Pulse-induced Pressure Fluctuation In Occluder Generates Electric Signal Patents (Class 600/494)
  • Patent number: 7070566
    Abstract: A method and system for making pulse rate and blood pressure determinations is disclosed. The method and system comprise collecting oscillometric blood pressure data from pulses, determining individual quality values for feature measurements of the pulses, obtaining an overall quality assessment based on the individual quality values, repeating the collecting step until overall quality level is satisfied, and determining blood pressure and pulse rate using the individual quality values.
    Type: Grant
    Filed: March 13, 2003
    Date of Patent: July 4, 2006
    Assignee: GE Medical Systems Information Technologies, Inc.
    Inventors: Richard Medero, Lawrence T. Hersh, Sai Kolluri, Bruce A. Friedman
  • Patent number: 7056291
    Abstract: An arteriosclerosis evaluating apparatus 10 includes an arteriosclerosis evaluating procedure 46 (Steps S7, S8, S9, and S10) that evaluates arteriosclerosis of a living subject, based on a relationship between difference ?P of internal and external pressure of an artery of the subject in the state in which the pressure difference ?P is in equilibrium, and amplitude AM of a pulse wave produced from the artery. Therefore, the present apparatus 10 can as easily as possible evaluate the arteriosclerosis of the subject based on a characteristic curve 58 representing the relationship between in-equilibrium pressure difference ?P and pulse-wave amplitude AM which curve is obtained from a pressing pressure Pc of a cuff 12 wound around a certain portion of the subject, and the pulse wave produced from the artery.
    Type: Grant
    Filed: January 21, 2004
    Date of Patent: June 6, 2006
    Assignee: Colin Medical Technology Corp.
    Inventors: Akihiro Yokozeki, Yoshihisa Miwa
  • Patent number: 7018337
    Abstract: An automatic non-invasive blood pressure monitoring system includes a blood pressure monitor, a blood pressure cuff pneumatically connected to the blood pressure monitor, a deflation valve connected intermediate the blood pressure monitor and the blood pressure cuff, and a controller for automatically controlling the non-invasive blood pressure monitoring.
    Type: Grant
    Filed: November 11, 2002
    Date of Patent: March 28, 2006
    Assignee: GE Medical Systems Global Technology Company, LLC
    Inventor: Rush W. Hood, Jr.
  • Patent number: 7014611
    Abstract: An oscillometric, noninvasive blood pressure monitor comprising an inflatable cuff adapted for placement around a body member, a pump for cuff inflation, a pressure transducer connected to the cuff, means for detecting oscillations in arterial pressure occurring during a transition in cuff pressure between a pressure greater than normal systolic pressure and a pressure less than normal diastolic pressure, and a blood pressure measurement circuit which is capable of determining the maximum amplitude (Am) of the oscillations, identifying mean cuff pressure (Pm) as the coincident value of the cuff-pressure signal from the pressure transducer, and determining systolic pressure as a function of both Am and Pm. In accordance with one aspect of the invention, the blood pressure monitor has an optical sensor including a light source and photodetector optically coupled to the body member proximate to the cuff.
    Type: Grant
    Filed: June 24, 2004
    Date of Patent: March 21, 2006
    Assignee: Purdue Research Foundation
    Inventors: Leslie A. Geddes, Rebecca A. Roeder
  • Patent number: 6976966
    Abstract: An arteriosclerosis evaluating apparatus for evaluating an arteriosclerosis of a living subject based on a form of a pulse wave detected from the subject, the apparatus including an inflatable cuff which is adapted to be worn on a body portion of the subject, a cuff-pressure changing device which changes a pressure in the cuff, a cuff-pulse-wave detecting device which detects a cuff pulse wave as a pressure oscillation that is transmitted from the subject to the cuff, and an output device which outputs the cuff pulse wave detected by the cuff-pulse-wave detecting device in a state in which the pressure of the cuff is made higher than a systolic blood pressure of the body portion of the subject by the cuff-pressure changing device.
    Type: Grant
    Filed: December 1, 2003
    Date of Patent: December 20, 2005
    Assignee: Colin Medical Technology Corporation
    Inventor: Kiyoyuki Narimatsu
  • Patent number: 6939306
    Abstract: A method for measuring blood pressure and pulse rate with a pump-less mechanical compression apparatus, wherein the pump-less mechanical compression apparatus comprises a compression assembly with a closed system air bag having a fixed air volume fastened on the human body measuring site; a sensor coupled to the air bag for sensing pressure change inside the air bag; a processor for processing the pressure change; and a display. Through the use of the mechanical compression assembly, the pressure inside the air bag can be increased and steadily released to achieve the same measuring effects as traditional sphygmomanometer/sphygmometer. The apparatus invention also comprises a deactivation assembly and an alarm for safety purpose.
    Type: Grant
    Filed: September 2, 2003
    Date of Patent: September 6, 2005
    Assignee: K-Jump Health Co., Ltd.
    Inventor: Daniel C. M. Tseng
  • Patent number: 6893403
    Abstract: A method and system for eliminating artifacts in an oscillation envelope are disclosed. The method and system comprise evaluating conformance of the oscillometric envelope blood pressure data with a predetermined expected pattern and excluding one or more data points of the oscillometric envelope blood pressure data based on non-conformance with the expected pattern. The expected pattern is based upon generally known physiological principles relating to oscillometric envelopes, a curve fit representing an oscillometric envelope from a previous determination, or other types of criteria.
    Type: Grant
    Filed: February 25, 2003
    Date of Patent: May 17, 2005
    Assignee: GE Medical Systems Information Technologies, Inc.
    Inventors: Sai Kolluri, Lawrence T. Hersh, Richard Medero
  • Patent number: 6878272
    Abstract: A dialyzing apparatus includes a dialyzer which removes water from blood of a patient at a water-remove rate during a dialysis operation, a blood-pressure-change-related-information obtaining device which obtains a plurality of sorts of blood-pressure-change-related information each of which is related to a change of a blood pressure of the patient during the dialysis operation, and a water-remove-rate control device which controls the water-remove rate of the dialyzer, based on the plurality of sorts of blood-pressure-change-related information, according to a predetermined control manner.
    Type: Grant
    Filed: March 4, 2002
    Date of Patent: April 12, 2005
    Assignee: Colin Corporation
    Inventor: Keizoh Kawaguchi
  • Patent number: 6808627
    Abstract: A dialyzing apparatus including a dialyzer which removes water from blood of a patient at a water-remove rate, an arteriosclerosis-related-information obtaining device which obtains arteriosclerosis-related information that is related to a degree of arteriosclerosis of the patient, and a water-remove-rate display device which displays a target value of the water-remove rate based on the arteriosclerosis-related information obtained by the arteriosclerosis-related-information obtaining device.
    Type: Grant
    Filed: February 12, 2002
    Date of Patent: October 26, 2004
    Assignee: Colin Medical Technology Corporation
    Inventor: Keizoh Kawaguchi
  • Patent number: 6808496
    Abstract: An oscillometric automatic blood-pressure measuring apparatus, including an inflatable cuff which is adapted to be wound around a portion of a living subject, so as to detect respective amplitudes of a plurality of heartbeat-synchronous pulses of a cuff pulse wave as an oscillatory component that is produced in the cuff in synchronism with heartbeats of the subject in a cuff-pressure change process in which a cuff pressure as a pressure in the cuff is changed, a cuff-pulse-wave-amplitude correcting device for correcting the respective amplitudes of the respective pulses of the cuff pulse wave, according to a predetermined non-linear relationship between difference between cuff pressure and subject's mean blood pressure, and amplitude of cuff pulse wave, and a blood-pressure determining device for determining a blood pressure of the subject based on a change of the corrected amplitudes of the cuff pulse wave.
    Type: Grant
    Filed: November 4, 2002
    Date of Patent: October 26, 2004
    Assignee: Colin Corporation
    Inventors: Tohru Oka, Akihiro Yokozeki
  • Patent number: 6805670
    Abstract: Provided is an electronic blood pressure monitor capable of realizing functions of blood pressure measurement in a shorter time and blood pressure measurement with more of correctness in the same and one construction thereof. The electronic blood pressure monitor includes: an oscillometric measuring section capable of calculating a blood pressure with a high precision using much of biogenic information though a time is required since a blood pressure is calculated during a period in which the cuff pressure is gradually changed; and an SPD measuring section completing measurement in a short time though a fluctuation in precision of measurement arises according to an with less of biogenic information since individual difference a blood pressure is calculated using only one or several pulse waves. Since the oscillometric measuring portion performs a calibration processing for the SPD measuring section simultaneously during measurement thereof, calibrating operation a complicated can be practically excluded.
    Type: Grant
    Filed: February 10, 2003
    Date of Patent: October 19, 2004
    Assignee: Omron Corporation
    Inventor: Osamu Shirasaki
  • Patent number: 6793628
    Abstract: A blood-pressure measuring apparatus including a cuff which is adapted to be worn on a portion of a living subject to press the portion, an augmentation-index determining device for determining an augmentation index of the subject based on a cuff pulse wave obtained from the cuff, and a cuff-pulse-wave obtaining device for obtaining, during a pressing period in which the cuff presses the portion of the subject for measuring a blood pressure of the subject, the cuff pulse wave from the cuff so that the augmentation-index determining device determines the augmentation index based on the obtained cuff pulse wave.
    Type: Grant
    Filed: January 27, 2003
    Date of Patent: September 21, 2004
    Assignee: Colin Medical Technology Corporation
    Inventors: Toshihiko Ogura, Kiyoyuki Narimatsu
  • Patent number: 6786872
    Abstract: An augmentation-index measuring apparatus including a cuff which is adapted to be worn on a portion of a living subject to press the portion, an augmentation-index determining device for determining an augmentation index of the subject based on a cuff pulse wave obtained from the cuff, and a preliminary pressing device for preliminarily pressing, before the cuff pulse wave is obtained, for the determination of the augmentation index, from the cuff having a pulse-wave detection pressure, the portion of the subject using the cuff having a pressure higher than the pulse-wave detection pressure.
    Type: Grant
    Filed: January 27, 2003
    Date of Patent: September 7, 2004
    Assignee: Colin Medical Technology Corporation
    Inventors: Kiyoyuki Narimatsu, Toshihiko Ogura, Akira Tampo
  • Publication number: 20040158162
    Abstract: A subject evaluation value measuring apparatus 10, functioning as a cuff volumetric pulse wave obtaining apparatus, includes a pulse wave determining device (i.e., a cuff volumetric pulse wave determining device) 52 that determines, using an inverse transfer function 1H(f), stored in a ROM (i.e., an inverse transfer function memory) 42, that corresponds to a pre-determined transfer function H(f) between input, i.e., pressure pulsation produced in a cuff 20, and output, i.e., pressure pulsation detected by a pressure sensor 24, a no-delay cuff volumetric pulse wave PK(t) having substantially no delay of transmission, based on an actual cuff pulse wave signal SM outputted by the pressure sensor 24. The thus determined cuff volumetric pulse wave PK(t) is free of waveform distortion and accordingly enjoys high accuracy.
    Type: Application
    Filed: January 14, 2004
    Publication date: August 12, 2004
    Applicant: COLIN MEDICAL TECHNOLOGY CORPORATION
    Inventor: Kiyoyuki Narimatsu
  • Publication number: 20040147848
    Abstract: A blood pressure measuring apparatus oppresses blood vessels of a human body by an inflating unit through a cuff. When the blood vessels are oppressed through the cuff, a pulse wave superposed on a cuff pressure signal through a cuff pressure detector is detected by a pulse wave detector. The waveform of the detected pulse wave changes similarly to changes of pressure in the oppressed blood vessels in one heartbeat period. The information of the detected pulse wave waveform and the cuff pressure at this time are stored in a memory.
    Type: Application
    Filed: December 3, 2003
    Publication date: July 29, 2004
    Applicant: OMRON HEALTHCARE CO., LTD.
    Inventors: Osamu Shirasaki, Takeshi Kubo
  • Patent number: 6767328
    Abstract: A method of processing oscillometric blood pressure pulse data taken from a subject is disclosed. In an exemplary embodiment, the method includes determining a pressure pulse period of a cardiac cycle of the subject and identifying a duration of a pressure pulse detected within the pressure pulse period. Then, a duty cycle of the pressure pulse is calculated with respect to the pressure pulse period, wherein the calculated duty cycle is used to determine selected blood pressure parameters.
    Type: Grant
    Filed: July 31, 2002
    Date of Patent: July 27, 2004
    Assignee: GE Medical Systems Information Technologies, Inc.
    Inventor: Robert Stanley Kulik
  • Patent number: 6746405
    Abstract: A blood pressure measuring apparatus, including a cuff adapted to be worn on a body portion of a living subject, and determining a blood pressure value of the subject based on a signal obtained from the cuff when a pressure in the cuff is changed, wherein the apparatus includes: a cuff pulse wave detecting device which detects a cuff pulse wave as a pulse wave produced from an artery of the subject and transmitted to the cuff, the cuff pulse wave comprising at least one heartbeat-synchronous pulse produced from the artery in synchronism with at least one heartbeat of the subject; a converting device which converts, based on the blood pressure value determined by the apparatus, a magnitude of each point of the heartbeat-synchronous pulse of the cuff pulse wave, into a pressure value; and a pseudo-pressure-pulse-wave determining device which determines a pseudo pressure pulse wave by correcting the respective pressure values of the respective points of the pulse, provided by the converting device, according to
    Type: Grant
    Filed: March 27, 2003
    Date of Patent: June 8, 2004
    Assignee: Colin Corporation
    Inventor: Kiyoyuki Narimatsu
  • Publication number: 20040106873
    Abstract: One of pairs of an exciter and a sensor is selected in accordance with the detection signal which is derived from an exciter waveform induced in an artery transmitted therethrough. The pairs of exciters and sensors are arranged on a substrate in various formations. A/D converters are provided to respective detection signals. A frequency of the oscillation signal supplied to the exciter is controlled by various oscillation signal generation circuits. Bandpass filtering for extracting the exciter waveform, low-pass-filtering for extracting a natural blood pressure waveform, phase difference detection processes are provided by a microprocessor, wherein the bandpass filtering and low-pass-filtering processes may be replaced with a bandpass filter and a low pass filter, and their outputs are selected by a switching circuit and supplied to the microprocessor through one a/d converter.
    Type: Application
    Filed: November 26, 2003
    Publication date: June 3, 2004
    Applicant: Matsushita Electric Industrial Co., Ltd.
    Inventors: Kinya Hasegawa, Yushi Nishimura, Hisashi Hagiwara
  • Patent number: 6743179
    Abstract: An arteriostenosis inspecting apparatus including a left-superior-limb-blood-pressure measuring device which measures a left-superior-limb blood pressure of a left superior limb of a living subject, a right-superior-limb-blood-pressure measuring device which measures a right-superior-limb blood pressure of a right superior limb of the subject, and a left-and-right-superior-limb-blood-pressure-ratio determining device which determines a left-and-right-superior-limb blood-pressure ratio as a ratio of one of the left-superior-limb blood pressure and the right-superior-limb blood pressure to the other.
    Type: Grant
    Filed: April 7, 2003
    Date of Patent: June 1, 2004
    Assignee: Colin Medical Technology Corporation
    Inventors: Kiyoyuki Narimatsu, Toshihiko Ogura
  • Patent number: 6740043
    Abstract: An apparatus for detecting a pressure pulse wave produced by an artery of a living subject, including a pressure-pulse-wave sensor which has a pressing surface, and pressure-detecting elements that are arranged, in the pressing surface, in an array in a widthwise direction of the artery, a pressing device which presses, with a pressing force, the pressure-pulse-wave sensor against the artery via a skin of the subject, so that each of the pressure-detecting elements detects the pressure pulse wave produced by the artery, a highest-pressure-detecting-element selecting device for selecting, as a highest-pressure-detecting element, a first one of the pressure-detecting elements that detects a highest one of respective pressures corresponding to the respective pressure pulse waves detected by the pressure-detecting elements, and a pressing-force checking device for judging whether the pressing force of the pressing device applied to the pressure-pulse-wave sensor is appropriate, based on a time difference between
    Type: Grant
    Filed: December 14, 2001
    Date of Patent: May 25, 2004
    Assignee: Colin Medical Technology Corporation
    Inventor: Kiyoyuki Narimatsu
  • Publication number: 20040082865
    Abstract: One of pairs of an exciter and a sensor is selected in accordance with the detection signal which is derived from an exciter waveform induced in an artery transmitted therethrough. The pairs of exciters and sensors are arranged on a substrate in various formations. A/D converters are provided to respective detection signals. A frequency of the oscillation signal supplied to the exciter is controlled by various oscillation signal generation circuits. Bandpass filtering for extracting the exciter waveform, low-pass-filtering for extracting a natural blood pressure waveform, phase difference detection processes are provided by a microprocessor, wherein the bandpass filtering and low-pass-filtering processes may be replaced: with a bandpass filter and a low pass filter, and their outputs are selected by a switching circuit and supplied to the microprocessor through one a/d converter.
    Type: Application
    Filed: November 26, 2003
    Publication date: April 29, 2004
    Applicant: Matsushita Electric Industrial Co., Ltd.
    Inventors: Kinya Hasegawa, Yushi Nishimura, Hisashi Hagiwara
  • Publication number: 20040077957
    Abstract: One of pairs of an exciter and a sensor is selected in accordance with the detection signal which is derived from an exciter waveform induced in an artery transmitted therethrough. The pairs of exciters and sensors are arranged on a substrate in various formations. A/D converters are provided to respective detection signals. A frequency of the oscillation signal supplied to the exciter is controlled by various oscillation signal generation circuits. Bandpass filtering for extracting the exciter waveform, low-pass-filtering for extracting a natural blood pressure waveform, phase difference detection processes are provided by a microprocessor, wherein the bandpass filtering and low-pass-filtering processes may be replaced with a bandpass filter and a low pass filter, and their outputs are selected by a switching circuit and supplied to the microprocessor through one a/d converter.
    Type: Application
    Filed: November 26, 2003
    Publication date: April 22, 2004
    Applicant: Matsushita Electric Industrial Co., Ltd.
    Inventors: Kinya Hasegawa, Yushi Nishimura, Hisashi Hagiwara
  • Patent number: 6719703
    Abstract: A method and apparatus for measuring blood pressure by the oscillometric technique. The method incorporates variable PIP's. The method comprises the steps of obtaining a value for the peak amplitude Amax of an oscillometric envelope; determining a cuff pressure, CP, which corresponds in time with Amax, this pressure representing the MAP of the subject; computing a variable value PIPSBP as a function of MAP; performing the calculation Asbp=Amax*PIPSBP to determine a systolic amplitude value Asbp along the oscillometric envelope; and determining the cuff pressure C which corresponds in time to Asbp, this value representing the systolic blood pressure (SBP) of the subject. PIP can be calculated using a piece-wise linear, polynomial, exponential or other function.
    Type: Grant
    Filed: June 15, 2001
    Date of Patent: April 13, 2004
    Assignee: VSM Medtech Ltd.
    Inventors: Yunquan Chen, Anton Bogdan Zorn, Kevin Daryl Strange
  • Patent number: 6719702
    Abstract: An apparatus and method for measuring blood pressure using linearly varying air pressure, including a compression unit; an air pump that injects air into the compression unit; a pressure sensor that senses and outputs the air pressure of the compression unit; an ADC that converts and outputs the result of the sensing as a pressure signal; a controller that calculates a current pressure value of the compression unit from the pressure signal and a linear pressure of the compression unit that is linearly dropped corresponding to the current pressure value and generates the first control signal in response to the current pressure value and a second control signal from the result of a comparison of the current pressure value and the linear pressure; a DAC that converts and outputs the second control signal as an exhaust control signal; and a proportional control valve that exhausts air from the compression unit.
    Type: Grant
    Filed: May 28, 2002
    Date of Patent: April 13, 2004
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-youn Lee, Gil-won Yoon
  • Patent number: 6716177
    Abstract: An apparatus for measuring an inferior-and-superior-limb blood-pressure index of a living subject, including an inferior-limb blood-pressure measuring device which measures an inferior-limb blood pressure of an inferior limb of the subject, a superior-limb blood-pressure measuring device which measures a superior-limb blood pressure of a superior limb of the subject, an inferior-and-superior-limb blood-pressure index determining device for determining the inferior-and-superior-limb blood-pressure index based on the inferior-limb blood pressure measured by the inferior-limb blood-pressure measuring device and the superior-limb blood pressure measured by the superior-limb blood-pressure measuring device, a heartbeat-synchronous-signal detecting device which detects a heartbeat-synchronous signal that is produced from the subject, a pulse-period-related-information obtaining device for obtaining, based on the heartbeat-synchronous signal detected by the heartbeat-synchronous-signal detecting device, pulse-period
    Type: Grant
    Filed: September 9, 2002
    Date of Patent: April 6, 2004
    Assignee: Colin Corporation
    Inventor: Takashi Nomura
  • Patent number: 6712768
    Abstract: An augmentation-index determining apparatus, including a cuff, a cuff-pressure changing device which changes a pressing pressure of the cuff, a pulse-wave extracting device which extracts a pulse wave from the cuff, a peak-occurrence-time determining device for determining, based on a high-cuff-pressure pulse wave which is extracted by the pulse-wave extracting device when the cuff-pressure changing device makes the pressing pressure of the cuff higher than a systolic blood pressure of a subject, a time of occurrence of a peak point of an incident-wave component of the high-cuff-pressure pulse and a time of occurrence of a peak point of a reflected-wave component of the high-cuff-pressure pulse wave, and an augmentation-index determining device for determining, based on the respective times of occurrence of the respective peak points of the incident-wave and reflected-wave components of the high-cuff-pressure pulse, respective times of occurrence of respective peak points of incident-wave and reflected-wave c
    Type: Grant
    Filed: September 9, 2002
    Date of Patent: March 30, 2004
    Assignee: Colin Corporation
    Inventors: Toshihiko Ogura, Kiyoyuki Narimatsu, Akira Tampo, Takashi Honda
  • Publication number: 20040059232
    Abstract: A blood pressure measuring apparatus, including a cuff adapted to be worn on a body portion of a living subject, and determining a blood pressure value of the subject based on a signal obtained from the cuff when a pressure in the cuff is changed, wherein the apparatus includes: a cuff pulse wave detecting device which detects a cuff pulse wave as a pulse wave produced from an artery of the subject and transmitted to the cuff, the cuff pulse wave comprising at least one heartbeat-synchronous pulse produced from the artery in synchronism with at least one heartbeat of the subject; a converting device which converts, based on the blood pressure value determined by the apparatus, a magnitude of each point of the heartbeat-synchronous pulse of the cuff pulse wave, into a pressure value; and a pseudo-pressure-pulse-wave determining device which determines a pseudo pressure pulse wave by correcting the respective pressure values of the respective points of the pulse, provided by the converting device, according to
    Type: Application
    Filed: March 27, 2003
    Publication date: March 25, 2004
    Applicant: COLIN CORPORATION
    Inventor: Kiyoyuki Narimatsu
  • Patent number: 6702754
    Abstract: An apparatus for inspecting arteriosclerosis of a living subject, including a pulse-wave detecting device which detects a pulse wave from a portion of the subject, an augmentation-index determining device for determining, based on the pulse wave detected by the pulse-wave detecting device, an augmentation index indicating a proportion of a reflected-wave component of the pulse wave to an incident-wave component thereof, so that the arteriosclerosis of the subject is inspected based on the augmentation index determined by the augmentation-index determining device, a waveform-related-information obtaining device which obtains waveform-related information that is related to a change of a waveform of the pulse wave detected by the pulse-wave detecting device, a display device, an augmentation-index displaying device for operating the display device to display the augmentation index determined by the augmentation-index determining device, and a waveform-related-information displaying device for operating the displ
    Type: Grant
    Filed: September 9, 2002
    Date of Patent: March 9, 2004
    Assignee: Colin Corporation
    Inventors: Toshihiko Ogura, Kiyoyuki Narimatsu, Akira Tampo, Takashi Honda
  • Patent number: 6699196
    Abstract: Simulative electronic blood pressure meter in which by means of internal program, a central processor/controller converts and outputs the sensed blood pressure signal to a liquid crystal display to show a column-type indication simulating the mercury column of a traditional blood pressure meter. A digital counting circuit is combined, whereby when simulating the mercury column, an auxiliary display of digital change is provided for the user to easily know the value. The central processor/controller cooperates with a sound emitting unit which synchronously emits a sound simulating the sensed pulse from the start to the end. The volume of the emitted sound is varied with the strength of the pulse. The electronic blood pressure meter is used in a state like the mercury column-type blood pressure meter for a user to more accurately and lively judge the measured value.
    Type: Grant
    Filed: May 31, 2001
    Date of Patent: March 2, 2004
    Inventor: George Hung
  • Patent number: 6695789
    Abstract: A non-invasive blood pressure measurement device is used for determining blood pressure of an artery. The device comprises a housing unit, a base unit and a sensing unit. The base unit is pivotally connected to the housing unit and comprises electrical circuitry, a flexible ring, and a receptacle. The sensing unit comprises a pressure transducer for sensing pulses of the underlying artery, the transducer having a sensing surface, a flexible diaphragm having an active portion for transmitting blood pressure pulses of the underlying artery, interface means coupled between the sensing surface of the transducer and the flexible diaphragm for transmitting the blood pressure pulses within the underlying artery from the flexible diaphragm to the sensing surface of the transducer, a compressible ring, and connection means for detachably connecting the sensing unit to the receptacle of the base unit.
    Type: Grant
    Filed: February 21, 2002
    Date of Patent: February 24, 2004
    Assignee: Medwave, Inc.
    Inventors: Roger C. Thede, Kevin R. Evans
  • Patent number: 6669646
    Abstract: An arteriosclerosis evaluating apparatus including a left-superior-limb-blood-pressure measuring device including a cuff, a right-superior-limb-blood-pressure measuring device including a cuff, a ratio determining means for determining a ratio between a left-superior-limb blood pressure measured by the left-superior-limb-blood-pressure measuring device and a right-superior-limb blood pressure measured by the right-superior-limb-blood-pressure measuring device, an information obtaining device which obtains information that is related to a velocity at which a pulse wave propagates in a first body portion of the subject that includes at least a portion of the left superior limb or a second body portion of the subject that includes at least a portion of the right superior limb, and a display device which displays the left-and-right-superior-limb blood-pressure ratio determined by the left-and-right-superior-limb-blood-pressure-ratio determining device, and the pulse-wave-propagation-velocity-related information o
    Type: Grant
    Filed: April 7, 2003
    Date of Patent: December 30, 2003
    Assignee: Colin Corporation
    Inventors: Kiyoyuki Narimatsu, Toshihiko Ogura
  • Patent number: 6666827
    Abstract: An apparatus for evaluating arteriosclerosis of a living subject, including a pulse-wave detecting device which detects a pulse wave from each of a first portion and a second portion of the subject, each of the respective pulse waves detected from the first and second portions containing an incident-wave component, an augmentation-index determining device for determining, based on the pulse wave detected from the first portion by the pulse-wave detecting device, a first augmentation index indicative of a degree of augmentation of an amplitude of the pulse wave detected from the first portion, from an amplitude of the incident-wave component of the pulse wave detected from the first portion, and determining, based on the pulse wave detected from the second portion by the pulse-wave detecting device, a second augmentation index indicative of a degree of augmentation of an amplitude of the pulse wave detected from the second portion, from an amplitude of the incident-wave component of the pulse wave detected fro
    Type: Grant
    Filed: July 15, 2002
    Date of Patent: December 23, 2003
    Assignee: Colin Corporation
    Inventor: Kiyoyuki Narimatsu
  • Patent number: 6662130
    Abstract: An uncalibrated sensor located at a first location relative to a physical phenomenon is calibrated using a calibrated sensor spaced away from the uncalibrated sensor at a second location relative to the physical phenomenon and a frequency-domain transfer function that relates the physical phenomenon at the second location to the output of the uncalibrated sensor.
    Type: Grant
    Filed: June 13, 2002
    Date of Patent: December 9, 2003
    Assignee: Southwest Research Institute
    Inventors: Harry Herbert Peel, III, Keith Alan Bartels
  • Publication number: 20030208127
    Abstract: The present invention is a method for calculating blood pressure of an artery having a pulse. The method includes applying a varying pressure to the artery. Pressure waveforms are sensed to produce pressure waveform data. Waveform parameters are derived from the sensed pressure waveform data. Blood pressure is then determined using the derived parameters.
    Type: Application
    Filed: May 16, 2003
    Publication date: November 6, 2003
    Applicant: Medwave, Inc.
    Inventors: G. Kent Archibald, Timothy G. Curran, Orland H. Danielson, Marius O. Poliac, Roger C. Thede
  • Publication number: 20030199776
    Abstract: A blood-pressure measuring apparatus including a cuff which is adapted to be worn on a portion of a living subject to press the portion, a waveform analyzing device for analyzing a form of a cuff pulse wave which is obtained from the cuff, and a cuff-pulse-wave obtaining device for obtaining, before the cuff presses the portion of the subject for measuring a blood pressure of the subject, the cuff pulse wave from the cuff so that the waveform analyzing device analyzes the form of the cuff pulse wave.
    Type: Application
    Filed: December 16, 2002
    Publication date: October 23, 2003
    Applicant: COLIN CORPORATION
    Inventors: Kiyoyuki Narimatsu, Akira Tampo, Toshihiko Ogura
  • Patent number: 6602200
    Abstract: An electronic blood pressure meter determines, in an inflation process, pressure Ps correlated to systolic pressure, pressure Pd correlated to diastolic pressure and pulse wave period Pc, and then calculates deflation rate def−v in a deflation process based on a first formula (def−v=(Ps−Pd−mb1)×Pc/N, where N represents the number of required beats). Further, maximum inflation value Inf−max is calculated based on a second formula (Inf−max=def−v·(np×Pc+&agr;)+Ps+&bgr;1). The pressure is increased to reach the calculated maximum value and then deflation is started at the calculated deflation rate . The blood pressure meter can thus perform a precise measurement in a shortest time.
    Type: Grant
    Filed: May 2, 2001
    Date of Patent: August 5, 2003
    Assignee: Omron Corporation
    Inventors: Takeshi Kubo, Masashi Fukura, Akira Nakagawa, Yoshinori Miyawaki
  • Patent number: 6602199
    Abstract: Apparatus for measuring a physiological parameter of a patient, such as blood pressure, takes a sequence consisting of a predetermined number of individual measurements. The apparatus computes a best estimate of the physiological parameter from values obtained in two or more of the measurements. The apparatus automatically takes a sequence of measurements and then stops. The apparatus can operate unattended so that it is not necessary for a physician or other health care worker to be present while measurements are being made. The use of the invention to measure blood pressure of a patient reduces the effect of “white coat” hypertension on the best estimate. Preferred embodiments of the apparatus ignore results of a first measurement in the sequence. The patient is already familiar with the apparatus when subsequent measurements are taken. This further reduces the possibility that the patient's reaction to the process of measurement will affect the results of the measurement.
    Type: Grant
    Filed: November 19, 2001
    Date of Patent: August 5, 2003
    Assignee: VSM Technology Inc.
    Inventors: Yunquan Chen, Anton Bogdan Zorn, David Sholom Waterman, Mark Elliot Gelfer, Paul Richard Christensen, Kevin Daryl Strange
  • Patent number: 6589185
    Abstract: The present invention is a method for calculating blood pressure of an artery having a pulse. The method includes applying a varying pressure to the artery. Pressure waveforms are sensed to produce pressure waveform data. Waveform parameters are derived from the sensed pressure waveform data. Blood pressure is then determined using the derived parameters.
    Type: Grant
    Filed: June 14, 2000
    Date of Patent: July 8, 2003
    Assignee: Medwave, Inc.
    Inventors: G. Kent Archibald, Timothy G. Curran, Orland H. Danielson, Marius O. Poliac, Roger C. Thede
  • Patent number: 6589186
    Abstract: A blood-pressure measuring apparatus including a cuff worn on a body portion of a subject to apply a pressure to the body portion; a changing device which changes the cuff pressure; a determining device which determines a diastolic and mean blood pressure of the subject; a detecting device which detects a cuff pulse wave as an oscillation of the cuff pressure; a pulse-wave-magnitude determining device for operating the changing device; and a systolic-blood-pressure determining device for determining a systolic blood pressure of the subject, based on the determined diastolic and mean blood pressure and the determined minimal, mean, and maximal magnitudes of the cuff pulse wave, according to a fact that the minimal, mean, and maximal magnitudes of the cuff pulse wave correspond to the diastolic, mean, and systolic blood pressure of the subject, respectively.
    Type: Grant
    Filed: March 4, 2002
    Date of Patent: July 8, 2003
    Assignee: Colin Corporation
    Inventor: Hideo Nishibayashi
  • Patent number: 6582374
    Abstract: An apparatus for automatically measuring a blood pressure of a living subject, including a cuff which is wound around a portion of the subject, a cuff pulse wave occurring to the cuff when a pressure in the cuff is changed, a pulse-wave detecting device which is worn on another portion of the subject and detects a volumetric pulse wave, a correction-factor determining device for iteratively determining, for each of respective pulses of the volumetric pulse wave, a correction factor to correct an amplitude of the each pulse to a predetermined value, a first determining device for iteratively multiplying, by the correction factor determined for the each of the pulses of the volumetric pulse wave, an amplitude of one of the pulses of the cuff pulse wave that corresponds to the each pulse of the volumetric pulse wave, and thereby determining a corrected amplitude of the one pulse of the cuff pulse wave, and a second determining device for determining a blood pressure of the subject based on a change of the respec
    Type: Grant
    Filed: October 16, 2001
    Date of Patent: June 24, 2003
    Assignee: Colin Corporation
    Inventor: Akihiro Yokozeki
  • Patent number: 6565515
    Abstract: An apparatus for obtaining information relating to a velocity at which a pulse wave propagates in a living subject, the apparatus including a first inflatable cuff and a second inflatable cuff which are adapted to be worn on two different portions of the subject, respectively, at least one cuff-pulse-wave detecting device which detects the pulse wave occurring to each of the first and second cuffs worn on the two different portions of the subject, and a velocity-relating-information obtaining device which obtains the information relating to the velocity, based on a time difference between a first time when the cuff-pulse-wave detecting device detects the pulse wave occurring to the first cuff, and a second time when the cuff-pulse-wave detecting device detects the pulse wave occurring to the second cuff.
    Type: Grant
    Filed: January 22, 2002
    Date of Patent: May 20, 2003
    Assignee: Colin Corporation
    Inventor: Toshihiko Ogura
  • Patent number: 6561985
    Abstract: An apparatus for automatically measuring a blood pressure of a living subject, including in inflatable cuff which is adapted to be wound around a portion of the subject, a cuff pulse wave including heartbeat-synchronous pulses occurring to the cuff while a pressure in the cuff is changed, a blood-pressure determining device for determining a blood pressure of the subject based on a change of respective amplitudes of the heartbeat-synchronous pulses of the cuff pulse wave, a display device which has a two-dimensional screen consisting of picture elements, and an amplitude displaying device for successively displaying, on the two-dimensional screen of the display device and while the pressure of the cuff is changed, the amplitude of each of the heartbeat-synchronous pulses of the cuff pulse wave, such that the amplitude of the each heartbeat-synchronous pulse of the cuff pulse wave is comparable with at least one prior amplitude of at least one prior heartbeat-synchronous pulse of the cuff pulse wave.
    Type: Grant
    Filed: November 2, 2001
    Date of Patent: May 13, 2003
    Assignee: Colin Corporation
    Inventor: Hisashi Ito
  • Patent number: 6554773
    Abstract: A method and arrangement for blood pressure measurement are disclosed. In the method, a variable, compressive, acting pressure is applied to a compression, such as a person's extremity, by a pressure generator, and simultaneously, the effect of the variable acting pressure on the extremity is measured at a second point, the second point being farther from the heart than the compression point. The method determines diastolic and systolic pressure. The measured value of the variable acting pressure acting on the compression point is transferred to an interpreting unit, which also receives a pressure pulse generated by the heart. The pressure pulse is measured by a sensor at the second point for determining the effect of the variable acting pressure on the extremity. Further, diastolic pressure is determined int he interpreting unit based on the variable acting pressure, as the pressure when the interpreting unit detects a change in a trend of a characteristic of the pressure pulse indicative of magnitude.
    Type: Grant
    Filed: June 7, 2000
    Date of Patent: April 29, 2003
    Assignee: Polar Electro Oy
    Inventors: Seppo Nissilä, Antti Ruha, Hannu Sorvoja, Mika Niemimäki, Mika Sorvisto
  • Patent number: 6547742
    Abstract: An apparatus for measuring a propagation velocity of a pulse wave which is propagated through an artery of a living subject, the apparatus including an electrocardiographic-waveform detecting device which detects an electrocardiographic waveform from the subject, a pulse-wave sensor which is adapted to be worn on the subject and which detects the pulse wave from the subject, a time-difference determining device for determining a time difference between a first periodic point relating to the detected electrocardiographic waveform and a second periodic point relating to the detected pulse wave, and a propagation-velocity determining means for determining the propagation velocity of the pulse wave based on the determined time difference.
    Type: Grant
    Filed: January 15, 2002
    Date of Patent: April 15, 2003
    Assignee: Colin Corporation
    Inventors: Tohru Oka, Hiroshi Sakai, Hidekatsu Inukai, Toshihiko Ogura, Tomoko Ikawa, Takashi Nomura
  • Publication number: 20030045801
    Abstract: A method and apparatus for measuring blood pressure by the oscillometric technique. The method incorporates variable PIP's. The method comprises the steps of obtaining a value for the peak amplitude Amax of an oscillometric envelope; determining a cuff pressure, CP, which corresponds in time with Amax, this pressure representing the MAP of the subject; computing a variable value PIPSBP as a function of MAP; performing the calculation Asbp=Amax*PIPSBP to determine a systolic amplitude value Asbp along the oscillometric envelope; and determining the cuff pressure C which corresponds in time to Asbp, this value representing the systolic blood pressure (SBP) of the subject. PIP can be calculated using a piece-wise linear, polynomial, exponential or other function.
    Type: Application
    Filed: June 15, 2001
    Publication date: March 6, 2003
    Applicant: VSM Medtech Ltd.
    Inventors: Yunquan Chen, Anton Bogdan Zorn, Kevin Daryl Strange
  • Patent number: 6527725
    Abstract: An apparatus for estimating a blood pressure of a living subject, including a measuring device which iteratively measures a blood pressure of the subject, a first device for obtaining first information relating to velocity of propagation of pulse wave, a second device for obtaining at least one of second information relating to heart rate and third information relating to area defined by volume pulse wave, a memory which stores groups of information each group of which includes the blood pressure, the first information, and at least one of the second information and the third information, a determining device for determining an expression representing a relationship between (A) blood pressure, and (B1) first information and (B2) at least one of (B21) second information and (B22) third information, and having a first coefficient for the first information, at least one second coefficient for at least one of the second and third information, and a constant, the determining device determining the coefficients and
    Type: Grant
    Filed: January 25, 2001
    Date of Patent: March 4, 2003
    Assignee: Colin Corporation
    Inventors: Hidekatsu Inukai, Akihiro Yokozeki, Keizoh Kawaguchi, Kiyoyuki Narimatsu
  • Patent number: 6524257
    Abstract: An apparatus for measuring a superior-and-inferior-limb blood-pressure index of a living subject, including an inferior-limb-blood-pressure measuring device which includes an inferior-limb cuff adapted to be wound around an inferior limb of the subject and which measures an inferior-limb blood pressure of the inferior limb, a superior-limb-blood-pressure measuring device which includes a superior-limb cuff adapted to be wound around a superior limb of the subject and which measures a superior-limb blood pressure of the superior limb, a blood-pressure-index determining device for determining the superior-and-inferior-limb blood-pressure index, based on the inferior-limb blood pressure measured by the inferior-limb-blood-pressure measuring device and the superior-limb blood pressure measured by the superior-limb-blood-pressure measuring device, an inferior-limb-pulse-wave detecting device which is adapted to be worn on an inferior limb of the subject and which detects an inferior-limb pulse wave from the inferi
    Type: Grant
    Filed: October 16, 2001
    Date of Patent: February 25, 2003
    Assignee: Colin Corporation
    Inventor: Toshihiko Ogura
  • Patent number: 6520919
    Abstract: An apparatus for measuring an inferior-and-superior-limb blood-pressure index of a living subject, including an inferior-limb blood-pressure measuring device, a superior-limb blood-pressure measuring device, an index determining means for determining the inferior-and-superior-limb blood-pressure index, based on a systolic blood pressure of an inferior limb, measured by the inferior-limb blood-pressure measuring device and a systolic blood pressure of a superior limb, measured by the superior-limb blood-pressure measuring device, an estimated-inferior-limb-systolic-blood-pressure determining means for determining an estimated systolic blood pressure of the inferior limb, an estimated-superior-limb-systolic-blood-pressure determining means for determining an estimated systolic blood pressure of the superior limb, and a cuff-pressure control means for controlling at least one of respective pressures of the inferior-limb cuff and the superior-limb cuff, such that when the respective pressures of an inferior-limb
    Type: Grant
    Filed: June 27, 2002
    Date of Patent: February 18, 2003
    Assignee: Colin Corporation
    Inventors: Tomohiro Nunome, Hideo Nishibayashi
  • Patent number: 6517495
    Abstract: Blood pressure of an human being is read by a process that places a cuff around a portion of the human being's body. The cuff is inflated to a predefined pressure which occludes the flow of blood and then the cuff is deflated in a controlled manner. At a plurality of deflation pressure levels, pressure oscillations that occur in the cuff are measured to produce a series of measurements representing the waveform of the oscillations. The systolic pressure and mean arterial pressure are derived from the measurements in conventional manners. A portion of the waveform for one cardiac cycle is analyzed by locating points which correspond to the occurrence of the systolic and mean arterial pressures. The diastolic pressure, which occurs at the minimum point of the waveform, is derived from those points and the systolic and mean arterial pressures.
    Type: Grant
    Filed: September 10, 2001
    Date of Patent: February 11, 2003
    Assignee: GE Medical Systems Information Technologies, Inc.
    Inventor: Lawrence T. Hersh
  • Patent number: 6517493
    Abstract: An apparatus for measuring a superior-and-inferior-limb blood-pressure index of a living subject, including a first blood-pressure measuring device which measures a first blood pressure of a right inferior limb of the subject, a second blood-pressure measuring device which measures a second blood pressure of a left inferior limb of the subject, a third blood-pressure measuring device which measures a third blood pressure of a superior limb of the subject, a first information obtaining device which obtains first information relating to a first velocity of propagation of a first pulse wave which propagates through a first route a portion of which runs in the right inferior limb, a second information obtaining device which obtains second information relating to a second velocity of propagation of a second pulse wave which propagates through a second route a portion of which runs in the left inferior limb, a selecting device for selecting one of the measured first and second blood pressures that corresponds to on
    Type: Grant
    Filed: October 4, 2001
    Date of Patent: February 11, 2003
    Assignee: Colin Corporation
    Inventors: Toshihiko Ogura, Hidenori Suzuki, Tomohiro Nunome