Detecting Body Movement Attending Breathing Patents (Class 600/534)
  • Patent number: 10258531
    Abstract: Systems and methods are disclosed to monitor physiological for the occurrence of life threatening events and to apply stimulation to prevent the occurrence of said life-threatening events. Systems and methods for applying the stimulation are also disclosed. These systems include applying the stimulation through via a mattress having a passive section and an active section, a plurality of focal stimulators, and/or an array to apply the stimulation are also disclosed. These devices include a mattress with an active region and a passive region, a stimulating array do deliver targeted stimulation, and a plurality of stimulators to apply focused stimulation.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: April 16, 2019
    Assignees: PRESIDENT AND FELLOWS OF HARVARD COLLEGE, THE GENERAL HOSPITAL CORPORATION, UNIVERSITY OF MASSACHUSETTS
    Inventors: David Paydarfar, Riccardo Barbieri, Premananda Pai Indic, Ruby Kandah, James Brian Niemi, John Paul Osborne, Hani M. Sallum, Amanda V. Wozniak
  • Patent number: 10212495
    Abstract: The programmable monitoring system comprises one or more motion sensors, one or more temperature sensors, one or more door sensors and one or more pill box sensors. Each sensor is tagged with a unique code readable by a smart phone camera and software program which allows alarms on the smart phone to be set. The alarms are individually set for any or all of the sensors based on habits of the person being monitored.
    Type: Grant
    Filed: January 16, 2018
    Date of Patent: February 19, 2019
    Assignee: ALCHERA INCORPORATED
    Inventors: Lester John Lloyd, Timothy Patrick Lloyd, Lauren Felix Yazolino
  • Patent number: 10195377
    Abstract: Provided is a configuration capable of executing a detection test for a comfort level including the quality of sleep, which is measurable at home without requiring the measurement of brain waves or electrocardiogram. The respiratory waveform of a subject during sleep is continuously measured and recorded from the respiratory gas flow, etc., and is window-Fourier transformed at each measurement time to generate a frequency spectrum, and a bandwidth including a respiratory frequency is extracted. The index indicating the regularity of the respiratory period of the subject is also calculated at each time point during the sleep, and the time-dependency of this index during the sleep is represented as a graph. A medical device includes a sleep evaluation system equipped with a control means for performing control so that a sleep cycle repeated at a cycle of about 90 minutes is clearly observed if the comfort level including the quality of sleep of the subject is favorable.
    Type: Grant
    Filed: August 11, 2010
    Date of Patent: February 5, 2019
    Assignees: Teijin Pharma Limited
    Inventor: Hidetsugu Asanoi
  • Patent number: 10121363
    Abstract: An alarm triggering method for a sensor and an electronic device using the same are proposed. The method is applicable to an electronic device and includes the following steps. A sensor signal is received from the sensor. Whether a signal magnitude of the sensor signal satisfies a first triggering condition associated with a first determination threshold is determined. In response to the signal magnitude satisfying the first triggering condition, whether the signal magnitude satisfies a second triggering condition associated with a second determination threshold or a third triggering condition associated with a time determination threshold is further determined, where the second determination threshold is greater than the first determination threshold. When the signal magnitude satisfies the second triggering condition or the third triggering condition, the sensor is determined to be in an alarm state so as to output an alarm signal.
    Type: Grant
    Filed: September 7, 2017
    Date of Patent: November 6, 2018
    Assignees: LITE-ON ELECTRONICS (GUANGZHOU) LIMITED, Lite-On Technology Corporation
    Inventors: Su-Chen Lin, Shr-Rung Lin, Chun-Yen Chen
  • Patent number: 10052048
    Abstract: A respiratory monitor comprises: a first sensor (20, 70) configured to generate a respiration-related motion monitoring signal (72) indicative of respiration related motion; a second sensor (20, 22, 80, 82) configured to generate a sound monitoring signal (84) indicative of respiration-related sound; and a signals synthesizer (90) configured to synthesize a respiratory monitor signal (46) based on the respiration-related motion monitoring signal and the respiration-related sound monitoring signal. A sensor for use in respiratory monitoring comprises an accelerometer (30) and a magnetometer (32) together defining a unitary sensor (20) configured for attachment to a respiring subject (10) so as to move as a unit responsive to respiration related motion of the respiring subject.
    Type: Grant
    Filed: May 4, 2009
    Date of Patent: August 21, 2018
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Jasper Klewer, Haris Duric, Teunis Jan Ikkink
  • Patent number: 9998233
    Abstract: An optical reception apparatus may include a receiver, a monitor, and a controller. The optical reception apparatus receives multi-carrier modulated signal light modulated by a multi-carrier modulation scheme. The multi-carrier modulation scheme is available to allocate different transmission conditions for each of a plurality of subcarriers in accordance with transmission characteristics of the subcarriers. The receiver may receive from an optical transmission line a training signal light allocated with the same transmission conditions for each of the subcarriers. The monitor may monitor the transmission characteristics of the training signal light to detect a frequency at which a dip of the transmission characteristics occurs. The controller may control, based on the frequency detected by the monitor, a dispersion compensation for the multi-carrier modulated signal light having received a dispersion from the optical transmission line.
    Type: Grant
    Filed: January 11, 2016
    Date of Patent: June 12, 2018
    Assignee: FUJITSU LIMITED
    Inventors: Ryou Okabe, Masato Nishihara, Toshiki Tanaka, Yutaka Kai, Tomoo Takahara
  • Patent number: 9987446
    Abstract: There is suggested a system for automated adjustment of a pressure set by a respiration device, in particular a positive end-expiratory pressure and/or a maximum airway pressure, comprising: an arrangement for electrical impedance tomography for detecting an electrical impedance distribution along at least a two-dimensional cross-section through the human thorax at least at the end of an inspiration phase and at the end of an associated expiration phase; a device for dividing the detected electrical impedance distribution at the end of the inspiration phase and at the end of the expiration phase into a plurality of EIT pixels and for determining a value of the electrical impedance at the end of the inspiration phase and at the end of the expiration phase, as associated with a respective EIT pixel; and a device for automated adjustment of the pressure set by the respiration device on the basis of a comparison (i) of a deviation between the value of the electrical impedance at the end of the inspiration phase a
    Type: Grant
    Filed: February 10, 2014
    Date of Patent: June 5, 2018
    Assignee: HAMILTON MEDICAL AG
    Inventors: Dominik Novotni, Thomas Laubscher
  • Patent number: 9990722
    Abstract: An electronic device includes a processor configured to control an operation of the electronic device, a memory device coupled to the processor, where the memory device is configured to operate as a main memory of the electronic device, and a display device coupled to the processor, where the display device is configured to display an original image based on first image data for the original image at a first frame, and to display a bioeffect image based on second image data for the bioeffect image at a second frame.
    Type: Grant
    Filed: October 31, 2014
    Date of Patent: June 5, 2018
    Assignee: SAMSUNG DISPLAY CO., LTD.
    Inventors: Il-Nam Kim, Hak-Sun Kim, Won-Sang Park, Jong-Sung Bae, Jong-In Baek
  • Patent number: 9974487
    Abstract: A heart rate detection module including a PPG measuring device, a motion sensor and a processing unit is provided. The PPG measuring device is configured to detect a skin surface in a detection period to output a PPG signal. The motion sensor is configured to output an acceleration signal corresponding to the detection period. The processing unit is configured to respectively convert the PPG signal and the acceleration signal to first frequency domain information and second frequency domain information, determine a denoising parameter according to a maximum spectrum peak value of the second frequency domain information to denoise the first frequency domain information, and calculate a heart rate according to a maximum spectrum peak value of the denoised first frequency domain information.
    Type: Grant
    Filed: June 5, 2015
    Date of Patent: May 22, 2018
    Assignee: PIXART IMAGING INC.
    Inventors: Chih-Hsin Lin, Ren-Hau Gu
  • Patent number: 9883821
    Abstract: The invention relates to a method for monitoring the respiration activity of a subject, comprising the acquisition of a sensor signal of at least one Doppler-Radar sensor representing the respiration activity of a subject, the transformation of the sensor signal into a transformation signal being a series according to Formula (I) where ak is a set of predetermined constant coefficients specific for one individual subject, and processing the transformation signal S(t). The transformation signal can be analyzed with basic signal processing techniques that are applied in the field of inductive plethysmography. The invention is further related to a corresponding monitoring system.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: February 6, 2018
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventor: Jens Muehlsteff
  • Patent number: 9805623
    Abstract: A training system and training method for cardiopulmonary resuscitation (CPR) is disclosed. The training system includes a manikin, a chest compression module, a breathing module and a data processing module. The chest compression module and the breathing module are installed on the manikin and connected to the data processing module. During a training session, a student performs CPR on the manikin. The data processing module evaluates and provides feedback regarding the chest compressions and the rescue breathings performed by the student. The training method includes positioning the chest compression module and the breathing module on the manikin, initializing the chest compression module and the breathing module to identify compression and breathing characteristics of the manikin, performing CPR on the manikin, and evaluating the CPR based on the compression and breathing characteristics of the manikin.
    Type: Grant
    Filed: April 8, 2016
    Date of Patent: October 31, 2017
    Assignee: I.M.LAB Inc.
    Inventors: Ye Ram Kwon, Shin Hoo Park, Sung Won Lee, Hyeong Mook Lee
  • Patent number: 9792408
    Abstract: The presence or absence of objects tagged with transponders may be determined in an environment in which medical procedures are performed via an interrogation and detection system which includes a controller and a plurality of antennas positioned along a patient support structure. The antennas may be positioned along an operating table, bed, mattress or pad, sheet, or may be positioned on a drape, or shade. Respective antennas may successively be activated to transmit interrogation signals. Multiple antennas may be monitored for responses from transponders to the interrogation signals. For example, all antennas other than the antenna that transmitted the most recent interrogation signal may be monitored. Antennas may be responsive to force, a signal indicative of such force being produced. A wireless physiological condition monitor may detect patient physiological conditions and wirelessly transmit signals indicative of such.
    Type: Grant
    Filed: October 27, 2009
    Date of Patent: October 17, 2017
    Assignee: Covidien LP
    Inventors: William A. Blair, Bruce E. Barnes, David A. Poirier
  • Patent number: 9687664
    Abstract: Implantable devices and/or sensors can be wirelessly powered by controlling and propagating electromagnetic waves in a patient's tissue. Such implantable devices/sensors can be implanted at target locations in a patient, to stimulate areas such as the heart, brain, spinal cord, or muscle tissue, and/or to sense biological, physiological, chemical attributes of the blood, tissue, and other patient parameters. The propagating electromagnetic waves can be generated with sub-wavelength structures configured to manipulate evanescent fields outside of tissue to generate the propagating waves inside the tissue. Methods of use are also described.
    Type: Grant
    Filed: September 16, 2014
    Date of Patent: June 27, 2017
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Ada Shuk Yan Poon, Alexander Jueshyan Yeh, Yuji Tanabe, John Ho, Sanghoek Kim
  • Patent number: 9662507
    Abstract: Implantable devices and/or sensors can be wirelessly powered by controlling and propagating electromagnetic waves in a patient's tissue. Such implantable devices/sensors can be implanted at target locations in a patient, to stimulate areas such as the heart, brain, spinal cord, or muscle tissue, and/or to sense biological, physiological, chemical attributes of the blood, tissue, and other patient parameters. The propagating electromagnetic waves can be generated with sub-wavelength structures configured to manipulate evanescent fields outside of tissue to generate the propagating waves inside the tissue. Methods of use are also described.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: May 30, 2017
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Ada Shuk Yan Poon, Alexander Jueshyan Yeh, Yuji Tanabe, John Ho, Sanghoek Kim
  • Patent number: 9642470
    Abstract: A support apparatus includes a force sensing array positioned thereon that includes multiple layers of material that are arranged to define an elastically stretchable sensing sheet. The sensing sheet may be placed underneath a patient to detect interface forces or pressures between the patient and the support structure that the patient is positioned on. The force sensing array includes a plurality of force sensors. The force sensors are defined where a row conductor and a column conductor approach each other on opposite sides of a force sensing material, such as a piezoresistive material. In order to reduce electrical cross talk between the plurality of sensors, a semiconductive material is included adjacent the force sensing material to create a PN junction with the force sensing material. This PN junction acts as a diode, limiting current flow to essentially one direction, which, in turn, reduces cross talk between the multiple sensors.
    Type: Grant
    Filed: July 25, 2014
    Date of Patent: May 9, 2017
    Assignee: Stryker Corporation
    Inventor: Geoffrey L. Taylor
  • Patent number: 9630015
    Abstract: Implantable devices and/or sensors can be wirelessly powered by controlling and propagating electromagnetic waves in a patient's tissue. Such implantable devices/sensors can be implanted at target locations in a patient, to stimulate areas such as the heart, brain, spinal cord, or muscle tissue, and/or to sense biological, physiological, chemical attributes of the blood, tissue, and other patient parameters. The propagating electromagnetic waves can be generated with sub-wavelength structures configured to manipulate evanescent fields outside of tissue to generate the propagating waves inside the tissue. Methods of use are also described.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: April 25, 2017
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Ada Shuk Yan Poon, Alexander Jueshyan Yeh, Yuji Tanabe, John Ho, Sanghoek Kim
  • Patent number: 9621684
    Abstract: A physiological monitoring arrangement comprises a biometric sensor device coupled to a first garment, a first handheld computing device, and a second handheld computing device. The first handheld computing device is configured to act as a master in a device network and the biometric sensor is configured to act as a slave in the device network. The second handheld computing device is configured for wireless communication with both the biometric sensor device and the first handheld computing device according to the communications protocol in the device network. In particular, the second handheld computing device is configured to act as a slave to the first handheld computing device if the first handheld computing device is present in the device network, and the second handheld computing device is configured to act as a master to the biometric sensor device if the first handheld computing device is not present in the device network.
    Type: Grant
    Filed: February 7, 2014
    Date of Patent: April 11, 2017
    Assignee: Under Armour, Inc.
    Inventors: Mark A. Oleson, F. Grant Kovach
  • Patent number: 9610457
    Abstract: Implantable devices and/or sensors can be wirelessly powered by controlling and propagating electromagnetic waves in a patient's tissue. Such implantable devices/sensors can be implanted at target locations in a patient, to stimulate areas such as the heart, brain, spinal cord, or muscle tissue, and/or to sense biological, physiological, chemical attributes of the blood, tissue, and other patient parameters. The propagating electromagnetic waves can be generated with sub-wavelength structures configured to manipulate evanescent fields outside of tissue to generate the propagating waves inside the tissue. Methods of use are also described.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: April 4, 2017
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Ada Shuk Yan Poon, Alexander Jueshyan Yeh, Yuji Tanabe, John Ho, Sanghoek Kim
  • Patent number: 9498162
    Abstract: Methods and systems for characterizing a seizure event in a patient, including determining a time of beat sequence of the patient's heart, determining a first HR measure for a first window, determining a second HR measure for a second window, wherein at least a portion of the first window occurs after the second window, determining at least one HR parameter based upon said first HR measure and said second HR measure, identifying an onset of the seizure event in response to determining that at least one HR parameter crosses an onset threshold, identifying an end of the seizure event in response to determining that at least one HR parameter crosses an offset threshold.
    Type: Grant
    Filed: April 25, 2011
    Date of Patent: November 22, 2016
    Assignee: CYBERONICS, INC.
    Inventors: Wangcai Liao, Jicong Zhang
  • Patent number: 9492105
    Abstract: The present invention is related to a compact, portable, user-friendly sleep disorder diagnosis and screening device. The present invention is further related to a single-ended respiratory inductance plethysmography belt used to monitor certain parameters of a subject's respiration while at the same time serving to position and mechanically stabilize a compact data acquisition system about a subject's thorax or abdomen. In one application of the present invention to screen for sleep disorders, the single-ended respiratory inductance plethysmography belt is worn by the subject and a compact data acquisition unit is attached to the belt to which appropriate additional sensors and components such as a pulse oximeter and a nasal cannula are connected. Data is then collected using the belt, compact data acquisition unit, and sensors and is used to determine whether the subject has, or is at risk of having, a sleep disorder.
    Type: Grant
    Filed: February 13, 2009
    Date of Patent: November 15, 2016
    Assignee: Cleveland Medical Devices Inc.
    Inventors: Hani Kayyali, Matthew Tarler, Edward J. Rapp
  • Patent number: 9491704
    Abstract: An electronic device has a communication subsystem with a power saving mode and an active mode. The communication subsystem is set to switch between the power saving mode and the active mode depending on thresholds of communication traffic. The settings for the thresholds depend on the activity detected on the electronic device.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: November 8, 2016
    Assignees: BlackBerry Limited, 2236008 Ontario Inc.
    Inventors: Manpreet Kaur Gosal, Nils Patrik Lahti
  • Patent number: 9462978
    Abstract: A sensing device comprises a substrate material layer and a plurality of sensors provided on the substrate material layer. The plurality of sensors is electrically connected to form a loop. The loop has two output ends. There is a loop output value between the two output ends. The loop output value varies when the sensors are subjected to an external force. Each sensor has one induction value. The induction value of each sensor is different from each other. A total induction value of any one or more sensors is different from a total induction value of the other one or more sensors.
    Type: Grant
    Filed: January 24, 2009
    Date of Patent: October 11, 2016
    Assignee: Ming Young Biomedical Corp.
    Inventors: Chang-Ming Yang, Tzulin Yang, Hao Yang
  • Patent number: 9445747
    Abstract: An apnea detector is disclosed. A detector unit in communication with a capacitive type sensor is adapted to receive an electrical signal which is indicative of variable capacitance resulting from movement of a subject and to emit an alert signal when the received electrical signal is indicative of symptoms of apnea. In one embodiment, a detector unit is in communication with a curvature sensor adapted to detect a variable curvature of a subject body surface resulting from breathing patterns of a subject. The detector unit is attached to an article of clothing of the subject.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: September 20, 2016
    Assignee: DIAPERTECH LTD
    Inventors: Shaked Rahamim, Ori Elyada
  • Patent number: 9445172
    Abstract: A novel headphone system includes a first speaker assembly, a second speaker assembly, and an interactive visual display system. The interactive visual display system includes a display operative to output visual contents according to interaction with a user. In a more particular embodiment, the headphone system includes an external device interface that enables a user to interact with the contents displayed from the screen via an external device or via the Internet. In another embodiment, the interactive visual display system is removable from the rest of the headphone system and can optionally be installed in another compatible non-headphone device.
    Type: Grant
    Filed: August 1, 2013
    Date of Patent: September 13, 2016
    Inventors: Ronald Pong, King Hei Liu
  • Patent number: 9386952
    Abstract: Method and device for diagnosing and/or treating sleep apnea and related sleep disorders, such as snoring and respiratory effort-related arousals, includes an inflatable implement which is applied to the external surface of the chest and/or abdomen (Vest). Pressure is caused to rise to a predetermined positive value. The rate of airflow into and/or out of said Vest is monitored, whereby the Vest Flow is displayed or processed to obtain information about the breathing characteristics of the patient.
    Type: Grant
    Filed: June 8, 2011
    Date of Patent: July 12, 2016
    Assignee: YRT LIMITED
    Inventor: Magdy Younes
  • Patent number: 9333351
    Abstract: Methods and systems are provided to deliver a neural stimulation therapy to treat apnea episodes. The methods and systems detect a respiratory pattern of a patient and identify a type associated with the respiratory pattern. A sleep stage is detected that the patient is experiencing and the method and system identify when the sleep stage warrants therapy. When the respiratory pattern corresponds to an apnea episode (AE) and the sleep stage warrants therapy, the methods and systems deliver an apnea episode terminating neuro-stimulation (AET-NS) therapy configured to terminate the AE. A type of AE therapy that is delivered may be based on the sleep stage that was detected. The methods and systems may determine whether the AET-NS therapy successfully terminated the AE, and, if not, adjust the AET-NS therapy and deliver a new AET-NS therapy.
    Type: Grant
    Filed: December 16, 2013
    Date of Patent: May 10, 2016
    Assignee: Pacesetter, Inc.
    Inventors: Edith Arnold, Kritika Gupta, Edward Karst, Allen Keel, Yelena Nabutovsky, Riddhi Shah
  • Patent number: 9326705
    Abstract: The present invention is directed to systems and methods for monitoring characteristics of a subject. A system according to an exemplary embodiment of the invention includes a sensor subsystem including at least one respiratory sensor disposed proximate to the subject and configured to detect a respiratory characteristic of the subject, wherein the sensor subsystem is configured to generate and transmit at least one respiratory signal representing the respiratory characteristic, and at least one physiological sensor disposed proximate to the subject and configured to detect a physiological characteristic of the subject, wherein the sensor subsystem is configured to generate and transmit at least one physiological signal representing the physiological characteristic, and a processor subsystem in communication with the sensor subsystem, the processor subsystem being configured to receive at least one of the at least one respiratory signal and the at least one physiological signal.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: May 3, 2016
    Assignee: ADIDAS AG
    Inventor: P. Alexander Derchak
  • Patent number: 9314186
    Abstract: A body fat measurement device includes a plurality of electrodes including back area electrodes and upper limb electrodes, a body impedance measurement unit that measures a body impedance using the plurality of electrodes, a body composition information calculation unit that calculates a body fat mass based on the body impedance, a fitting belt for bringing the back area electrodes into contact with the surface of the measurement subject's back area in a pressurized state, and an upper limb unit that includes a gripping portion that can be gripped by the measurement subject's hand, the upper limb electrodes being provided in the gripping portion. The upper limb unit can be attached to and detached from the fitting belt.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: April 19, 2016
    Assignee: OMRON HEALTHCARE Co., Ltd.
    Inventors: Yasuaki Murakawa, Takehiro Hamaguchi, Kazuhisa Tanabe, Hiromichi Karo
  • Patent number: 9289266
    Abstract: Described herein are drive systems and methods. One exemplary system includes a tool having a proximal handle and a catheter body. The tool can be mated with a rail and the rail mated with a frame. The connection between the tool and rail and/or the rail and frame can allow relative movement of the tool with respect to the frame, a patient, and/or a point of reference. In one exemplary configuration the handle of the tool rotates around an axis that corresponds to a portion of the catheter body, such that rotational movement of the handle has a minimal impact on longitudinal movement and/or position of a distal end of the tool.
    Type: Grant
    Filed: November 28, 2007
    Date of Patent: March 22, 2016
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Barry Weitzner, Paul J. Smith, Gary S. Kappel, John B. Golden, Brian J. Intoccia, Katie Krueger, Naroun Suon
  • Patent number: 9242114
    Abstract: This document relates to cardiac resuscitation, and in particular to systems and techniques for protecting rescuers from electrical shock during defibrillation of a patient.
    Type: Grant
    Filed: November 27, 2013
    Date of Patent: January 26, 2016
    Assignee: ZOLL Medical Corporation
    Inventors: Gary A. Freeman, Weilun Quan
  • Patent number: 9192316
    Abstract: A system is provided for measuring biometric signals, including at least two electrodes, wherein at least one is a capacitive electrode with a flexible structure, the system having a circuit for measuring the voltage between the two electrodes, where in some embodiments both electrodes are capacitive electrodes, and can be arranged as flexible belts, the system being suitable for measuring ECG signals and can be configured to measure also respiratory effort with Respiratory Inductive Plethysmography (RIP) technology, using the same electrodes which are used for measuring capacitively the ECG signals, a method being further provided for measuring biosignals with the system of the invention, the method further including generating an added current signal with a signal generator connected to the circuit, where the added signal has a frequency substantially removed from the frequency of the biosignal of interest, and by measuring the voltage signal of the frequency component corresponding to the added current sig
    Type: Grant
    Filed: May 17, 2010
    Date of Patent: November 24, 2015
    Assignee: NOX MEDICAL
    Inventors: Sveinbjorn Hoskuldsson, Bjorgvin Gudmundsson
  • Patent number: 9192333
    Abstract: A wireless system and methods for non-invasive detection of brain injury that includes a detection device for reliable monitoring and analyzing of sleep movement in comparison with normal sleep movement architecture to identify dampened sleep movement patterns indicative of brain injury.
    Type: Grant
    Filed: May 12, 2011
    Date of Patent: November 24, 2015
    Assignee: University of Main System Board of Trustees
    Inventors: Marie Hayes, Ali Abedi
  • Patent number: 9174046
    Abstract: The present invention provides, among other things, apparatus and methods of use for treating a subject in need of assistance with breathing. In some embodiments the subject suffers from airflow obstruction. In some embodiments, the subject suffers from chronic obstructive pulmonary disease.
    Type: Grant
    Filed: January 25, 2012
    Date of Patent: November 3, 2015
    Inventors: Cedric Francois, Angus McLachlan
  • Patent number: 9089300
    Abstract: The present disclosure provides devices for decreasing the incidence of Cesarean childbirth by managing the labor process. In one aspect, a tactile feedback device is positioned adjacent the perianal tissues. A perianal support device includes a perianal support member having a pressure surface configured for engagement with tissue adjacent an anal orifice and a pressure detecting system associated with the perianal support member to detect pressure indicative of pressure on the perianal tissue of a patient.
    Type: Grant
    Filed: October 31, 2014
    Date of Patent: July 28, 2015
    Assignee: Stretrix Inc.
    Inventors: David D. Blurton, Mark Buchanan
  • Patent number: 9089301
    Abstract: The present disclosure provides devices for supporting pelvic floor tissues to decrease the incidence of pelvic floor injuries during child birth. In one aspect, a pelvic floor support device is positioned adjacent the pelvic floor tissues. The pelvic floor support device includes a support member having a pressure surface configured for engagement with tissue adjacent the pelvic floor and a pressure detecting system associated with the pelvic floor support member to detect pressure indicative of pressure on the pelvic floor of a patient.
    Type: Grant
    Filed: November 17, 2014
    Date of Patent: July 28, 2015
    Assignee: Stetrix Inc.
    Inventors: David D. Blurton, Mark Buchanan
  • Patent number: 9028422
    Abstract: A patient monitor is disclosed for detecting patient movement or abnormal breathing. Images of a patient are obtained by a stereoscopic camera. These images are then processed by a 3D position determination module which determines measurements indicative of positions of at least part of a patient. The obtained measurements are then passed to a model generation module which generates a breathing model of the variation in position of the at least part of a patient during a breathing cycle. Subsequently abnormal breathing or patient movement can be detected by processing further images obtained by the stereoscopic camera to determine more measurements indicative of positions of at least part of a patient. These measurements are then compared with a stored breathing model by a comparison module.
    Type: Grant
    Filed: February 12, 2009
    Date of Patent: May 12, 2015
    Assignee: Vision RT Limited
    Inventors: Ivan Daniel Meir, Norman Ronald Smith, Anthony Christopher Ruto
  • Patent number: 9019106
    Abstract: A method is provided for dismissing or altering a user-configured alarm upon detection of the user's sleep state. The method includes associating an alarm device with the user's body by securing a wearable device to the user's wrist, placing the device in a pocket, integrating the device into the user's clothing such as a belt, or otherwise placing the device in contact with or adjacent to the user. The device includes one or more sensors for detecting physiological and/or environmental parameters such as heart, respiration, or pulse rate, body movements, eye movements, ambient light, and the like. If the user is asleep, the alarm is actuated in a typical manner. If the user is awake, the alarm is suppressed. If the user is neither asleep nor fully awake, the alarm is adjusted to provide an appropriate level of stimulation.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: April 28, 2015
    Assignee: Google Technology Holdings LLC
    Inventors: Rachid Mohsen Alameh, William Paul Alberth, Jr., Phillip David Rasky
  • Publication number: 20150112220
    Abstract: A system for and a method of wirelessly monitoring one or more patients can include transmitting ultra-wideband pulses toward the one or more patients, receiving ultra-wideband signals, and sampling the ultra-wideband signals. Sampling the ultra-wideband pulses can be performed with a sample rate that is less than the Nyquist rate. Impulse response can be estimated and/or recovered by exploiting sparsity of the impulse response.
    Type: Application
    Filed: October 23, 2014
    Publication date: April 23, 2015
    Applicant: KING ABDULLAH UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Furrukh Sana, Tarig Ballal Khidir Ahmed, Tareq Al-Naffouri, Ibrahim Hoteit
  • Publication number: 20150094606
    Abstract: What is disclosed is a system and method for identifying a patient's breathing pattern for respiratory function assessment without contact and with a depth-capable imaging system. In one embodiment, a time-varying sequence of depth maps are received of a target region of a subject of interest over a period of inspiration and expiration. Once received, the depth maps are processed to obtain a breathing signal for the subject. The subject's breathing signal comprises a temporal sequence of instantaneous volumes. One or more segments of the subject's breathing signal are then compared against one or more reference breathing signals each associated with a known pattern of breathing. As a result of the comparison, a breathing pattern for the subject is identified. The identified breathing pattern is then used to assess the subject's respiratory function. The teachings hereof find their uses in an array of diverse medical applications. Various embodiments are disclosed.
    Type: Application
    Filed: October 2, 2013
    Publication date: April 2, 2015
    Applicant: XEROX CORPORATION
    Inventors: Lalit Keshav MESTHA, Eribaweimon SHILLA, Edgar A. BERNAL, Graham S. PENNINGTON, Himanshu J. MADHU
  • Patent number: 8979766
    Abstract: A sensor system comprises a mat (20) for placement over a patient's mattress including a number of sensors (10) located in the mat. The sensors include a sensor housing (12), a sound vibration sensing element in the form of a PVDF membrane (13), and means for amplifying sensed sounds. The PVDF membrane is coated/covered with a typically latex, impedance matching layer (14). The sensor automatically provides for auscultation, in which the patient's own weight, from the patient lying on the bed, compresses their thorax against the membrane, compressing also the patient's clothing, bed sheet and mattress cover material between the two. The recoil in the mattress opposes the body mass, thus compressing the membrane against the thorax. The impedance matching layer on top of the membrane transmits fine breath sounds through to the membrane as the latex does not weaken or attenuate the fine breath sounds but transmits them to the PVDF membrane. However being flexible, it is not uncomfortable to lie on.
    Type: Grant
    Filed: June 10, 2008
    Date of Patent: March 17, 2015
    Assignee: Sonomedical Pty. Ltd.
    Inventor: Colin Edward Sullivan
  • Publication number: 20150057560
    Abstract: A system and method for monitoring sleep stages to determine optimal arousal times and to alert an individual to negative states of wakefulness. In an embodiment, a device receives pressure data from at least one pressure sensor, where the pressure sensor is associated with furniture used for an individual to sleep. The device uses the pressure data to determine a sleep stage for the individual. The sleep stage is used to determine whether it is an optimal arousal time for the individual. The device sends an indication to not wake the individual if it is not the optimal arousal time for the individual. Other embodiments are described and claimed.
    Type: Application
    Filed: October 30, 2014
    Publication date: February 26, 2015
    Inventors: Julie Behan, David Prendergast
  • Publication number: 20150038866
    Abstract: Systems and methods for detecting a worsening of a patient's heart failure condition based, at least in part, on a declining trend in a representative tidal volume value over multiple days. The tidal volume value may be a maximum tidal volume, and more particularly, a maximum tidal volume determined for an afternoon portion of each of the multiple days or a selected portion of each of the multiple days that excludes a night portion. The maximum tidal volume during these portions of the day may be more sensitive to changes in a patient's respiration, particularly when a patient is expected to be more active, and thus, may more readily exhibit a declining trend when the patient's heart failure status is in decline.
    Type: Application
    Filed: August 4, 2014
    Publication date: February 5, 2015
    Inventors: Yi Zhang, Viktoria A. Averina, Kenneth C. Beck, Pramodsingh Thakur, Ramesh Wariar
  • Publication number: 20140357960
    Abstract: A method and device is described, which measures and records one or more repetitive biological signals, such as heartbeat, breathing rate, and/or intrinsic brainwave frequency, and uses these tempos and timing information as a feedback mechanism to an individual doing one or more repetitive motion activities, in order to synchronize the activities with the repetitive biological signals, or a simple ratio of harmonics or sub-harmonics thereof. The feedback is achieved through a visual, audio, or tactile signal that indicates to the individual pacing information for precisely when to perform the activity. The purpose of synchronizing repetitive motion activity to biological activity is to optimize the efficiency of the system as a whole, reducing energy consumption and promoting calm and focused performance. Repetitive motion activities include but are not limited to breathing, running, bicycling, swimming, walking, hiking, jump rope, and rowing.
    Type: Application
    Filed: June 1, 2013
    Publication date: December 4, 2014
    Inventors: James William Phillips, Yi Jin
  • Patent number: 8888700
    Abstract: The invention provides a system for measuring respiratory rate (RR) from a patient. The system includes an impedance pneumography (IP) sensor, connected to at least two electrodes, and a processing system that receives and processes signals from the electrodes to measure an IP signal. A motion sensor (e.g. an accelerometer) measures at least one motion signal (e.g. an ACC waveform) describing movement of a portion of the patient's body to which it is attached. The processing system receives the IP and motion signals, and processes them to determine, respectfully, frequency-domain IP and motion spectra. Both spectra are then collectively processed to remove motion components from the IP spectrum and determine RR. For example, during the processing, an algorithm determines motion frequency components from the frequency-domain motion spectrum, and then using a digital filter removes these, or parameters calculated therefrom, from the IP spectrum.
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: November 18, 2014
    Assignee: Sotera Wireless, Inc.
    Inventors: Matt Banet, Marshal Dhillon, Devin McCombie
  • Publication number: 20140323856
    Abstract: A system for providing sensory feedback includes a garment (106) that is configured to flexibly and snuggly fit over a portion of a subject. The garment includes one or more sensors (104) disposed therein to monitor activity of the subject or monitor points of interest of the subject. An interpretation module (115) is coupled with the sensors to receive sensor signals and interpret the sensor signals to determine if conditions are met to provide feedback signals to the garment. A feedback modality (108) is incorporated into the garment and is responsive to the feedback signals such that the feedback modality emits energy from the garment to provide sensory information to assist a physician during a procedure.
    Type: Application
    Filed: October 19, 2012
    Publication date: October 30, 2014
    Inventors: Sytske Foppen, Bernardus Jozef Maria Beerling, Willemina Maria Huijnen-Keur, Hendrik Jan De Graaf, Danielle Walthera Maria Kemper-Van De Wiel, Roland Antonius Johannes Gerardus Smits, Albert Hendrik Jan Immink, Femke Karina De Theije, Wendela Meertens
  • Publication number: 20140323847
    Abstract: A pulmonary ventilation system comprising means for storing an empirical relationship that is designed and adapted to determine at least one pulmonary ventilation parameter as a function of a plurality of measured anatomical distances and volume-motion coefficients, means for acquiring the anatomical distances, means for determining the plurality of motion coefficients, and processing means for determining the ventilation parameter based on the acquired anatomical distances and determined plurality of volume-motion coefficients. In one embodiment, the system further includes means for acquiring base-line ventilation characteristics and means for correlating the base-line ventilation characteristics to the ventilation parameter determined with the empirical relationship.
    Type: Application
    Filed: July 21, 2014
    Publication date: October 30, 2014
    Inventor: Franklin Dennis MCCOOL
  • Patent number: 8870785
    Abstract: Respiration of a patient is detected by emitting an electromagnetic signal towards the patient; receiving a reflected electromagnetic signal reflected from the patient; converting the reflected electromagnetic signal, yielding a first signal; phase-shifting the reflected electromagnetic signal and converting the phase-shifted reflected electromagnetic signal, yielding a second signal; determining a first vector being defined by the time derivatives of the first signal and the second signal, for a common first point in time; determining a second vector being defined by the time derivatives of the first signal and the second signal, for a common second point in time; and calculating the scalar product of the normalized first vector and the normalized second vector as an indicator value for a change from expiration to inspiration of the patient or vice versa.
    Type: Grant
    Filed: May 4, 2009
    Date of Patent: October 28, 2014
    Assignee: Koninklijke Philips N.V.
    Inventors: Jens Muehlsteff, Robert Pinter, Geert Guy Georges Morren
  • Patent number: 8851073
    Abstract: A medical device may include a patient interface for use in a breathing assistance system, an electronic device coupled to the patient interface, and one or more electrical conductors at least partially integrated with the patient interface. The patient interface may include a connection end configured for receiving gas communicated by a gas delivery apparatus, and a patient end configured for insertion into or more breathing passageways of a patient. The one or more electrical conductors at least partially integrated with the patient interface may be capable of facilitating communication of electrical signals between the electronic device and the gas delivery apparatus when the patient interface is communicatively coupled to the gas delivery apparatus.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: October 7, 2014
    Assignee: Covidien LP
    Inventor: Joseph Douglas Vandine
  • Patent number: 8840564
    Abstract: Apparatus and methods are described, including a method for monitoring an onset of a respiratory episode in a subject. A plurality of respirations of the subject are sensed without contacting the subject, and a plurality of respiration signals corresponding to the plurality of respirations are generated. The plurality of respiration signals are combined to provide a characteristic respiration parameter of the subject. The onset of the respiratory episode is predicted from the characteristic respiration parameter. Other applications are also described.
    Type: Grant
    Filed: January 8, 2014
    Date of Patent: September 23, 2014
    Assignee: Early Sense Ltd.
    Inventors: Itzhak Pinhas, Avner Halperin, Daniel H. Lange
  • Publication number: 20140275817
    Abstract: A hand-held pediatric medical diagnostic device includes a sensor module adapted to detect one or more corresponding conditions of a child. A gel material at least partially coats a contact surface on the diagnostic device. The area of the contact surface and the weight associated therewith are selected to substantially stabilize the sensor module during use. In one version, the pediatric device comprises a pediatric respiratory rate sensing device in which an accelerometer is connected to a portable, rechargeable power source.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Applicant: GUARDIT TECHNOLOGIES, LLC
    Inventor: Michael H. Script