Heating Or Cooling Means Patents (Class 604/6.13)
  • Patent number: 11147906
    Abstract: The present disclosure describes flow stagnation control components that allow improved flow control in systems including injection members, while also limiting the creation of regions of little to no flow in the vasculature, resulting in low flow zones or dead zones. The flow stagnation control components can be formed as an imposed minimum conductance component or a controlled flow partitioning system.
    Type: Grant
    Filed: January 17, 2019
    Date of Patent: October 19, 2021
    Assignee: Asia Pacific Medical Technology Development Company, Ltd
    Inventor: John R. Gilbert
  • Patent number: 10828412
    Abstract: A peritoneal dialysis system includes a cycler including a pump actuator, a heater and a heating pan operable with the heater, and a disposable set operable with the cycler. The heating pan includes a sidewall forming a slot. The disposable set includes a pumping cassette and a heater/mixing container. The pumping cassette includes a pump chamber configured to be actuated by the pump actuator. Additionally, the heater/mixing container is in fluid communication with the pumping cassette and is sized to be received at the heating pan. The heater/mixing container includes a port configured such that when the port is slid into the slot of the heater pan sidewall, the port is prevented from rotating about an axis transverse to a direction of flow through the port.
    Type: Grant
    Filed: May 5, 2017
    Date of Patent: November 10, 2020
    Assignee: Gambro Lundia AB
    Inventors: Jane E. Fitzgerald, Ryan P. Marry, John S. Norman, James D. Ascenzo, Meng-Yang Chen, Anders Wellings, Edward S. Szpara, Olof Jansson
  • Patent number: 10213542
    Abstract: The present disclosure describes flow stagnation control components that allow improved flow control in systems including injection members, while also limiting the creation of regions of little to no flow in the vasculature, resulting in low flow zones or dead zones. The flow stagnation control components can be formed as an imposed minimum conductance component or a controlled flow partitioning system.
    Type: Grant
    Filed: November 4, 2015
    Date of Patent: February 26, 2019
    Assignee: Asia Pacific Medical Technology Development Company, Ltd
    Inventor: John R. Gilbert
  • Patent number: 9993365
    Abstract: A modular cooling-heating system for use in the controlled delivery of temperature-controlled fluids to a heat exchanger associated with the blood of a patient undergoing a medical procedure is described, wherein the cooling-heating system uses adaptive temperature control protocols.
    Type: Grant
    Filed: March 8, 2016
    Date of Patent: June 12, 2018
    Inventors: Douglas E. Platt, Robin A. Pate, Jon L. Gardner
  • Patent number: 9943236
    Abstract: An implantable medical device system and associated method for use in guiding an acute decompensated heart failure therapy set an optimal fluid status measurement level. A physiological sensor signal sensed by an implantable medical device is used to compute the fluid status measurement. A target rate of change of the fluid status measurement is computed for guiding the therapy.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: April 17, 2018
    Assignee: Medtronic, Inc.
    Inventors: Tommy D. Bennett, Yong K. Cho
  • Patent number: 9655752
    Abstract: Methods for making a magnesium biodegradable stent for medical implant applications, using magnesium foil or pure magnesium or magnesium alloys that are biodegradable and performing a lithographic technique to configure the features and dimensions of the magnesium foil, and rolling the magnesium foil to form a cylinder.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 23, 2017
    Assignee: University of Cincinnati
    Inventors: Vesselin N. Shanov, Prabir Roy-Chaudhury, Mark J. Schulz, Zhangzhang Yin, Begona Campos-Naciff, Yang Wang
  • Patent number: 9555184
    Abstract: According to some embodiments, a system may treat blood outside the body of a patient. The system may include one or more pumps configured to draw blood from a patient into a fluid flow path at a rate, for example, of 5-7 liters per minute. The system may include one or more heat exchangers coupled to the fluid flow path and configured to heat the blood, for example, to a temperature above 42 degrees Celsius and below 43.2 degrees Celsius.
    Type: Grant
    Filed: February 16, 2015
    Date of Patent: January 31, 2017
    Inventor: Patrick Richard Spearman
  • Patent number: 9314366
    Abstract: A modular cooling-heating system for use in the controlled delivery of temperature-controlled fluids to a heat exchanger associated with the blood of a patient undergoing a medical procedure is described, wherein the cooling-heating system uses adaptive temperature control protocols.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: April 19, 2016
    Inventors: Douglas E. Platt, Robin A. Pate, Jon L. Gardner
  • Patent number: 9047009
    Abstract: An electronic device has a display and has a touch sensitive bezel surrounding the display. Areas on the bezel are designated for controls used to operate the electronic device. Visual guides corresponding to the controls are displayed on the display adjacent the areas of the bezel designated for the controls. Touch data is generated by the bezel when a user touches an area of the bezel. The device determines which of the controls has been selected based on which designated area is associated with the touch data from the bezel. The device then initiates the determined control. The device can have a sensor for determining the orientation of the device. Based on the orientation, the device can alter the areas designated on the bezel for the controls and can alter the location of the visual guides for the display so that they match the altered areas on the bezel.
    Type: Grant
    Filed: June 17, 2009
    Date of Patent: June 2, 2015
    Assignee: Apple Inc.
    Inventors: Nick King, Duncan Kerr, Paul Herbst, Steven P. Hotelling
  • Patent number: 9028691
    Abstract: A blood circuit assembly for a dialysis unit may include an organizing tray, a pair of pneumatic pumps mounted to the organizing tray for circulating blood received from a patient through a circuit including a dialyzer unit and returned to the patient, an air trap mounted to the organizing tray arranged to remove air from blood circulating in the circuit, a pair of dialyzer connections arranged to connect to the inlet and outlet of a dialyzer unit, and a pair of blood line connectors, one inlet blood line connector for receiving blood from the patient and providing blood to the pneumatic pumps and the other outlet blood line connector for returning blood to the patient.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: May 12, 2015
    Assignee: DEKA Products Limited Partnership
    Inventors: Kevin L. Grant, James D. Dale, Michael J. Wilt, Jason A. Demers, David E. Collins, Brian D. Tracey
  • Patent number: 8992463
    Abstract: A system and method for balancing flows of renal replacement fluid is disclosed. The method uses pressure controls and pressure sensing devices to more precisely meter and balance the flow of fresh dialysate and spent dialysate. The balancing system may use one or two balancing devices, such as a balance tube, a tortuous path, or a balance chamber.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: March 31, 2015
    Assignees: Baxter International Inc., Baxter Healthcare S.A.
    Inventors: Michael E. Hogard, Donald D. Busby, Robert W. Childers, Yuanpang Samuel Ding, Katherine M. Holian, Mark E. Jablonski, Thomas D. Kelly, Ying-Cheng Lo, Shincy J. Maliekkal, Rodolfo G. Roger, Donald A. Smith, Atif M. Yardimci
  • Patent number: 8926540
    Abstract: A hemodialysis system includes (i) a dialyzer; (ii) a blood pump; (iii) a blood cassette operatively connected to the dialyzer and the blood pump; (iv) a dialysate heater; (v) first and second peristaltic dialysate pumps; and (vi) a dialysate cassette separate from the blood cassette, the dialysate cassette including an organizer configured to support a drain tube, a to-dialyzer tube and a from-dialyzer tube, the cassette further including a first pumping tube, a second pumping tube and an inline fluid heating pathway, the cassette when mounted for operation orienting (a) the first pumping tube for operation with the first peristaltic dialysate pump, (b) the second pumping tube for operation with the second peristaltic dialysate pump and (c) the fluid heating pathway for operation with the dialysate heater.
    Type: Grant
    Filed: August 19, 2011
    Date of Patent: January 6, 2015
    Assignees: Baxter Healthcare Inc., Baxter Healthcare S.A.
    Inventors: Ying-Cheng Lo, Robert W. Childers, Thomas D. Kelly, Justin Rohde
  • Patent number: 8888729
    Abstract: A catheter is adapted to exchange heat with a body fluid, such as blood, flowing in a body conduit, such as a blood vessel. The catheter includes a shaft with a heat exchange region disposed at its distal end. This region may include hollow fibers which are adapted to receive a remotely cooled heat exchange fluid preferably flowing in a direction counter to that of the body fluid. The hollow fibers enhance the surface area of contact, as well as the mixing of both the heat exchange fluid and the body fluid. The catheter can be positioned to produce hypothermia in a selective area of the body or alternatively positioned to systemically cool the entire body system.
    Type: Grant
    Filed: July 3, 2013
    Date of Patent: November 18, 2014
    Assignee: Zoll Circulation, Inc.
    Inventors: Wayne A. Noda, Mike L. Jones, Scott M. Evans, Blair D. Walker, William J. Worthen, Yves Pierre Gobin
  • Patent number: 8888730
    Abstract: The disclosure pertains to a perfusion system that is easy to set-up, use and monitor during a bypass procedure. In some embodiments, the disclosure pertains to a perfusion system in which at least some of the disposable components used with the perfusion system are configured to be able to communicate set-up and/or operational parameters to the perfusion system in order to unlock further functionality within the perfusion system.
    Type: Grant
    Filed: September 19, 2012
    Date of Patent: November 18, 2014
    Assignee: Sorin Group Italia S.r.l.
    Inventors: Ivan Rossi, Raffaella Bombarda
  • Patent number: 8864700
    Abstract: A plurality of heat transfer pipes have a circumferential portion arranged at a short distance from an inner surface of a heat exchanger case while they are bundled to form a pipe group and a first chord which retracts toward a center in a direction of cylinder diameter from an arc formed by the circumferential portion. The plurality of bundled heat transfer pipes are loaded in the exchange case such that the first chord and an inner surface of the heat exchange case on a side where a heat exchange medium inlet port is attached are opposed to each other. By making a flow of a heat exchange medium to each heat transfer pipe uniform, a heat exchanger capable of obtaining high heat exchange performance is obtained.
    Type: Grant
    Filed: February 15, 2011
    Date of Patent: October 21, 2014
    Assignee: Nipro Corporation
    Inventors: Shin-ichi Kawamura, Kazuhisa Ishihara, Naoaki Yasumura
  • Patent number: 8834404
    Abstract: A system, apparatus and methods are provided for extra-corporeal blood treatment, and in particular for establishing and maintaining a neck down differential body temperature, while maintaining near normal brain temperatures, to protect the brain from extended or extreme hypothermia or hyperthermia. A blood treatment apparatus and system is provided for differential control of brain temperature and body temperature below the neck. For example, a first bypass circuit with heat exchanger for brain blood circulation maintains a near normal blood temperature, while a second bypass circuit for below the neck blood circulation provides for thermal treatment to induce a temperature differential, e.g. hyperthermia or hypothermia, relative to brain circulation. Such systems and apparatus have application, for example, for diagnostic and therapeutic treatments using hyperthermia, particularly for treatments of extended duration or at elevated temperatures above 42° C.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: September 16, 2014
    Inventor: Steve Andre Beaudin
  • Patent number: 8795591
    Abstract: An apparatus for oxygenating blood including a housing and an oxygenator bundle. The housing defines a primary chamber, a blood inlet port open to the primary chamber, and a blood outlet region. The outlet region includes a blood outlet port, an outlet chamber open to the outlet port, and a partition. The partition establishes spaced apart, first and second passageways from the primary chamber to the outlet chamber. The oxygenator bundle is disposed within the primary chamber. A blood flow path is formed from the blood inlet port, through the oxygenator bundle and to the blood outlet port, and includes first and second outlet flow paths within the outlet chamber via the first and second passageways, respectively. The first and second outlet blood flow paths merge at the blood outlet port. A dual port blood outlet is created, increasing mixing of blood immediately upstream of the outlet port.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: August 5, 2014
    Assignee: Medtronic, Inc.
    Inventors: Stephen Roller, Christopher Plott, Alford McLevish, Gregory Hake, Brian Steffens
  • Patent number: 8795220
    Abstract: A blood processing apparatus may include a heat exchanger and a gas exchanger. At least one of the heat exchanger and the gas exchanger may be configured to provide a circumferential blood flow through the heat exchanger and/or gas exchanger.
    Type: Grant
    Filed: November 16, 2010
    Date of Patent: August 5, 2014
    Assignees: Politecnico di Milano, Sorin Group Italia S.r.l.
    Inventors: Stefano Reggiani, Gianfranco Beniamino Fiore, Alberto Giri, Alberto Redaelli, Claudio Silvestri, Gabriele Tommasi
  • Patent number: 8753302
    Abstract: A catheter is adapted to exchange heat with a body fluid, such as blood, flowing in a body conduit, such as a blood vessel. The catheter includes a shaft with a heat exchange region disposed at its distal end. This region may include hollow fibers which are adapted to receive a remotely cooled heat exchange fluid preferably flowing in a direction counter to that of the body fluid. The hollow fibers enhance the surface area of contact, as well as the mixing of both the heat exchange fluid and the body fluid. The catheter can be positioned to produce hypothermia in a selective area of the body or alternatively positioned to systemically cool the entire body system.
    Type: Grant
    Filed: February 20, 2013
    Date of Patent: June 17, 2014
    Assignees: Zoll Circulation, Inc., The Regents of the University of California
    Inventors: Wayne A. Noda, Mike L. Jones, Scott M. Evans, Blair D. Walker, William J. Worthen, Yves Pierre Gobin
  • Patent number: 8747742
    Abstract: A heat exchanger includes a case, a bottom member and a plurality of heat transfer pipes (a pipe group) loaded in the heat exchanger case, in which blood flows from one end through the bottom member. The bottom member has an annular wall, a bottom surface, and a blood inlet port. The bottom surface is opposed to one end of the heat transfer pipe. The bottom surface includes a groove portion and a raised bottom portion provided on each of opposing end sides of the groove portion. The raised bottom portion is inclined such that a distance between the raised bottom portion on a side where the blood inlet port is provided and one end of the heat transfer pipe is smaller than a distance between the raised bottom portion opposite to the side where the blood inlet port is provided and one end of the heat transfer pipe.
    Type: Grant
    Filed: February 15, 2011
    Date of Patent: June 10, 2014
    Assignee: Nipro Corporation
    Inventors: Shin-ichi Kawamura, Kazuhisa Ishihara, Naoaki Yasumura
  • Patent number: 8734376
    Abstract: A perfusion system is easy to set-up, use and monitor during a bypass procedure. At least some of the disposable components used with the perfusion system are configured to be able to communicate set-up and/or operational parameters to the perfusion system. A blood level sensor can be used to monitor a blood level or volume within a blood reservoir.
    Type: Grant
    Filed: April 20, 2010
    Date of Patent: May 27, 2014
    Assignee: Sorin Group Italia S.r.l.
    Inventors: Dennis Simpson, Derek E. Dahlinger, Ivan Rossi
  • Patent number: 8692167
    Abstract: A medical device having a heater with at least one heating element which has mains voltage applied to it by a heating control unit. The heating control unit includes a monitoring arrangement and a switching arrangement. The monitoring arrangement can recognize the zero crossings of the mains voltage, and the switching arrangement can switch the at least one heating element on or off in the zero crossing. The heating control unit controls the power of the heating by switching on and off of one or more half cycles of the mains AC voltage.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: April 8, 2014
    Assignee: Fresenius Medical Care Deutschland GmbH
    Inventors: Frank Hedmann, Sven Sebesta, Ulrich Wernicke
  • Patent number: 8672867
    Abstract: A cardiopulmonary bypass device may include a first tube configured for connection to a vein and a second tube configured for connection to an artery. The device may further include a pump connected between the first and second tubes. In a first mode, the pump may pump fluid in one direction and in a second mode, the pump may pump fluid in the opposite direction. A control unit may be coupled to the pump to control its operation. Lungs may functions as the oxygenator of the cardiopulmonary bypass device.
    Type: Grant
    Filed: May 20, 2008
    Date of Patent: March 18, 2014
    Assignee: Laerdal Medical AS
    Inventor: Helge Myklebust
  • Patent number: 8636952
    Abstract: This invention discloses a modular system having a base module, a mid-section control module, and a display module for preparing and administering a gas-enriched bodily fluid via an extracorporeal circuit. Gas-enrichment is achieved by a gas-enriching device which can be in the form of a disposable cartridge. The gas-enrichment device has an information recording element disposed thereon. During operation, the gas-enrichment device is placed in an enclosure within the control module. An electronic controller manages the various aspects of the system such as the production of gas-enriched fluid, flow rates, bubble detection, and automatic operation and shut down. The controller is capable of setting a fluid flow rate in the circuit according to a programming based on the information encoded in the information recording element.
    Type: Grant
    Filed: December 4, 2008
    Date of Patent: January 28, 2014
    Assignee: TherOx, Inc.
    Inventors: Stephen E. Myrick, Gregory P. Watson, Jeffrey L. Creech, John M. Aoki
  • Patent number: 8622950
    Abstract: A method of manufacturing a bundled mat construction for an extracorporeal blood circuit heat exchanger includes attaching a leading edge of a first capillary tube mat segment to a first side of a mandrel. A leading edge of a second capillary tube mat segment is attached to a second side of the mandrel. The first side is diametrically opposite the second side. The mandrel is rolled relative to the mat segments to generate a bundled mat construction. Radial layers of the bundled mat construction are symmetrical relative to a central axis of the mandrel.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: January 7, 2014
    Assignee: Medtronic, Inc.
    Inventors: Kevin Lauber, Robert Olsen, Mark Wendler, Chris Plott, Al McLevish
  • Patent number: 8609022
    Abstract: A medical heat exchanger includes a thin tube bundle 2 in which a plurality of heat transfer thin tubes 1 for letting heat medium liquid flow therethrough are arranged and stacked, seal members 3a to 3c sealing the thin tube bundle while allowing both ends of the heat transfer thin tubes to be exposed and forming a blood channel 5 which allows blood to flow therethrough so that the blood comes into contact with each outer surface of the heat transfer thin tubes; a housing 4 containing the seal members and the thin tube bundle and provided with an inlet port 8 and an outlet port 9 of the blood positioned respectively at both ends of the blood channel; and a pair of heat transfer thin tube headers 6, 7 forming flow chambers 14a, 14b, 15a, 15b that respectively surround both ends of the thin tube bundle and having an inlet port 6a and an outlet port 7a of the heat medium liquid.
    Type: Grant
    Filed: January 22, 2009
    Date of Patent: December 17, 2013
    Assignee: JMS Co., Ltd.
    Inventors: Shota Nakao, Tomokazu Niitsuma, Hideki Izumida
  • Patent number: 8585969
    Abstract: A device for treating blood in an extracorporeal blood circuit, the device including a centrifugal pump provided with a transparent enclosure that is connected, by means of an inlet duct, to the outlet of a venous reservoir, the venous reservoir having an inlet that is connected to receive blood from a patient. The transparent enclosure of the pump is connected monolithically to the base of a structure that comprises a heat exchanger and an oxygenator. The structure also supports monolithically, at the peripheral region, an arterial filter that receives the blood in output from the oxygenator and is provided with a connector for coupling to an arterial line for return of the blood to the patient.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: November 19, 2013
    Assignee: Sorin Group Italia S.r.l.
    Inventors: Edgardo Costa Maianti, Nicola Ghelli, Ivo Panzani
  • Patent number: 8579845
    Abstract: A capillary tube bundle sub-assembly for use in an extracorporeal heat exchanger includes a continuous capillary tubing wound about a core to define a plurality of capillary layers each including a plurality of capillary segments. The capillary segments each define opposing terminal ends adjacent opposing ends of the core. The capillary segments of each layer are circumferentially aligned relative to an axis of the core, with each successive layer being radially outward of an immediately preceding layer. The capillary segments are non-parallel with the axis, spiraling partially about the axis in extension between the opposing terminal ends. Each capillary segment forms less than one complete revolution (i.e., winds less than 360°). The segments within each layer are substantially parallel with one another; however, an orientation of the segments differs from layer-to-layer such as by pitch or angle.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: November 12, 2013
    Assignee: Medtronic, Inc.
    Inventors: Patrick Cloutier, Robert Olsen, Stephen Roller, Chris Plott, Al McLevish, Ming Li, Michael Laxen, John Knoll, Gregory Hake
  • Patent number: 8562834
    Abstract: A modular assembly for a portable hemodialysis system may include a dialysis unit, e.g., that contains suitable components for performing hemodialysis, such as a dialyzer, one or more pumps to circulate blood through the dialyzer, a source of dialysate, and one or more pumps to circulate the dialysate through the dialyzer, and a power unit having a housing that contains suitable components for providing operating power to the pumps of the dialysis unit. The power unit may be selectively connected to the dialysis unit and provide power (e.g., pneumatic power in the form of pressure and/or vacuum) to the dialysis unit for the pumps when connected to the dialysis unit, but may be incapable of providing power to the dialysis unit when disconnected from the dialysis unit. The dialysis unit and the power unit are sized and weighted to each be carried by hand by a human.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: October 22, 2013
    Assignee: DEKA Products Limited Partnership
    Inventors: Dean Kamen, Jason A. Demers, Michael J. Wilt, Kevin L. Grant, Shannon Prescott, David E. Collins
  • Patent number: 8545754
    Abstract: Disclosed is an apparatus for oxygenating and controlling the temperature of blood in an extracorporeal circuit. The apparatus has an inlet and an outlet that is located radially outward from the inlet in order to define a flowpath through the apparatus. The apparatus comprises: a core that is substantially centrally located in the apparatus and to which blood from a patient can be supplied through the inlet; a heat exchanger comprising a plurality of heat transfer elements that are arranged around the core and between which blood from the core can move radially outward; and an oxygenator comprising a plurality of gas exchange elements that are arranged around the heat exchanger and between which blood from the heat exchanger can move radially outward before exiting the apparatus through the outlet.
    Type: Grant
    Filed: April 23, 2009
    Date of Patent: October 1, 2013
    Assignee: Medtronic, Inc.
    Inventors: Walt L. Carpenter, Robert W. Olsen, Michael J. Hobday, Alford L. McLevish, Christopher J. Plott, Roderick E. Briscoe, Patrick J. Cloutier, Anil Thapa, Ming Li, Kevin McIntosh, Ken Merte
  • Patent number: 8529767
    Abstract: The method according to the invention and the apparatus according to the invention are characterized in that the substitution rate QS is modified by a predefined amount upstream or downstream of the dialyzer or filter while the flow rate QFM of the liquid withdrawn through the dialyzer membrane is modified. The blood volume RBV(t) or a variable correlated with the blood volume, e.g. the hematocrit Hct(t), is determined before and after modifying the substitution rate or the flow rate of the liquid withdrawn through the dialyzer or filter membrane in order to calculate fistula recirculation RA. In addition, the total recirculation R is determined. The percentage of fistula recirculation (RA) and/or cardiopulmonary recirculation (RCP) relative to the total recirculation is calculated from the determined fistula recirculation (RA) and the sum R of fistula recirculation (RA) and cardiopulmonary recirculation (RCP).
    Type: Grant
    Filed: January 8, 2009
    Date of Patent: September 10, 2013
    Assignee: Fresenius Medical Care Deutschland GmbH
    Inventor: Wei Zhang
  • Patent number: 8529489
    Abstract: A method and device for reducing blood coagulation in the circuit of a device for substitution of the kidney function wherein, prior to the input in the device for substituting the kidney function, the blood which left the patient's body is cooled down to a temperature in the range 10° C. to 30° C. and, as the blood passes the device for substitution of the kidney function, that blood is warmed up to a temperature at least near to the body temperature and then it is returned in the patient's body.
    Type: Grant
    Filed: January 22, 2009
    Date of Patent: September 10, 2013
    Assignee: Univerzita Karlova V Praze
    Inventors: Ji{hacek over (r)}í R{dot over (u)}{hacek over (z)}i{hacek over (c)}ka, Zuzana Petránková, Ji{hacek over (r)}í Bene{hacek over (s)}, Luká{hacek over (s)} Bolek, Ale{hacek over (s)} Krou{hacek over (z)}ecký, Roman Sýkora, Martin Mat{hacek over (e)}jovi{hacek over (c)}
  • Patent number: 8518259
    Abstract: An apparatus for de-aering, oxygenating and controlling a temperature of blood in an extracorporeal blood circuit. The apparatus includes a housing, a manifold body, a heat exchanger, and an oxygenator. A blood inlet tangentially directs blood into a first chamber of the housing. The manifold body is disposed in a second chamber, and includes a core and a plurality of vanes that define channels. The heat exchanger is arranged around the manifold body, and the oxygenator around the heat exchanger. The channels are open to the heat exchanger. An established blood flow path includes rotational flow within the first chamber to separate air from the blood, generally longitudinal flow from the first chamber and along the channels, and generally radial flow through the heat exchanger and the oxygenator. With this construction, gross air removal occurs prior to the blood passing through the heat exchanger and oxygenator.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: August 27, 2013
    Assignee: Medtronic, Inc.
    Inventors: Patrick Cloutier, Robert Olsen, Stephen Roller, Chris Plott, Al McLevish, Ming Li, Michael Laxen, John Knoll, Gregory Hake
  • Patent number: 8517967
    Abstract: The present invention provides modified platelets having a reduced platelet clearance and methods for reducing platelet clearance. Also provided are compositions for the preservation of platelets. The invention also provides methods for making a pharmaceutical composition containing the modified platelets and for administering the pharmaceutical composition to a mammal to mediate hemostasis.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: August 27, 2013
    Assignee: Velico Medical, Inc.
    Inventors: Keith Rosiello, Henrik Clausen
  • Patent number: 8506513
    Abstract: A perfusion system that is easy to set-up, use and monitor during a bypass procedure includes at least some disposable components configured to communicate parameters to the perfusion system. An ultrasonic blood level sensor can be used to monitor a blood level or volume within a blood reservoir. The blood level sensor may be utilized in an integrated perfusion system in which the disposable components are configured, as noted above, to communicate with the perfusion system.
    Type: Grant
    Filed: April 13, 2011
    Date of Patent: August 13, 2013
    Assignee: Sorin Group Italia S.r.l.
    Inventors: Ivan Rossi, Ivo Panzani
  • Patent number: 8500673
    Abstract: The disclosure pertains to a perfusion system that is easy to set-up, use and monitor during a bypass procedure. In some embodiments, the disclosure pertains to a perfusion system in which at least some of the disposable components used with the perfusion system are configured to be able to communicate set-up and/or operational parameters to the perfusion system. In some embodiments, the disclosure pertains to a blood level sensor that can be used to monitor a blood level or volume within a blood reservoir. The blood level sensor may be utilized in an integrated perfusion system in which the disposable components are configured, as noted above, to communicate with the perfusion system. In some embodiments, the blood level sensor may be utilized with a perfusion system lacking communication with disposables.
    Type: Grant
    Filed: April 20, 2010
    Date of Patent: August 6, 2013
    Assignee: Sorin Group Italia S.r.l.
    Inventors: Daniele Zanotti, Ivan Rossi, Ivo Panzani
  • Patent number: 8496874
    Abstract: An integrated centrifugal blood pump-oxygenator (1) which has a housing (2) with a top (3) having a blood inlet (4), a blood outlet (5) and a gas inlet (6), and a bottom (7) having a rotational body (8) being rotatably arranged in a rotor-housing (9) of the bottom (7). The integrated centrifugal blood pump-oxygenator (1) further has an oxygenator membrane (10) provided in an interior (11) of the housing (2), wherein in the operation state oxygen (12) is transferred from the gas inlet (6) through the oxygenator membrane (10) to a gas outlet (13) and blood (14) is brought in direct contact with the oxygenator membrane (10) by pumping the blood (14) with the rotational body (8) from the blood inlet (4) to the blood outlet (5). The rotational body (8) is magnetically journalled in a contact-free manner with respect to the rotor-housing (9). There is an extracorporeal life support system (1000), and a method of de-bubbling and priming a extracorporeal life support system (1000).
    Type: Grant
    Filed: December 5, 2007
    Date of Patent: July 30, 2013
    Assignee: Thoratec LLC
    Inventors: Barry N. Gellman, Andrew Koert, Zhongjun Wu, Juntao Zhang, Bartley P. Griffith
  • Patent number: 8439960
    Abstract: A method of providing hypothermia to a patient including the steps of inserting a fluid delivery member into a peritoneal cavity of the patient; delivering hypothermia fluid from a fluid source into the peritoneal cavity through the delivery member; and limiting fluid pressure within the peritoneal cavity without providing feedback control to the fluid source. The invention also provides an apparatus for practicing the method.
    Type: Grant
    Filed: July 8, 2008
    Date of Patent: May 14, 2013
    Assignee: Velomedix, Inc.
    Inventors: Daniel Rogers Burnett, Gregory W. Hall
  • Patent number: 8419933
    Abstract: A dialysis system includes a first fluid heater, a second fluid heater, a supplemental power source and a logic implementer. The logic implementer is configured to use the supplemental power source such that when the first and second heaters are powered simultaneously, a collective current draw does not exceed a maximum allowable current draw of a branch power source powering the system.
    Type: Grant
    Filed: June 12, 2012
    Date of Patent: April 16, 2013
    Assignees: Baxter International, Inc., Baxter Healthcare S.A.
    Inventors: Justin Rohde, William W. Han
  • Patent number: 8403876
    Abstract: A catheter is adapted to exchange heat with a body fluid, such as blood, flowing in a body conduit, such as a blood vessel. The catheter includes a shaft with a heat exchange region disposed at its distal end. This region may include hollow fibers which are adapted to receive a remotely cooled heat exchange fluid preferably flowing in a direction counter to that of the body fluid. The hollow fibers enhance the surface area of contact, as well as the mixing of both the heat exchange fluid and the body fluid. The catheter can be positioned to produce hypothermia in a selective area of the body or alternatively positioned to systemically cool the entire body system.
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: March 26, 2013
    Assignees: Zoll Circulation, Inc., The Regents of the University of California
    Inventors: Wayne A. Noda, Mike L. Jones, Scott M. Evans, Blair D. Walker, William J. Worthen, Yves Pierre Gobin
  • Patent number: 8349254
    Abstract: A circuit for collecting a blood component includes a blood collection device provided with a blood collection needle through which blood is collected from a blood donor, a blood separator in which the blood collected by the above blood collection device is separated, a blood component collection bag in which a predetermined blood component separated by the above blood separator is collected, a blood line in which the blood collection needle is connected to an inlet of the blood separator, a line for removing an initial blood flow, which branches from a first branching portion formed in the blood line, and in which an initial flow of blood collected from the blood donor is removed, and an anticoagulant-injection line that branches from a second branching portion, formed in the line for removing the initial blood flow, and into which an anticoagulant is injected.
    Type: Grant
    Filed: July 4, 2006
    Date of Patent: January 8, 2013
    Assignee: Terumo Kabushiki Kaisha
    Inventors: Yoshiteru Hoshino, Yoshihiro Yokoo, Yuusuke Yamazaki
  • Patent number: 8349174
    Abstract: A fuel-cell powered medical fluid processing machine or dialysis machine is disclosed. The machine is intended for remote or rural areas where standard household or utility power is not available or is subject to interruption. The fuel cell is powered by hydrogen or other source of protons, or may instead be powered by methanol or ethanol, such as a direct methanol fuel cell. The fuel cell may be operated directly, as in powering a portable, wearable dialysis device, or may be operated indirectly, to generate and store power in an electric power storage device of the medical fluid or dialysis device. The medical fluid processing machine or dialysis machine may include circuitry allowing for use by household or utility power while also including a fuel cell for use when other power is not available. A catalytic heater may be used to warm the dialysis fluid.
    Type: Grant
    Filed: July 23, 2008
    Date of Patent: January 8, 2013
    Assignees: Baxter International Inc., Baxter Healthcare S.A.
    Inventors: John A. Bedingfield, Richard E. Kienman, Brian C. Lauman
  • Patent number: 8328749
    Abstract: A blood purification apparatus includes a blood circuit having arterial and venous blood circuits, a blood pump, a blood purifying device, an indicator applying device that applies a predetermined indicator to the blood flowing extracorporeally through the blood circuit, a detecting device that detects the indicator applied by the indicator applying device, an arithmetic device that calculates, based on the indicator detected by the detecting device, a recirculation rate, and a calculating device that calculates an ideal extracorporeally circulating blood flow that results in the recirculation rate being no more than a predetermined value when the recirculation rate calculated by the arithmetic device is greater than the predetermined value. The recirculation rate is a proportion of a recirculated blood flow, which is reintroduced to the patient from the venous blood circuit and directed again to the arterial blood circuit, relative to an extracorporeally circulating blood flow.
    Type: Grant
    Filed: October 11, 2006
    Date of Patent: December 11, 2012
    Assignee: Nikkiso Co., Ltd.
    Inventors: Tomoya Murakami, Masahiro Toyoda, Yoshihiro Mori
  • Patent number: 8318092
    Abstract: An oxygenator combines, in a single structure, a heat exchanger, a gas exchanger and an arterial filter. Such an oxygenator permits fewer fluid connections and thus may simplify an extracorporeal blood circuit, including a heart-lung machine and a blood reservoir, in which it is used. In some cases, the oxygenator may be configured to include multiple purge ports for purging bubbles both before and after filtering the blood.
    Type: Grant
    Filed: April 29, 2010
    Date of Patent: November 27, 2012
    Assignee: Sorin Group Italia S.r.l.
    Inventors: Stefano Reggiani, Claudio Silvestri, Alberto Giri
  • Patent number: 8292839
    Abstract: A switch comprises a rotating switch member which provides fluid communication in three modes; infusion, recirculation and priming The switch is located between the oxygenator and drug bag and the cardioplegia pump raceway. The switch has three channels molded into the rotating manifold which either direct blood and cardioplegia into the coronary arteries of the patient or into a recirculation line. When the switch is rotated into the recirculation line, a hose is in fluid connection through the switch and connects the recirculation line with the pump blood and drug inlet lines thereby allowing cooling of the cardioplegic mixture during the time between infusions.
    Type: Grant
    Filed: April 9, 2009
    Date of Patent: October 23, 2012
    Inventor: William G. O'Neill
  • Patent number: 8216452
    Abstract: A dialysis system includes a first fluid heater, a second fluid heater, a supplemental power source and a logic implementer. The logic implementer is configured to use the supplemental power source such that when the first and second heaters are powered simultaneously, a collective current draw does not exceed a maximum allowable current draw of a branch power source powering the system.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: July 10, 2012
    Assignees: Baxter International Inc., Baxter Healthcare S.A.
    Inventors: Justin Rohde, William W. Han
  • Patent number: 8206578
    Abstract: A dialysis system includes: a water purification unit; a dialysate generation unit configured to use water purified by the water purification unit; a dialysate delivery unit configured to deliver dialysate prepared by the dialysate generation unit; a supplemental power source; and electronic circuitry including: (i) a first electrical connection configured to electrically connect a branch power source with at least one of the water purification unit, the dialysate generation unit and the dialysate delivery unit, and (ii) a second electrical connection configured to electrically connect a supplemental power source with at least one of the water purification unit, the dialysate generation unit and the dialysate delivery unit.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: June 26, 2012
    Assignees: Baxter International Inc., Baxter Healthcare S.A.
    Inventors: Justin Rohde, William W. Han
  • Patent number: 8206332
    Abstract: A catheter is adapted to exchange heat with a body fluid, such as blood, flowing in a body conduit, such as a blood vessel. The catheter includes a shaft with a heat exchange region disposed at its distal end. This region may include hollow fibers which are adapted to receive a remotely cooled heat exchange fluid preferably flowing in a direction counter to that of the body fluid. The hollow fibers enhance the surface area of contact, as well as the mixing of both the heat exchange fluid and the body fluid. The catheter can be positioned to produce hypothermia in a selective area of the body or alternatively positioned to systemically cool the entire body system.
    Type: Grant
    Filed: June 7, 2010
    Date of Patent: June 26, 2012
    Assignees: Zoll Circulation Inc., The Regents of the University of California
    Inventors: Wayne A. Noda, Mike L. Jones, Scott M. Evans, Blair D. Walker, William J. Worthen, Yves Pierre Gobin
  • Patent number: 8192392
    Abstract: Systems and methods for selective cooling of a target site include a catheter having a supply lumen and a delivery lumen, with inlet and exit ports. Blood is withdrawn from the supply lumen and cooled or heated in a control unit. The treated blood is sent to the targeted area via delivery lumen. The supply lumen can act as an insulator for the delivery lumen.
    Type: Grant
    Filed: September 5, 2010
    Date of Patent: June 5, 2012
    Assignee: ThermopeutiX, Inc.
    Inventors: Ronald J. Solar, Glen Lieber
  • Patent number: 8178041
    Abstract: A method and apparatus for performing coronary perfusion and cardiac reoxygenation that enables accurate control of oxygen levels in blood used for the coronary circulation. Deoxygenated blood and oxygenated blood are collected and oxygen levels are measured by sensors. The deoxygenated and oxygenated blood is then mixed and the mixed blood is measured by another sensor. The sensors provide data used to provide real-time oxygen level measurement and adjustment for blood supplied for coronary circulation.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: May 15, 2012
    Assignee: Rheoxtech, LLC
    Inventor: Neil J. Thomas