over the joint and the tab and the conductor, the insulative layer being bonded to the second side of the carrier.
    Type: Grant
    Filed: May 19, 2010
    Date of Patent: December 4, 2012
    Assignee: Medtronic, Inc.
    Inventors: Sean Patrick Skubitz, Mary Boatwright, Stephen L. Bolea, Jessica L. Tower, Michael E. Metzler
  • Patent number: 8118807
    Abstract: A biomedical return electrode for electrosurgery or radiofrequency (RF), a biomedical electrode pad (100), a system (300), and a method of treating tissue using a biomedical return electrode are disclosed. The biomedical return electrode comprises an electrode conductor (114) for receiving electrical energy from tissue via a return path, and a thermochromic liquid crystal (TLC) layer (116) coupled to the conductor (114). The TLC layer (116) changes color at one or more sites dependent upon the conductor temperature at each site. The TLC layer (116) changes color in a predetermined range of temperatures from about 40° C. to about 50° C. to alert an operator about the risk of a burn occurring. The biomedical electrode pad (100) comprises at least one such biomedical return electrode and a conductive body (112) to form a contact with tissue. The system (300) comprises an apparatus for delivering electrical energy to tissue and such a biomedical electrode pad (100).
    Type: Grant
    Filed: April 18, 2005
    Date of Patent: February 21, 2012
    Assignee: Sydney West Area Health Service
    Inventors: Aravinda Thiagalingam, Pramesh Kovoor, David Leslie Ross, Michael Anthony Barry
  • Patent number: 7860546
    Abstract: A medical electrode includes a backing layer having a top face and a bottom face, and a shrinkable layer covering at least a portion of the top face of the backing layer. Shrinkage of the shrinkable layer results in flexing of a portion of the backing layer to aid placement and attachment of the electrode to the patient.
    Type: Grant
    Filed: June 1, 2006
    Date of Patent: December 28, 2010
    Assignee: Tyco Healthcare Group LP
    Inventor: Scott R. Coggins
  • Patent number: 7628761
    Abstract: An apparatus and method for detecting physiological function, for example, nerve conduction, is described. In one embodiment the apparatus includes a housing including a stimulator shaped to fit a first anatomical site and a detector shaped to fit a second anatomical site. The housing automatically positions the detector substantially adjacent to the second anatomical site when the stimulator is positioned substantially adjacent to the first anatomical site. The detector contains a plurality of individual detection elements, whereby the response evoked by stimulation at the first anatomical site is measured using one or more of these detection elements at the second anatomical location.
    Type: Grant
    Filed: February 14, 2002
    Date of Patent: December 8, 2009
    Assignee: NeuroMetrix, Inc.
    Inventors: Shai N. Gozani, Ann Pavlik Meyer, Xuan Kong, Martin D. Wells
  • Patent number: 7473244
    Abstract: An active needle device for fluid injection or extraction includes at least one hollow elongated shaft defining at least one channel. The channel provides communication between at least one input port and at least one output port of the needle device. At least one active component such as a sensor or actuator is placed or integrated into the elongated shaft. The needle device can include a macroneedle, a microneedle, or an array of macroneedles or microneedles. The microneedles can be fabricated on a substrate which can remain attached to the microneedles or be subsequently removed. The active component can facilitate biochemical, optical, electrical, or physical measurements of a fluid injected or extracted by the needle device.
    Type: Grant
    Filed: June 1, 2001
    Date of Patent: January 6, 2009
    Assignee: The University of Utah Research Foundation
    Inventors: A. Bruno Frazier, Joseph D. Andrade, Daniel A. Bartholomeusz, John D. Brazzle
  • Patent number: 7162290
    Abstract: A method and apparatus for periodically and automatically testing and monitoring a patient's blood glucose level. A disposable testing unit is carried by the patient's body and has a testing chamber in fluid communication with infusion lines and a catheter connected to a patient blood vessel. A reversible peristaltic pump pumps the infusion fluid forwardly into the patient blood vessel and reverses its direction to pump blood into the testing chamber to perform a glucose level test. The presence of blood in the testing chamber is sensed by a LED/photodetector pair or pairs and when the appropriate blood sample is present in the test chamber, a glucose oxidase electrode is energized to obtain the blood glucose level. The resulting glucose level is displayed on a monitor. The unit is typically used for a patient in an intensive care unit.
    Type: Grant
    Filed: September 16, 2005
    Date of Patent: January 9, 2007
    Assignee: Palco Labs, Inc.
    Inventor: Paul D. Levin