Abstract: A method is described for testing the viability of a tissue of a patient for an anastomosis using a perfusion measuring device wherein the method may comprise: controlling at least one actuating structure of the perfusion measuring device to rapidly ramp up a force exerted on at least one test area of the tissue selected for an anastomosis, the force exerted on the at least one test area defining a local (systolic) perfusion pressure; and, during the ramp up of the force, the computer receiving a sensor signal from at least one sensor of the perfusion measuring device and a signal from a blood pressure device, the sensor signal being indicative of perfusion of blood through the micro vascularization in the first test area and the blood pressure signal being indicative of a general (systolic) blood pressure of the patient; controlling the first actuating structure to slowly ramp down the force exerted on the first test area, when the sensor signal signals the computer that the perfusion of the blood in the tis
Type:
Grant
Filed:
January 7, 2019
Date of Patent:
November 19, 2024
Assignee:
VEENHOF MEDICAL DEVICES B.V.
Inventor:
Alexander Arnold Frederik Adriaan Veenhof
Abstract: Systems, apparatuses, methods, and computer program products are disclosed for mitigating deterioration of modeling system performance. An example method includes detecting, by context analysis circuitry, occurrence of a triggering condition. The example method also includes determining, by context analysis circuitry and in response to detecting the occurrence of the triggering condition, a destination modeling solution based on a regime strategy for the modeling system. The example method also includes switching, by regime deployment circuitry and based on the regime strategy, from a source modeling solution to a destination modeling solution.
Type:
Grant
Filed:
December 22, 2021
Date of Patent:
October 15, 2024
Assignee:
Wells Fargo Bank, N.A.
Inventors:
Tyler Case, Paul Davis, Matt Hord, Ananth Kendapadi, Rameshchandra Bhaskar Ketharaju, Vinothkumar Venkataraman, Ashutosh Verma, Yang Angelina Yang, Naveen Gururaja Yeri
Abstract: In hemodynamic determination in medical imaging, the classifier is trained from synthetic data rather than relying on training data from other patients. A computer model (in silico) may be perturbed in many different ways to generate many different examples. The flow is calculated for each resulting example. A bench model (in vitro) may similarly be altered in many different ways. The flow is measured for each resulting example. The machine-learnt classifier uses features from medical scan data for a particular patient to estimate the blood flow based on mapping of features to flow learned from the synthetic data. Perturbations or alterations may account for therapy so that the machine-trained classifier may estimate the results of therapeutically altering a patient-specific input feature. Uncertainty may be handled by training the classifier to predict a distribution of possibilities given uncertain input distribution.
Type:
Grant
Filed:
March 9, 2021
Date of Patent:
October 8, 2024
Assignee:
Siemens Healthineers AG
Inventors:
Lucian Mihai Itu, Tiziano Passerini, Saikiran Rapaka, Puneet Sharma, Chris Schwemmer, Max Schoebinger, Thomas Redel, Dorin Comaniciu
Abstract: A method for determining contractility independent of load Ees of a ventricle of a person is provided. The chronological profile of blood pressure during isovolumetric contraction (IVK) and isovolumetric relaxation (IVR) is first determined for a at least one ventricle over at least one period of a person's heartbeat. The at least one resulting pressure curve is then calibrated and normalized, and then the end-systolic pressure is determined from this calibrated, normalized pressure curve. The profile of blood volume over time is determined during isovolumetric contraction (IVK) and isovolumetric relaxation (IVR) for a ventricle over at least one period of a person's heartbeat, to determine the end-systolic volume Ves. The intercept VO is then determined from this end-systolic volume Ves, and contractility independent of load Ees of an examined ventricle of a person is calculated as a slope from the end-systolic pressure Pes, the end-systolic volume Ves, and the intercept V0.
Type:
Grant
Filed:
August 12, 2021
Date of Patent:
August 20, 2024
Assignee:
JUSTUS-LIEBIG-UNIVERSITAET GIESSEN
Inventors:
Khodr Tello, Henning Gall, Ardeschir Ghofrani, Werner Seeger
Abstract: Systems and methods are disclosed for determining blood flow characteristics of a patient. One method includes: receiving, in an electronic storage medium, patient-specific image data of at least a portion of vasculature of the patient having geometric features at one or more points; generating a patient-specific reduced order model from the received image data, the patient-specific reduced order model comprising estimates of impedance values and a simplification of the geometric features at the one or more points of the vasculature of the patient; creating a feature vector comprising the estimates of impedance values and geometric features for each of the one or more points of the patient-specific reduced order model; and determining blood flow characteristics at the one or more points of the patient-specific reduced order model using a machine learning algorithm trained to predict blood flow characteristics based on the created feature vectors at the one or more points.
Type:
Grant
Filed:
April 18, 2023
Date of Patent:
June 11, 2024
Assignee:
HeartFlow, Inc.
Inventors:
Travis Michael Sanders, Sethuraman Sankaran, Leo Grady, David Spain, Nan Xiao, Jin Kim, Charles A. Taylor
Abstract: A medical device that includes an introducer and a sensor. The introducer is configured to be inserted into a body cavity through a constricted channel. The introducer includes a predetermined section. The sensor is configured to generate a signal while the predetermined section of the introducer is located inside of the body cavity.
Type:
Grant
Filed:
February 15, 2019
Date of Patent:
April 9, 2024
Assignee:
Gyrus ACMI, Inc.
Inventors:
Nikhil M. Murdeshwar, Kester J. Batchelor
Abstract: An implantable ultrasonic vascular sensor for implantation at a fixed location within a vessel, comprising at least one ultrasound transducer, a transducer drive circuit, and means for wirelessly transmitting ultrasound data from the at least one ultrasound transducer.
Type:
Grant
Filed:
May 31, 2018
Date of Patent:
April 2, 2024
Assignee:
Foundry Innovation & Research 1, Ltd.
Inventors:
Axel Brisken, Jessi Johnson, Douglas S. Sutton, Hanson S. Gifford, III, Mark Deem, Fiachra Sweeney
Abstract: The present disclosure provides an artificial intelligence-based (AI-based) medical image processing method performed by a computing device, and a non-transitory computer-readable storage medium. The AI-based medical image processing method includes: processing a medical image to generate an encoded intermediate image; processing the encoded intermediate image, to segment a first feature and generate a segmented intermediate image; processing the encoded intermediate image and the segmented intermediate image based on an attention mechanism, to generate a detected intermediate input image; and performing second feature detection on the detected intermediate input image, to determine whether an image region of the detected intermediate input image in which the first feature is located comprises a second feature.
Type:
Grant
Filed:
October 15, 2021
Date of Patent:
March 26, 2024
Assignee:
TENCENT TECHNOLOGY (SHENZHEN) COMPANY LIMITED
Inventors:
Fubo Zhang, Dong Wei, Kai Ma, Yefeng Zheng
Abstract: An integrated device of a patch and sensor assembly detects extravasation or infiltration. A transmitter is positioned to direct power into a body portion. A sensor is positioned to receive the power transmitted through the body portion. A substrate is attachable to an outer surface of the body portion and supports the transmitter and the sensor. A signal processor is coupled to the transmitter and the sensor for detecting a change in a fluid level in the body portion from extravasation or infiltration based on the power received by the sensor. A power supply is coupled to the transmitter and the sensor. An indicator is responsive to the signal processor to indicate a detected change in a fluid level in the body portion from extravasation or infiltration.
Abstract: Method for determining a blood pressure value including the steps of: providing a pulsatility signal, determining a time-related feature and a normalized amplitude-related feature on the basis of the pulsatility signal; and calculating a blood pressure value on the basis of a blood pressure function depending on the time-related feature, the normalized amplitude-related feature and function parameters.
Type:
Grant
Filed:
June 18, 2015
Date of Patent:
January 9, 2024
Assignee:
CSEM CENTRE SUISSE D'ELECTRONIQUE ET DE MICROTECHNIQUE SA—RECHERCHE ET DÉVELOPPEMENT
Inventors:
Martin Proença, Josep Sola i Caros, Mathieu Lemay, Christophe Verjus
Abstract: A method includes percutaneously advancing an implant to a native heart valve of a subject, the implant being housed in a compressed state within a delivery tool. Next, the method includes unhousing a longitudinally-intermediate portion of the implant, the longitudinally-intermediate portion being longitudinally between a longitudinally-proximal portion of the implant and a longitudinally distal portion of the implant. Subsequently, the longitudinally-proximal portion of the implant is unhoused. Subsequently, the longitudinally-distal portion of the implant is unhoused. By unhousing flanges of the implant, the flanges automatically expand. Upon the flanges expanding, a proximal end of each flange extends radially outward from a central longitudinal axis of the implant and longitudinally in a proximal direction. Other applications are also described.
Type:
Grant
Filed:
January 5, 2021
Date of Patent:
October 31, 2023
Assignee:
CARDIOVALVE LTD.
Inventors:
Ilia Hariton, Boaz Harari, Maxim Karalnik, Meni Iamberger
Abstract: An imaging device that images a disease site as a subject includes a camera body, a light unit that is provided in the camera body and includes a first light source and a second light source that have different characteristics, and a filter unit that includes at least one independent filter capable of being positioned on and retracted from an optical axis of the camera body. The imaging device performs continuous imaging by imaging in a state in which the subject is illuminated with light from the first light source and, via a first mode, the filter is positioned on or retracted from the optical axis and, thereafter, imaging in a state in which the subject is illuminated with light from the second light source and, via a second mode that differs from the first mode, the filter is positioned on or retracted from the optical axis.
Abstract: A method and system are disclosed for use in monitoring/screening/diagnosing sleep or wake state of a subject or patient. The method generally includes monitoring the patient's activity during one or more sleep sessions comprising a plurality of intervals known as epochs. The sleep/wake state of the subject is determined during each epoch of the session using actigraphy data obtained during the monitoring session. The actigraphy data provides information about the activity of a patient during an epoch. The sleep or wake state is determined based on a ratio of the activity count during an epoch to the activity count during a preceding epoch. If the ratio is greater than a first activity threshold, then a “wake” indication may be provided by, for example, the system. Alternatively, or additionally, a “wake” indication may be determined if the activity count during the epoch is greater than a threshold.
Abstract: The present invention provides a method (100) for determining at least one parameter related to the microcirculation function of a person, said method comprising the steps of a) determining (101) an arrival time (AT) of a pulse wave, wherein the AT is the time between the onset of an activity of the heart producing said pulse wave and the arrival of said pulse wave in a part of the body of said person; b) varying (102) an applied pressure (P) on said part of the body over time and determining said AT as a function of applied pressure and time; and c) assessing (103) said at least one parameter related to the microcirculation function based on said determination of AT and said AT as a function of applied pressure and time in steps a) and b). The present invention further provides a system (1) for determining at least one parameter.
Abstract: Described are various embodiments of a digital user authentication device, the device comprising: a user authentication interface operable to receive as input unique user identification data required to execute a digital user authentication process; a distinct physiological sensor operable to interface with the user to acquire a physiological signal from the user to automatically confirm a live user presence during said authentication process; and a digital data processor and computer-readable memory operable to execute computer-readable instructions to invoke said user authentication process based on said unique user identification data while confirming said live user presence based on said physiological signal such that a successful user authentication is only concluded upon confirmation of said live user presence during said authentication process. Various authentication, access authorization and revocation systems and processes are also described.
Type:
Grant
Filed:
January 18, 2019
Date of Patent:
August 8, 2023
Assignee:
NYMI INC.
Inventors:
Stephen Oung, Avrum Douglas Hollinger, Gregor Simeonov, Abhishek Ranjan
Abstract: A removable smartphone case is disclosed. The removable smartphone case includes a case body configured to receive a smartphone, a radio frequency (RF) front-end connected to the case body and including a semiconductor substrate and an antenna array including at least one transmit antenna configured to transmit radio waves below the skin surface of a person and a two-dimensional array of receive antennas configured to receive radio waves, the received radio waves including a reflected portion of the transmitted radio waves, wherein the semiconductor substrate includes circuits configured to generate signals in response to the received radio waves, a communications interface connected to the case body and configured to transmit digital data that corresponds to the signals generated by the semiconductor substrate from the removable smartphone case, and an alignment feature integrated into the case body and configured to align the antenna array with an object.
Abstract: An apparatus for estimating biometric information is provided. According to one exemplary embodiment, the apparatus may include a sensor comprising an electrocardiogram (ECG) sensor configured to measure an ECG signal of a user and a pulse wave sensor configured to measure two or more pulse wave signals at two or more measurement sites of the user; and a processor configured to obtain biometric information based on the ECG signal and the two or more pulse wave signals measured by the sensor.
Type:
Grant
Filed:
October 14, 2020
Date of Patent:
June 6, 2023
Assignee:
SAMSUNG ELECTRONICS CO., LTD.
Inventors:
Young Zoon Yoon, Jae Min Kang, Yong Joo Kwon, Seung Woo Noh, Sang Yun Park
Abstract: Systems, methods, and computer-readable media for providing a decision support solution to medical professionals to optimize medical care through data monitoring and feedback treatment are provided herein. In another embodiment, a computer-implemented method for modeling patient outcomes resulting from treatment in a specific medical area includes receiving patient-specific data associated with a patient, determining a plurality of possible patient states under which the patient can be categorized, a current patient state under which the patient can be categorized and determining probabilities of the patient transitioning from any of the possible patient states to every other possible patient state.
Type:
Grant
Filed:
January 26, 2018
Date of Patent:
January 17, 2023
Assignee:
Etiometry Inc.
Inventors:
Dimitar V. Baronov, Evan J. Butler, Jesse M. Lock
Abstract: A computational methodology for noninvasively assessing the severity of arterial stenosis and predicting the therapeutic outcome of interventional treatment for stenosis assessed as severe, mild, or in between based on patient's CT/MRI imaging data, ultrasound test data, and physio-pathological material properties. The method includes two major parts. The steps in the first part comprise receiving medical data, segmenting the anatomical three-dimensional geometry of the stenosed artery, setting up boundary conditions at inlet and outlets using the ultrasound velocity waveforms together with 3-element WinKessel model, and computing pulsatile pressure waveforms proximal and distal to the existing stenosis for TPI.
Abstract: This invention presents a non-volatile data storage apparatus that is securely worn by a user like a bracelet that stores the users sensitive information and a wirelessly coupled separate display and input device functioning as the sole or main display and input device functioning together like a single personal mobile device, wherein the non-volatile data storage apparatus authenticates the separate display and input device that it doesn't risk the security or privacy of the sensitive information transmitted to it by the non-volatile data storage apparatus.
Abstract: An aspect of the disclosure pertains to a wrist-worn device that may be characterized by the following features: an external surface that is not in contact with the user when the wrist-worn device is worn; a force sensor; a PPG sensor disposed on the wrist-worn device; and control logic configured to: (i) generate one or more sensor data samples, each sensor data sample including data that links force data generated by the force sensor when a user presses a against the external surface at a given time with heart rate data obtained from the PPG sensor at the given time; and (ii) calculate an estimate of blood pressure from the one or more sensor data samples. As examples, the force sensor may be a force sensitive touch screen or film, a strain gauge integrating into the device, or a calibrated spring element configured to be pressed by the user.
Abstract: A method for measuring sound from vortices in the carotid artery comprising: a first and second quality control provisions, wherein the quality control compares detected sounds to pre-determined sounds, and upon confirmation of the quality control procedures, detecting sounds generated by the heart and sounds from vortices in the carotid artery for at least 30 seconds. A method for determining stenosis of the carotid artery in a human patient consisting of a first step of placing a sensing device comprising an array and three sensing elements onto the patient, wherein a first sensing element is placed near the heart and the two remaining sensing elements are placed adjacent to the carotid arteries; the sensing elements then measure sounds from each of the three sensing elements, resulting in sound from three channels. The sound is measured in analog and modified to digital format and then each of the three channels are analyzed before a power spectral density analysis is performed.
Type:
Grant
Filed:
June 15, 2017
Date of Patent:
September 27, 2022
Assignee:
CVR Global, Inc.
Inventors:
Bret Kline, Peter Bakema, Young Truong, Richard Finlayson, Orville Day
Abstract: The invention relates to an electric motor furniture drive for sleeping or reclining furniture, comprising a number of adjusting motors (7, 8) for moving at least one movable furniture component relative to an additional furniture component by means of an electric motor and comprising a manual operation unit (10) for operating the adjusting motors (7, 8). The electric motor furniture drive is characterized in that at least one sensor (12) is provided for detecting vibrations and/or sound, said sensor being coupleable to the sleeping furniture, and an analyzing unit is provided which is connected to the at least one sensor (12). The analyzing unit is designed to process and analyze the signals of the at least one sensor (12) and detect physiological parameters of a person using the sleeping or reclining furniture.
Type:
Grant
Filed:
December 30, 2016
Date of Patent:
August 23, 2022
Assignee:
Dewertokin Technology Group Co., Ltd
Inventors:
Karsten Gehrke, Armin Hille, Steffen Loley, Alexander Tews
Abstract: The invention relates to an analyzing unit (9?) for connecting to at least one sensor (12) which can be coupled to sleeping or reclining furniture in order to detect vibrations, movement, and/or sound. The analyzing unit (9?) is designed to process and analyze the signals of the at least one sensor (12) and detect physiological parameters (P) of a person using the sleeping or reclining furniture, and the analyzing unit (9?) is designed to transmit data to or exchange data with at least one external component. The invention further relates to a method for analyzing signals of at least one such sensor (12) and to sleeping or reclining furniture, in particular a bed (1), comprising at least one such sensor (12).
Type:
Grant
Filed:
December 30, 2016
Date of Patent:
August 23, 2022
Assignee:
Dewertokin Technology Group Co., Ltd
Inventors:
Karsten Gehrke, Armin Hille, Steffen Loley, Alexander Tews
Abstract: We disclose a system and method for estimating values of hemodynamic parameters of a subject, by calibrating arterial pressure during one time and tracking arterial pressure at another time.
Type:
Grant
Filed:
December 22, 2018
Date of Patent:
August 9, 2022
Assignee:
Sensifree Ltd.
Inventors:
Ilan Barak, Eran Agmon, Roi Klein, Nadav Neuberger, Alexei Nomazov
Abstract: A method for measuring blood pressure of a subject is described herein. In an implementation, the method includes obtaining a plurality of photoplethysmogram (PPG) features associated with the subject. The method further includes ascertaining one or more latent parameters associated with the subject based on the plurality of PPG features and a reference model, wherein the reference model indicates a correlation between the plurality of PPG features and the one or more latent parameters. Further, blood pressure of the subject is determined based on the one or more latent parameters and the plurality of PPG features.
Abstract: A multimodal intravascular analysis uses a structural intravascular analysis modality to compensate for a chemical analysis modality. Examples of structural analysis are IVUS, OCT, including optical coherence domain Reflectometry (OCDR) and optical frequency domain imaging (OFDI), and/or sonar rangefinding. Examples of chemical or functional analysis are optical, NIR, Raman, fluorescence and spectroscopy, thermography and reflectometry. In one example, the structural analysis is used to characterize the environment structurally, such as catheter head-vessel wall distance. This information is then used to select from two or more algorithms which are depth specific (e.g. shallow vs. deep), to achieve improved accuracy in the chemical or functional analysis.
Abstract: A method, device, and system for evaluating a vessel of a patient, and in particular the hemodynamic impact of a stenosis within the vessel of a patient. Proximal and distal pressure measurements are made using first and second instrument while the first instrument is moved longitudinally through the vessel from a first position to a second position and the second instrument remains in a fixed longitudinal position within the vessel. A series of pressure ratio values are calculated, and a pressure ratio curve is generated. One or more stepped change in the pressure ratio curve are then identified and/or located using an Automatic Step Detection (ASD) process and/or algorithm.
Type:
Grant
Filed:
February 22, 2019
Date of Patent:
April 26, 2022
Assignee:
Boston Scientific Scimed, Inc.
Inventors:
Wenguang Li, Qian Li, Justin Michael Lerman, David Burgess
Abstract: An ultrasonic diagnostic apparatus includes an image generating unit configured to generate a plurality of different ultrasound image data items from reception signals corresponding to a plurality of different steering angles, on the basis of the reception signals which an ultrasound probe has generated on the basis of reflected ultrasonic waves received from a reflecting surface of a subject body by transmitting ultrasonic waves at the plurality of different steering angles, and a regression estimate generating unit configured to perform regression analysis on the basis of the different steering angles and the ultrasound image data items, and generate regression estimates which are weighting values on the basis of the result of the regression analysis, and an image synthesis unit configured to perform weighting on the plurality of ultrasound image data items on the basis of the regression estimates, and synthesize them, thereby generating synthetic image data.
Abstract: A balloon dilation assembly configured to be used for performing balloon valvuloplasty in order to dilate a stenotic heart valve, in particular a stenotic aortic valve. The assembly comprises at least three outer balloons (12), (13), (14) evenly arranged in a circle around a central balloon (11) and fixed to the central balloon, and comprises a further outer balloon (15) which is shorter in length compared with balloons (11), (12), (13), (14) and which is not fixed to the central balloon, whereby each balloon has a separate filling tube (1), (2), (3), (4), (5) used for inflating each balloon separately, characterized in that the short outer balloon (15) is equipped with a sensing and/or stimulation system comprising an electrical pole (21).
Abstract: First sensor data may be acquired from a first galvanic skin response sensor monitoring a first user. Second sensor data may be acquired from a second galvanic skin response sensor monitoring a second user. At least one programmable processor may generate a compatibility score between the first user and the second user. The generating may include executing a compatibility algorithm to generate the compatibility score based at least on a comparison of at least one type of response contained in the first sensor data and the second sensor data. A client device may generate an electronic indication of the compatibility score.
Abstract: An electronic device includes a processor and memory, wherein the memory stores instructions that, when executed by the processor, control the electronic device to: determine a pulse arrival time (PAT) value, a heart rate (HR) value, and a pulse transit time (PTT) value from the second data, calculate a first blood pressure value (BP1) and a second blood pressure value (BP2) by applying the determined values to pulse wave velocity (PWV) algorithms of Equations 1 and 2, wherein BP1?a1PAT+b1HR+c1 . . . Equation 1, BP2?a2 ln(PTT)+b2 . . .
Abstract: A method and a system for detecting and analyzing a mucosa of a digestive tract are provided. The method includes detecting reply signals from the mucosa of the digestive tract within a depth range, acquiring 2D vascular images by performing a vascular enhancement on the reply signals, constructing a 3D vascular contrasting image of at least part of the mucosa of the digestive tract within the depth range by recombining at least part of the 2D vascular images, and reconstructing a 3D vascular contrasting projection image by performing a projection process to the 3D vascular contrasting image, and defining a stage of the mucosa of the digestive tract within the depth range according to the 3D vascular contrasting projection image, the 3D vascular contrasting image, the 2D vascular images, and vessel morphologies shown therein.
Abstract: A wearable health monitoring device is disclosed. The device includes an attachment feature configured to engage with an attachment feature of an alignment element that is to be worn on the skin of a person, An RF front-end including a semiconductor substrate, at least one transmit antenna configured to transmit radio waves below the skin surface of the person, and a two-dimensional array of receive antennas configured to receive radio waves, the received radio waves including a reflected portion of the transmitted radio waves, wherein the semiconductor substrate includes circuits configured to generate signals in response to the received radio waves, a digital baseband system configured to generate digital data in response to the signals, wherein the digital data is indicative of a health parameter of the person, and a communications interface configured to transmit the digital data generated by the digital baseband system from the wearable health monitoring device.
Abstract: A system and method for predicting an outcome specific signal (OSS) in test subject images. The method includes detecting the OSS in image data from outcome and control subjects; extracting a volumetric space containing the detected OSS and dividing the extracted volumetric space into a first set of sub-regions; determining a set of image features for the first set of sub-regions; determining a global feature set (GFS) by averaging the set of image features; utilizing a machine learning algorithm to select a subset of discriminant GFS to determine a best signal model (BSM) that distinguishes the outcome and control subjects; extracting volumetric space containing the target anatomy in test subject images and dividing the extracted volumetric space into a second set of sub-regions; and determining the subset of discriminant GFS at each of the second set of sub-regions, and using them in the BSM to generate the predicted OSS.
Abstract: There is provided a method that includes receiving pulse-oximetry measurements (SpO2) of a patient's peripheral arterial blood oxygen saturation during a first time period, and receiving breathing samples of the patient. The method further includes determining, using breathing samples of the patient, oxygen partial pressure measurements (PAO2) and carbon dioxide partial pressure measurements (PACO2) from exhaled air of the patient during a steady-state breathing of the patient during the first time period.
Abstract: A method of locating a source of vibrational cardiac energy within a human, includes acquiring time synchronized vibrational cardiac data noninvasively from a surface of the human's body with at least three transducer channels. A time-to-frequency transformation is performed on the vibrational cardiac data to obtain a sequence of heart cycle ensemble averaged power spectral density (PSD) estimates. A feature is identified in the PSD estimates. A vernier band (VB) in frequency is established for the feature. The VB portion of the PSI) estimates that correspond to the feature are processed to obtain a vibrational energy intensity level estimate at a spatial location within the human's body. A metric of clinical significance is obtained from the strength of the estimated vibration intensity within a VB and at a location relative to a background noise level.
Type:
Grant
Filed:
August 4, 2018
Date of Patent:
October 5, 2021
Assignee:
PHONOFLOW MEDICAL, LLC
Inventors:
Norman Lee Owsley, Ralph Walter Zaorski
Abstract: Steady flow hydrodynamic performance testing is performed on a valved prosthesis mounted in a test conduit. The system is configured with prescribed test condition inputs into control software. Upon test initiation, a steady flow pump is activated and automatically adjusts its flow based on the software logic to meet the prescribed first test condition. During forward flow pressure drop testing, the flow pump is automatically adjusted to achieve and hold a particular flow rate. During back flow leakage testing, the steady flow pump is automatically adjusted to achieve and hold a particular differential pressure across the test prosthesis while a flow rate of the leakage flow is measured. After a first test condition has been achieved, the system control software then automatically adjusts the pump flow rate to meet a second test condition. This process then continues until all conditions set by software inputs are evaluated.
Type:
Grant
Filed:
January 15, 2021
Date of Patent:
September 7, 2021
Assignee:
Biomedical Device Consultants and Laboratories of Colorado, LLC
Abstract: A medical image diagnostic apparatus according to an embodiment includes an estimation unit, an extraction unit, and a specifying unit. The estimation unit estimates a position of a plaque in a blood vessel based on data of CT images constituting a time series, with the blood vessel being enhanced by a contrast medium. The extraction unit extracts regions constituting the blood vessel from the CT images. The specifying unit specifies stress values respectively corresponding to the regions based on a moving displacement due to cardiac pulsation in each of the regions, and specifies an exfoliation risk of the plaque based on an index indicating hardness of the plaque and the stress value in the region corresponding to the position of the plaque.
Abstract: A detection apparatus and a method are provided for detecting a respiratory movement of a patient. The detection apparatus includes at least two metallic U-shaped signal coupling elements that are interleaved so that between the signal coupling elements arises at least one coupling point at which a signal may be transferred between the two signal coupling elements. Analysis electronics are configured to detect a change in a received signal produced in a second of the signal coupling elements that is acting as a receiver in the near-field region of the first signal coupling elements as a result of a signal given for one of the signal coupling elements that is acting as a transmitter being coupled into the second of the signal coupling elements, which change indicates the respiratory movement.
Abstract: A method and a system for modelling a human heart based on a plurality of emission tomography images representing concentrations of a tracer that has been injected at a specific time is presented. The method comprising: extracting time activity curves of a tracer that has been injected for a plurality of pixels and/or voxels; identifying first-pass peaks of the time activity curves corresponding to an arrival time of the injected tracer at the corresponding pixel/voxel; defining a model comprising at least two portions of the heart; and arranging the at least two portions in relation to each other by comparing the arrival times of the first-pass peaks. The method and model may be used to obtain an estimate of the volume of the left or right atrium of the human heart.
Abstract: A controller-based apparatus for diagnosis and treatment of a subject with acquired brain injury and dysfunction. Various embodiments of the invention described herein recognize that different body postures affect the autonomic nervous system differently, and therefore various external stimuli may have different therapeutic efficacies when a patient or subject is in each body posture. Postures, such as walking, sitting, standing, prone and supine, have different effects on the autonomic nervous system, and therefore some stimuli have different physiological efficacies while a patient or subject is in a given body posture. Disclosed embodiments of the present invention leverage this relationship to provide a controller-based apparatus that determines a combination of posture and stimulus that has optimal therapeutic effect, while minimizing health practitioner involvement.
Abstract: Computer implemented methods, systems and devices are provided to monitor for potential heart failure (HF). Cardiac activity (CA) data is obtained and filtered to obtain respiration data indicative of a respiration pattern. The respiration data is analyzed to determine one or more respiration characteristics of interest (COI) that are recorded along with collection time information to form an HF monitoring log. Additionally or alternatively, the CA data is analyzed to detect an event of interest. The cardiac activity data is filtered to obtain respiration data indicative of a respiration pattern, and the respiration data is analyzed for respiration induced under detection of the event of interest from the CA data.
Type:
Grant
Filed:
November 3, 2017
Date of Patent:
May 11, 2021
Assignee:
PACESETTER, INC.
Inventors:
Stephanie C. Sun, Xiaoyi Min, Alan B. Vogel, Fujian Qu, Stuart Rosenberg
Abstract: In one embodiment of the invention, a cuff-less blood pressure measuring system is disclosed including cuff-less blood pressure scanner with a vital signs signal processor having an adaptive blood pressure model. A machine learning process is further disclosed to tune the adaptive blood pressure model of the cuff-less blood pressure measuring system to the user.
Type:
Grant
Filed:
March 10, 2017
Date of Patent:
April 20, 2021
Assignee:
HEALTHY.IO LTD.
Inventors:
Piotr Przybyszewski, Eunseog Youn, Walter De Brouwer, Brian G. La Plume, Babak Aghazadeh, Maxim Akhterov
Abstract: Techniques exist for measuring local blood velocity of flow rate waveforms in, for example, mammalian vascular segments. A method and system for deriving information on disease in vascular segments, for example mean pressure, drop in mean pressure and/or hydraulic resistance, from such measured waveforms is described. The waveforms can, for example, be measured non-invasively using Doppler ultrasound or magnetic resonance techniques. Form factors (Vff, Pff) for the velocity waveform and the central arterial pressure are determined. Stenosis may be detected by detecting changes e.g in Vff/Pff.
Abstract: The present invention provides a device with a pressure control system and methods for controlling the application of negative pressure to an external surface of an individual for creating and/or maintaining patency of the upper airway passage. The device is configured to fit under the chin of a subject at an external location corresponding approximately with the subject's internal soft tissue associated with the neck's anterior triangle. The pressure control system contains control module elements that may include circuit board elements, digital output barometer elements, sensor elements, processing elements and memory elements to optimize device function and safety of the device through regulation of the flow rate of the air pump.
Type:
Grant
Filed:
November 3, 2017
Date of Patent:
February 23, 2021
Assignees:
SOMMETRICS, INC., TTP PLC.
Inventors:
Jerome K. Aarestad, Stephen Maine, Thomas John Harrison
Abstract: A subscriber station for a serial bus system are provided. The subscriber station includes a message creating device for creating a message to be transmitted serially via a bus of the bus system for at least one further subscriber station of the bus system, so that the message has a first time segment and a second time segment, and a transceiver device for serially sending the message to the bus in such a way that data in the first time segment are sent with a slower data rate than in the second time segment, the transceiver device having in the second time segment at least at times an exclusive, collision-free access to the bus, the message creating device to insert an identification number into the first time segment and to begin the second time segment at the latest after the final bit of the identification number and an additional bit.
Type:
Grant
Filed:
March 8, 2019
Date of Patent:
February 23, 2021
Assignee:
Robert Bosch GmbH
Inventors:
Arthur Mutter, Simon Weissenmayer, Steffen Walker
Abstract: Database systems and techniques are disclosed for accessing data stores of digital medical images, processing the digital images, and displaying the digital images to efficiently provide information in an interactive user interface. The disclosure may advantageously provide efficient and rapid dynamic interaction with digital images accessed from one or more databases to enable user detection of differences between related digital images. Interactive user interfaces may be dynamically updated to provide rapid comparison of digital images. Further, digital images from multiple data sources may be automatically sorted by the system according to attributes associated with the images and rules and/or preferences of the user. In an embodiment the user may select a digital image from a first data source, and the system automatically determines and displays one or more comparison images from other image data sources.