Systems Patents (Class 606/10)
  • Patent number: 11224541
    Abstract: There is provided a system, apparatus and methods for developing laser systems that can create precise predetermined clear corneal incisions that are capable of reducing induced astigmatism. The systems, apparatus and methods further provide laser systems that can provide these incisions at or below Bowman's membrane.
    Type: Grant
    Filed: May 19, 2017
    Date of Patent: January 18, 2022
    Assignee: Lensar, Inc.
    Inventors: Ramón Naranjo-Tackman, Jorge Octavio Villar Kuri, Rudolph W. Frey
  • Patent number: 11185250
    Abstract: The present disclosure is directed to a method of determining a position of a medical instrument. The method may include inserting a first material into a body and adjacent to the medical instrument, analyzing at least one characteristic of the inserted first material, and determining the position of the medical instrument based on the analysis of the at least one characteristic.
    Type: Grant
    Filed: January 5, 2017
    Date of Patent: November 30, 2021
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Kevin Windheuser, Shawn Ryan
  • Patent number: 11139156
    Abstract: An apparatus is disclosed including a tool comprising a first device for generating aerosol from a target, the first device being deployed through an opening in a tubing of the tool, wherein the tubing is provided with aspiration ports or fenestrations such that the generated aerosol is aspirated into the tubing via the aspiration ports or fenestrations. The aspirated aerosol is then transferred to a mass spectrometer for subsequent mass analysis.
    Type: Grant
    Filed: March 7, 2016
    Date of Patent: October 5, 2021
    Assignee: Micromass UK Limited
    Inventors: Julia Balog, Tamas Karancsi, Steven Derek Pringle, Zoltan Takats, James Kinross, Jeremy K Nicholson
  • Patent number: 11103380
    Abstract: An auxiliary surgical field visualization system is described, which includes an auxiliary surgical field camera, configured for acquiring an image of a field of view of a secondary surgical field, wherein the secondary surgical field includes the exterior of a patient's eye undergoing vitreoretinal surgery. The auxiliary surgical field visualization system also includes a display in electronic communication with the auxiliary surgical field camera, wherein the display is configured for receiving, from the auxiliary surgical field camera, a signal that includes the image of the field of view of the secondary surgical field, and upon receiving the signal, displaying the image of the field of view of the secondary surgical field.
    Type: Grant
    Filed: June 18, 2019
    Date of Patent: August 31, 2021
    Inventor: Niels Alexander Abt
  • Patent number: 11103381
    Abstract: A treatment method and apparatus for surgical correction of defective-eyesight in an eye of a patient, wherein a laser device is controlled by a control device, said laser device separating corneal tissue by irradiation of laser radiation to isolate a volume located within a cornea, wherein the control device controls the laser device to focus the laser radiation, by providing target points located within the cornea, into the cornea, wherein the control device, when providing the target points, allows for focus position errors which lead to a deviation between the predetermined position and the actual position of the target points when focusing the laser radiation, by pre-offsets depending on the positions of the respective target points to compensate for said focus position errors.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: August 31, 2021
    Assignee: Carl Zeiss Meditec AG
    Inventors: Martin Wiechmann, Michael Bergt, Mark Bischoff, Markus Sticker, Gregor Stobrawa
  • Patent number: 11080893
    Abstract: Some embodiments are directed to an analysis unit for assessment of hair condition, including a map processor configured to at least: obtain a first follicular map representing a first plurality of hair root positions in a first videodermoscopy image, obtain a second follicular map representing a second plurality of hair root positions in a second videodermoscopy image, determine a common skin area from the first follicular map and the second follicular map, relate hair root positions in the second follicular map to hair root positions of the first follicular map in the common skin area to determine a plurality of related hair root positions, and compare a change in condition of individual hair between the first and second videodermoscopy image to determine the analysis result suitable for assessment of hair condition.
    Type: Grant
    Filed: January 15, 2020
    Date of Patent: August 3, 2021
    Inventor: Michal Pawel Kasprzak
  • Patent number: 11079482
    Abstract: A presence detection system includes an infrared detector and a radar detector. A computer processor of the system is configured to receive respective signals from the infrared and radar detectors and process the signals via execution of an algorithm.
    Type: Grant
    Filed: February 6, 2017
    Date of Patent: August 3, 2021
    Assignee: CARRIER CORPORATION
    Inventors: Ziyou Xiong, Cagatay Tokgoz, Joseph Zacchio, Nicholas Charles Soldner, Joseph V. Mantese, Alan Matthew Finn, Mathias Pantus, Jeroen te Paske, Pascal van de Mortel
  • Patent number: 11051755
    Abstract: The present invention is a Miniature Vein Enhancer that includes a Miniature Projection Head. The Miniature Projection Head may be operated in one of three modes, AFM, DBM, and RTM. The Miniature Projection Head of the present invention projects an image of the veins of a patient, which aids the practitioner in pinpointing a vein for an intravenous drip, blood test, and the like. The Miniature projection head may have a cavity for a power source or it may have a power source located in a body portion of the Miniature Vein Enhancer. The Miniature Vein Enhancer may be attached to one of several improved needle protectors, or the Miniature Vein Enhancer may be attached to a body similar to a flashlight for hand held use. The Miniature Vein Enhancer of the present invention may also be attached to a magnifying glass, a flat panel display, and the like.
    Type: Grant
    Filed: January 3, 2019
    Date of Patent: July 6, 2021
    Assignee: AccuVein, Inc.
    Inventors: Fred Wood, Ron Goldman, Stephen P. Conlon, Vincent Luciano
  • Patent number: 11033430
    Abstract: Methods and systems for correcting presbyopia using a surgical excimer laser include activating the laser once and transmitting a pre-defined three dimensional ablation profile to treat presbyopia based on the single activating step.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: June 15, 2021
    Assignee: Wake Forest University Health Sciences
    Inventors: Keith Andrew Walter, Evan Scott Luxon, Christopher Bligh Komanski
  • Patent number: 11026840
    Abstract: A planning device for generating control data for a treatment apparatus which by means of a laser device produces at least one incision surface in the cornea, and to a treatment apparatus having such a planning device. The invention further relates to a method for generating control data for a treatment apparatus which by using a laser device produces at least one incision surface in the cornea, and to a corresponding ophthalmic surgery method. The planning device is thereby provided with calculation means for defining the corneal incision surfaces, wherein the calculation means determine the corneal incision surfaces on the basis of data of a LIRIC structure and/or a refractive correction, and generate for the corneal incision surfaces a control data set for controlling the laser device, wherein the calculation means determine the corneal incision surfaces in such a manner that the LIRIC structure is enclosed by the incision surfaces.
    Type: Grant
    Filed: May 9, 2017
    Date of Patent: June 8, 2021
    Assignee: CARL ZEISS MEDITEC AG
    Inventors: Johannes Kindt, Manfred Dick, Mark Bischoff
  • Patent number: 11013413
    Abstract: A system includes a focus optic configured to converge an electromagnetic radiation (EMR) beam to a focal region located along an optical axis. The system also includes a detector configured to detect a signal radiation emanating from a predetermined location along the optical axis. The system additionally includes a controller configured to adjust a parameter of the EMR beam based in part on the signal radiation detected by the detector. The system also includes a window located a predetermined depth away from the focal region, between the focal region and the focus optic along the optical axis, wherein the window is configured to make contact with a surface of a tissue.
    Type: Grant
    Filed: April 16, 2020
    Date of Patent: May 25, 2021
    Assignee: Avava, Inc.
    Inventors: Jayant Bhawalkar, Charles Holland Dresser, Rajender Katkam
  • Patent number: 10973683
    Abstract: A laser surgical method for performing a corneal incision while maintaining iris exposure below a predetermined exposure limit includes: determining an initial iris exposure based on an initial treatment scan, determining whether the initial iris exposure is less than the predetermined exposure limit; generating a revised treatment scan comprising one or more treatment scan modifying elements when the initial iris exposure is greater than the predetermined exposure limit, and scanning the focal zone of a pulsed laser beam according to the revised treatment scan, thereby performing the corneal incision, wherein the one or more treatment scan modifying elements causes the iris exposure to be smaller than the predetermined exposure limit.
    Type: Grant
    Filed: January 31, 2018
    Date of Patent: April 13, 2021
    Assignee: AMO Development, LLC
    Inventors: Georg Schuele, David A. Dewey, Javier G. Gonzalez, Alexander Vankov
  • Patent number: 10973684
    Abstract: The aim of the invention is to machine a material by application of non-linear radiation. The aim is achieved by modifying the laser radiation emitted by a laser beam source with the aid of a polarization modulator in such a way that laser radiation focused into the material is polarized in a linear fashion, the direction of polarization varying across the cross section of the beam.
    Type: Grant
    Filed: December 27, 2018
    Date of Patent: April 13, 2021
    Assignee: Carl Zeiss Meditec AG
    Inventors: Mark Bischoff, Dirk Muehlhoff, Gregor Stobrawa
  • Patent number: 10973578
    Abstract: An exemplary treatment system can be provided which can include a laser system configured to emit at least one laser beam, and an optical system configured to focus the laser beam(s) to a focal region at a selected distance from a surface of a tissue. The focal region can be configured to illuminate at least a portion of a target. The optical system can cause an irradiation energy transferred to the focal region of the laser beam(s) to (i) generate a plasma in a first region of the tissue adjacent to the target, and (ii) avoid a generation of a plasma in a second region of the tissue. The optical system has a numerical aperture that is in the range of about 0.5 to about 0.9. An exemplary method can also be provided to control such treatment system.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: April 13, 2021
    Assignees: The General Hospital Corporation, Blossom Innovations, LLC
    Inventors: Richard Rox Anderson, Dieter Manstein, Henry Hin Lee Chan, Vincent Zuo
  • Patent number: 10966862
    Abstract: An ophthalmic laser treatment apparatus for generating plasma by focusing a treatment laser beam to treat a treatment target portion of a patient's eye with the plasma includes: an irradiation optical system configured to irradiate the treatment laser beam to the patient's eye; a position adjusting unit configured to adjust a focusing position of the treatment laser beam in an optical axis direction with respect to a predetermined focusing reference position; an energy adjusting unit configured to adjust irradiation energy of the treatment laser beam; a storage unit configured to store evaluation information to evaluate a permissible combination of the focusing position and the irradiation energy with respect to the focusing position; and an evaluation unit configured to evaluate a combination of the focusing position adjusted by the position adjusting unit and the irradiation energy adjusted by the energy adjusting unit based on the evaluation information.
    Type: Grant
    Filed: December 23, 2016
    Date of Patent: April 6, 2021
    Assignee: NIDEK CO., LTD.
    Inventors: Hitoshi Abe, Seiki Tomita, Masato Kawai
  • Patent number: 10967197
    Abstract: Phototherapy devices for the treatment of truncal acne and scars include, for example, a body portion having a bottom surface and a top surface that is configured to hang on a person's shoulders and cover the upper back and/or chest. The body portion further having left and right shoulder portions extending forwardly from the body portion and curled downwardly to hook over a person's shoulders. The shoulder portions further define a space for a person's neck therebetween. A phototherapy lighting component is configured to emit a light from the bottom surface of the body portion and forwardly extending shoulder portions. In use, the person places the shoulder portions on their shoulders with the body portion hanging downwardly against the person's back or chest, for example, wearing the body portion like a cape or bib. Using the lighting component, a therapeutic amount of light is administered to the person.
    Type: Grant
    Filed: August 29, 2018
    Date of Patent: April 6, 2021
    Assignee: Azulite, Inc.
    Inventors: Adam E. M. Eltorai, Daniel Gertrudes, Don Nguyen
  • Patent number: 10953238
    Abstract: This invention provides for a dermal repair system including a dermal repair device which is configured to be placed on the skin of a user. The dermal repair device is in the form of a removable silicone sheet which can be securely fixed in place and re-used after cleaning etc. The silicone sheet includes sheet sections and a housing section into which a rechargeable control unit can removably be inserted. Waveguides in the form of a dimple teardrop pattern are provided for directing radiation or light to distal ends of the sheet. The control unit includes a low-level radiation or light source from which radiation or light is directed along the sheet for a therapy regimen to treat closed wounds and scars, such as, C-section and breast surgery closed wounds and scars to improve healing and scar appearance. The system further comprises a recharging station configured for recharging the control unit.
    Type: Grant
    Filed: March 27, 2017
    Date of Patent: March 23, 2021
    Assignee: ALVALUX MEDICAL
    Inventors: Michel Alvarez, Denis Flandre
  • Patent number: 10955619
    Abstract: A dual port switching apparatus (12) comprising a connection part for mounting to a base unit (11), an input beam port to receive a main laser beam from a base unit (11) in an input optical path (22), a first output port (14) for connection to a flexible wave guide, a second output port (15) for connection to an articulated arm (16), and a switching element (56) moveable between a first position and a second position to direct an input beam to one of the first output port (14) and the second output port (15).
    Type: Grant
    Filed: April 29, 2020
    Date of Patent: March 23, 2021
    Assignee: LUMENIS LTD.
    Inventors: Eyal Benisty, Stanislav Kramer, Assaf Gelstein
  • Patent number: 10945792
    Abstract: A method for pigment removal from skin includes sensing properties of a pigmented area of skin with a camera, communicating the properties to a controller, and sending commands from the controller to a laser system to scan the pigmented area in a random pattern with laser beams of different wavelengths in accordance with the properties so as to remove a portion of pigment from the pigmented area.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: March 16, 2021
    Inventor: Ziv Karni
  • Patent number: 10946210
    Abstract: A cellulite and fat reducing device and method utilizing optical emitters includes an array housing a plurality of optical emitters which are positioned to produce an optical output directed to a recipient, and a controller for instructing an operation of the array. The optical output being generated by a plurality of LED's cumulatively producing green light at approximately 529.6 nm, and at approximately 48,860 Lux, measurable at the array.
    Type: Grant
    Filed: November 4, 2014
    Date of Patent: March 16, 2021
    Assignee: Blue Water Innovations, LLC
    Inventors: Terry Ward, Carolyn Ward
  • Patent number: 10946213
    Abstract: The present invention relates to an infrared radiation device including a mounting (2) capable of receiving a user (9) and a covering portion (1) capable of covering the user (9), the covering portion (1) including at least one heating layer (5a, 5b, 5c) capable of emitting infrared radiation (6) in a predetermined range of wavelengths towards at least one portion of the space located between the inner surface of the beating layer (5a, 5b, 5c) and the mounting (2), the device being characterised in that said heating layer (5a, 5h, 5c) is adjusted by at least one controller (10) including power-supply means (16) supplying the power necessary for infrared emission and at least one programmer (15) determining the parameters of a radiation session, by defining pulsations that control at least one synchronous static relay (14) which supplies said heating layer (5a, 5b, 5c) with the power provided by the power-supply means (16) during the pulsations.
    Type: Grant
    Filed: October 27, 2014
    Date of Patent: March 16, 2021
    Assignee: VITAL TECH
    Inventors: Eric Fauchon, Alexandra Gavsevitch
  • Patent number: 10893907
    Abstract: The present invention relates to a medical skin wrinkle improvement device using a peak of a laser pulse wave, and more specifically, to a medical skin wrinkle improvement device using a peak of a laser pulse wave, thereby lowering the degree of carbonization of a skin tissue having the laser irradiated thereon, thus enhancing a skin generation effect and shortening recovery time.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: January 19, 2021
    Inventor: You In Kim
  • Patent number: 10874553
    Abstract: System and method for making incisions in eye tissue at different depths. The system and method focuses light, possibly in a pattern, at various focal points which are at various depths within the eye tissue. A segmented lens can be used to create multiple focal points simultaneously. Optimal incisions can be achieved by sequentially or simultaneously focusing lights at different depths, creating an expanded column of plasma, and creating a beam with an elongated waist.
    Type: Grant
    Filed: June 1, 2017
    Date of Patent: December 29, 2020
    Assignee: AMO Development, LLC
    Inventors: Daniel V. Palanker, Mark S. Blumenkranz, David H. Mordaunt, Dan E. Andersen
  • Patent number: 10842573
    Abstract: A method and system assist a physician in performing an ophthalmic surgery. The method includes receiving a quasi-real time image of at least a first portion of the eye. The at least the first portion of the eye includes an operating field for the ophthalmic surgery. A recommended next region and a recommended next procedure are determined based on the quasi-real time image and a computational model of the eye. An expected next result for the recommended next procedure is calculated using the quasi-real time image and the computational model. The recommended next region, the recommended next procedure and the expected result are provided to the physician.
    Type: Grant
    Filed: August 24, 2016
    Date of Patent: November 24, 2020
    Assignee: Alcon Inc.
    Inventors: Michael J. Papac, Robert Joseph Sanchez, Jr.
  • Patent number: 10813588
    Abstract: The present invention is a Miniature Vein Enhancer that includes a Miniature Projection Head. The Miniature Projection Head may be operated in one of three modes, AFM, DBM, and RTM. The Miniature Projection Head of the present invention projects an image of the veins of a patient, which aids the practitioner in pinpointing a vein for an intravenous drip, blood test, and the like. The Miniature projection head may have a cavity for a power source or it may have a power source located in a body portion of the Miniature Vein Enhancer. The Miniature Vein Enhancer may be attached to one of several improved needle protectors, or the Miniature Vein Enhancer may be attached to a body similar to a flashlight for hand held use. The Miniature Vein Enhancer of the present invention may also be attached to a magnifying glass, a flat panel display, and the like.
    Type: Grant
    Filed: April 10, 2014
    Date of Patent: October 27, 2020
    Assignee: AccuVein, Inc.
    Inventors: Ron Goldman, David Hunt, Mark Mock, Graham Marshall, Stephen P. Conlon, Robert H. Roth
  • Patent number: 10799392
    Abstract: The invention relates to a controller for a surgical laser. According to the invention, the controller is adapted to control a laser in order to produce two or more three-dimensional compression zones, each comprising a plurality of lesions, inside a lens cortex of a crystalline lens of the eye using a laser pulse or multiple laser pulses, wherein the controller is adapted such that a laser can be calibrated with respect to a reference point within the lens, and each of the compression zones produced has a length in a radial direction, a depth in a direction parallel to the optical or visual axis and an average width in a direction parallel to a tangent of the lens cortex, wherein the sum of the average widths of all compression zones is 0.1 to 2 millimeter for every 1 diopter of desired gain in accommodation amplitude of the lens.
    Type: Grant
    Filed: December 23, 2011
    Date of Patent: October 13, 2020
    Assignee: ROWIAK GMBH
    Inventors: Holger Lubatschowski, Omid Kermani, Georg Gerten, Uwe Oberheide
  • Patent number: 10792103
    Abstract: Systems for enabling delivery of very high peak power laser pulses through optical fibers for use in ablation procedures preferably in contact mode. Such lasers advantageously emit at 355 nm wavelength. Other systems enable selective removal of undesired tissue within a blood vessel, while minimizing the risk of damaging the blood vessel itself, based on the use of the ablative properties of short laser pulses of 320 to 400 nm laser wavelength, with selected parameters of the mechanical walls of the tubes constituting the catheter, of the laser fluence and of the force that is applied by the catheter on the tissues. Additionally, a novel method of calibrating such catheters is disclosed, which also enables real time monitoring of the ablation process. Additionally, novel methods of protecting the fibers exit facets are disclosed.
    Type: Grant
    Filed: October 17, 2019
    Date of Patent: October 6, 2020
    Assignee: EXIMO MEDICAL LTD.
    Inventors: Yoel Zabar, Oren Meshulam Stern, Ilan Ben Oren
  • Patent number: 10786389
    Abstract: In a laser delivery system for an ophthalmic laser surgery system, a laser beam scanner employs a single or two MEMS micromirror arrays. Each micromirror in the array is capable of being independently actuated to rotate to desired angles. In one embodiment, one or two micromirror arrays are controlled to scan a laser beam in two directions. In another embodiment, a micromirror array is controlled to both correct optical aberrations in the laser beam and scan the laser beam in two directions. In yet another embodiment, a micromirror array is controlled to cause the laser beam to be focused to multiple focal spots simultaneously and to scan the multiple focal spot simultaneously. The ophthalmic laser surgery system also includes an ultrashort pulse laser, a laser energy control module, focusing optics and other optics, and a controller for controlling the laser beam scanner and other components of the system.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: September 29, 2020
    Assignee: AMO Development, LLC
    Inventor: Javier G. Gonzalez
  • Patent number: 10772683
    Abstract: Systems for enabling delivery of very high peak power laser pulses through optical fibers for use in ablation procedures preferably in contact mode. Such lasers advantageously emit at 355 nm wavelength. Other systems enable selective removal of undesired tissue within a blood vessel, while minimizing the risk of damaging the blood vessel itself, based on the use of the ablative properties of short laser pulses of 320 to 400 nm laser wavelength, with selected parameters of the mechanical walls of the tubes constituting the catheter, of the laser fluence and of the force that is applied by the catheter on the tissues. Additionally, a novel method of calibrating such catheters is disclosed, which also enables real time monitoring of the ablation process. Additionally, novel methods of protecting the fibers exit facets are disclosed.
    Type: Grant
    Filed: October 3, 2019
    Date of Patent: September 15, 2020
    Assignee: EXIMO MEDICAL LTD.
    Inventors: Yoel Zabar, Oren Meshulam Stern, Ilan Ben Oren
  • Patent number: 10743929
    Abstract: Low level laser energy may be delivered transmucosally to the vagina or other pelvic tissue. Such a device and its method of use may lead to healing of tissue, reduction of inflammation and pain, reduction in bladder problems such as urgency, frequency, and urinary incontinence, reshaping of tissue, and creation of a fertile environment for the potential implantation of stem cells. A probe may be moved in and out of the vagina in order to deliver the energy to the selected tissues. The probe may have a bulbous distal end that provides laser energy in a uniform 360 degree pattern or as close to 360 degrees of illumination as is structurally possible. Alternate embodiments may emit laser energy anywhere within the range from 0 degrees to 360 degrees. The scope of the present invention further includes the possibility of substituting alternate energy sources in place of laser energy.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: August 18, 2020
    Inventor: Ralph Zipper
  • Patent number: 10722398
    Abstract: A laser surgery system includes: a gantry configured to be attached to a structural frame; a docking receptacle configured to be removably attached to an eye docking assembly which is attached to an eye; an adjustable table attached to the gantry; a lens assembly attached to the adjustable table, wherein the adjustable table is configured to move the lens assembly relative to the eye; one or more connectors configured to attach the docking receptacle to the gantry, at least one of the connectors being configured to dynamically adjust the distance between a surface of the gantry and a surface of the docking receptacle; and a controller configured to maintain a target distance between the lens assembly and a reference area of the eye docking assembly.
    Type: Grant
    Filed: April 5, 2017
    Date of Patent: July 28, 2020
    Assignee: AMO Development, LLC
    Inventor: Bing Wang
  • Patent number: 10709503
    Abstract: Disclosed is a protective sleeve (1) for a dermatological treatment device comprising a laser head for firing a laser beam. The sleeve (1) comprises: a rigid shell (2) which is shaped such that it can be placed over the laser head and has a window (4) that can be positioned opposite the laser beam; a contact wall (5) arranged around the window (4) for contacting an area around a target area; and a means for attachment to the device, the attachment means being positioned as close as possible to the contact wall (5).
    Type: Grant
    Filed: January 6, 2017
    Date of Patent: July 14, 2020
    Assignee: URGO RECHERCHE INNOVATION DEVELOPMENT
    Inventor: Michel Lamoise
  • Patent number: 10702416
    Abstract: An apparatus (20) includes a probe (36) and a processor (144). The probe is positioned adjacent to an eye (28) of a patient (32) and is configured to irradiate a trabecular meshwork (56) of the eye with one or more optical beams (52). The processor is configured to select one or more target regions (80) of the trabecular meshwork, and to control the probe to irradiate the selected target regions with the optical beams.
    Type: Grant
    Filed: February 13, 2014
    Date of Patent: July 7, 2020
    Assignee: BELKIN LASER LTD.
    Inventors: Michael Belkin, David Zigdon, Ziv Karni, Asaf Klein
  • Patent number: 10688315
    Abstract: Modulated light therapy devices for treatment of dermatological disorders of the scalp are provided. An exemplary device includes a flexible printed circuit board (FPCB) supporting at least one light emitting device having an emitter height. The FPCB includes multiple interconnected panels and bending regions defined in and between at least some of the interconnected panels as to allow the FPCB to be configured in a concave shape to cover at least a portion of a cranial vertex of the patient. At least one light-transmissive layer proximate to the FPCB is configured to transmit (e.g., incoherent) light emissions generated by at least one light emitting device. At least one standoff is configured to be arranged between the FPCB and the scalp of the patient, wherein the at least one standoff includes a standoff height that exceeds the emitter height.
    Type: Grant
    Filed: July 28, 2016
    Date of Patent: June 23, 2020
    Assignee: Know Bio, LLC
    Inventors: Nicholas William Medendorp, Jr., Gerald H. Negley, Matthew Carl Reynolds, James Michael Lay
  • Patent number: 10667950
    Abstract: A system and method for increasing the amplitude of accommodation and/or changing the refractive power of lens material of a natural crystalline lens is provided. Generally, there is provided methods and systems for delivering a laser beam to a lens of an eye in a plurality of patterns results in the increased accommodative amplitude and/or refractive power of the lens. There is further provided a system and method of treating presbyopia by increasing both the flexibility of the human lens and the depth of field of the eye.
    Type: Grant
    Filed: January 11, 2017
    Date of Patent: June 2, 2020
    Assignee: Lensar, Inc.
    Inventors: Gary P. Gray, Rudolph W. Frey, Jerome R. Kuszak
  • Patent number: 10603216
    Abstract: Apparatus and methods of treating a hard lens region of an eye with a laser where one method includes identifying a boundary of the hard lens region, selecting a laser-parameter to enable a photo disruptive procedure in the hard lens region and to control a spreading of bubbles in the hard lens region, modifying a mechanical property of a posterior portion of the hard lens region in a proximity of the identified boundary by the photo disruptive procedure, and modifying a mechanical property of a portion anterior to the modified posterior portion of the hard lens region by the photo disruptive procedure. The laser bubbles can be applied to form incisions which are non-transverse to an axis of the eye and intersect the lens fibers.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: March 31, 2020
    Assignee: Alcon Inc.
    Inventors: Ronald M. Kurtz, Ferenc Raksi, Peter Goldstein
  • Patent number: 10582843
    Abstract: An illumination system for a surgical device is provided. The illumination system includes a tubular body made of a light permeable material and having at least one lumen extending between a distal end and a proximal end. The illumination system further includes a light source. At least one light diffusing optical fiber is disposed in the at least one lumen, the at least one light diffusing optical fiber having a core, primary cladding, and a plurality of nano-sized structures, the optical fiber further including an outer surface, and an end optically coupled to the light source. The fiber is configured to scatter guided light via the nano-sized structures away from the core and through the outer surface, to form a light-source fiber portion having a length that emits substantially uniform radiation over its length.
    Type: Grant
    Filed: March 22, 2016
    Date of Patent: March 10, 2020
    Assignee: CORNING INCORPORATED
    Inventors: William Spencer Klubben, III, Horst Schreiber
  • Patent number: 10543042
    Abstract: A fiber optic probe that eliminates extreme tip temperatures by radiating laser energy in a radial, 360° pattern from the surface of an exposed fiber optic tip is disclosed. In an embodiment, a fiber optic core is configured to operatively engage with a source of laser energy at a proximal end of the fiber optic tip, and, at a distal end of the fiber optic tip, includes a plurality of refracting surfaces configured to disperse laser energy in a radial pattern. In one embodiment, the refracting surfaces may be arranged as a plurality of annular prisms defined around the fiber core. In another embodiment, the refracting surfaces may be arranged as a plurality of concave lenses defined in the fiber optic tip. The temperature distribution of the disclosed probes is controlled and uniform, and may be tailored to radiate laser energy in any desired pattern which may be suitable to achieve an intended objective.
    Type: Grant
    Filed: May 23, 2014
    Date of Patent: January 28, 2020
    Assignee: COVIDIEN LP
    Inventors: Xinmin Wu, Zhongchi Luo, Dang Xie, Ruoxi Sun
  • Patent number: 10518106
    Abstract: The present invention discloses a device and a method for controlling growth of hair on human skin with low doses of electromagnetic radiation, and a device for carrying out the method. In the method, radiation of a suitable spectrum is applied to the skin, in one or more pulses of between 1 and 100 ms, and with maximum fluencies on the skin between 1 and 12 J/cm2. By applying such low fluencies and at controlled pulse durations, follicles of the hairs are induced to the catagen phase. This means that the growth of the hairs of those follicles will stop. Although the method is not primarily aimed at immediate hair removal, hairs may be shed subsequently. In any case, further growth may be stopped for prolonged periods of time. The main advantage of the method is that the risk of damage to the skin is minimized.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: December 31, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Michiel Errit Roersma, Antonius Maarten Nuijs, Francesco Roosen, Paul Anton Josef Ackermans, Rieko Verhagen, Gerhardus Wilhelmus Lucassen, Johannes Johanna Van Herk
  • Patent number: 10512754
    Abstract: A tip for a medical device includes a hollow body having a window, a sensor positioned within the hollow body and oriented such that its active surface is pointed towards the window, and a membrane positioned within a beam path of the sensor. The membrane passes energy without preventing an outer surface of the hollow body of the tip from coming in contact with tissue, thus allowing the hollow body to deliver therapy to an adjacent tissue and/or diagnose adjacent tissue. The membrane can cover the window or the sensor. The membrane is desirably permeable to an irrigant, such that a suitable level of irrigant outflow from the window is maintained, and thin enough that it minimizes attenuation of energy passing to and/or from the sensor.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: December 24, 2019
    Assignee: St. Jude Medical, Cardiology Division, Inc.
    Inventors: John W. Sliwa, Zhenyi Ma, Stephen A. Morse
  • Patent number: 10488497
    Abstract: A scanning lidar suitable for use on an automated vehicle includes a laser, a beam-steering means, and a controller. The laser generates a pulsed laser beam. The beam-steering means steers the pulsed laser beam in a direction within a field-of-view of the lidar. The field-of-view is characterized as rectangular-shaped. The controller is in communication with the laser and the beam-steering means. The controller coordinates operation of the laser and the beam-steering means such that the lidar is characterized by an angular-resolution. The controller operates the beam-steering means in accordance with a first rectangular spiral pattern characterized by an aspect-ratio that corresponds to the field-of-view. The first rectangular spiral pattern causes a scan-segment to be skipped during a present-scan of the field-of-view due to the aspect-ratio. As such, the field-of-view is not scanned entirely at the angular-resolution.
    Type: Grant
    Filed: November 8, 2016
    Date of Patent: November 26, 2019
    Assignee: Aptiv Technologies Limited
    Inventors: Mei Ling Cheong, Mang Khong Wong
  • Patent number: 10456875
    Abstract: Embodiments of methods and systems for distributing laser energy are disclosed herein. A system for dispensing laser energy by one or more laser energy sources in accordance with one embodiment of the present technology includes a laser energy credit transferring component configured to communicate with a laser energy source. The laser energy source is configured for producing and dispensing laser energy. The laser energy credit transferring component is further configured to receive a request from the laser energy source for laser energy and transfer laser energy credits to the laser energy source. The laser energy credits enable the laser energy source to dispense a corresponding amount of laser energy.
    Type: Grant
    Filed: August 25, 2014
    Date of Patent: October 29, 2019
    Assignee: UNIVERSAL LASER SYSTEMS, INC.
    Inventors: Yefim P. Sukhman, Michael L. Flanary, Stefano J. Noto, Christian J. Risser, Miesha T. Stoute, David John Zirbel, Jr.
  • Patent number: 10434324
    Abstract: Disclosed herein are methods and systems for treatment, such as skin rejuvenation treatment, use non-uniform laser radiation. A high-intensity portion of the laser radiation causes collagen destruction and shrinkage within select portions of the treatment area, while a lower-intensity portion of the radiation causes fibroblast stimulation leading to collagen production across other portions of the treatment area. An output beam from a laser source, such as an Nd:YAG laser, is coupled into an optical system that modifies the beam to provide a large-diameter beam having a nonuniform energy profile, comprised of a plurality of high-intensity zones surrounded by lower-intensity zones within the treatment beam. The higher-intensity zones heat select portions of the target tissue to temperatures sufficient for a first treatment (e.g. collagen shrinkage), while the lower-intensity zones provide sufficient energy for a second treatment (e.g. stimulated collagen production).
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: October 8, 2019
    Assignee: Cynosure, LLC
    Inventors: Mirko Georgiev Mirkov, Rafael Armando Sierra, George E. S. Cho
  • Patent number: 10430061
    Abstract: A computer-implemented method for controlling an electromagnetic energy source is disclosed. Instructions are executed on a processor to display on a computer-human interface display device a user interface region. The user interface region includes a pie-graph. An input is received via the user interface region, where the input is an interaction with the pie-graph that changes one of the radius or a sector of the plurality of the sectors. A power output of one or more of the electromagnetic energy sources is adjusted based on the input.
    Type: Grant
    Filed: July 5, 2017
    Date of Patent: October 1, 2019
    Assignee: Biolase, Inc.
    Inventors: Dmitri Boutoussov, Glenn Empey, Ryuichi Iwamura, Danny Quang Tran
  • Patent number: 10413359
    Abstract: Methods and systems for laser assisted delivery of therapeutic agents include preparing a site with an ultraviolet laser beam, at a wavelength appropriate for tissue ablation, such that an opening is produced in a surface of the site's tissue; and applying one or more agents to the prepared site, such that the agents penetrate the tissue through the opening to a predetermined depth.
    Type: Grant
    Filed: July 18, 2013
    Date of Patent: September 17, 2019
    Assignee: International Business Machines Corporation
    Inventors: Jerome M. Felsenstein, James L. Hedrick, James J. Wynne, Donna S. Zupanski-Nielsen
  • Patent number: 10398599
    Abstract: An ophthalmic treatment system and method for performing therapy on target tissue in a patient's eye. A delivery system delivers treatment light to the patient's eye and a camera captures a live image of the patient's eye. Control electronics control the delivery system, register a pre-treatment image of the patient's eye to the camera's live image (where the pre-treatment image includes a treatment template that identifies target tissue within the patient's eye), and verify whether or not the delivery system is aligned to the target tissue defined by the treatment template. The control electronics control the delivery system to project the treatment light onto the patient's eye in response to both an activation of a trigger device and the verification that the delivery system is aligned to the target tissue, as well as adjust delivery system alignment to track eye movement.
    Type: Grant
    Filed: October 5, 2007
    Date of Patent: September 3, 2019
    Assignee: TOPCON MEDICAL LASER SYSTEMS INC.
    Inventor: Steven Thomas Charles
  • Patent number: 10398600
    Abstract: A navigation apparatus for optically analyzing an inner structure of an optical element and processing that element includes a detection device and a processing device. The detection device has an aperture smaller than 0.25 and the processing device is disposed relative to the analyzed inner structure of the optical element. An apparatus for planning therapy for a human eye includes a dynamic wavefront measurement device for acquiring wavefront data, a diagnostic device for determining geometric parameters of the optical apparatus of the eye, a controller for consistent superposition of the wavefront and geometric data, and an additional controller for planning the most efficient therapeutic laser cutting paths.
    Type: Grant
    Filed: September 7, 2016
    Date of Patent: September 3, 2019
    Assignee: CARL ZEISS MEDITEC AG
    Inventors: Manfred Dick, Matthias Reich, Diego Zimare
  • Patent number: 10390994
    Abstract: A treatment method and apparatus for surgical correction of defective-eyesight in an eye of a patient, wherein a laser device is controlled by a control device, said laser device separating corneal tissue by irradiation of laser radiation to isolate a volume located within a cornea, wherein the control device controls the laser device to focus the laser radiation, by providing target points located within the cornea, into the cornea, wherein the control device, when providing the target points, allows for focus position errors which lead to a deviation between the predetermined position and the actual position of the target points when focusing the laser radiation, by pre-offsets depending on the positions of the respective target points to compensate for said focus position errors.
    Type: Grant
    Filed: October 15, 2018
    Date of Patent: August 27, 2019
    Assignee: Carl Zeiss Meditec AG
    Inventors: Martin Wiechmann, Michael Bergt, Mark Bischoff, Markus Sticker, Gregor Stobrawa
  • Patent number: 10383767
    Abstract: A surgical laser system can include a laser source configured to generate a laser beam. The system can also include a scanning delivery system that can be configured to direct the laser beam to an ocular target region and scan the laser beam along a scan pattern in the ocular target region of an eye. The system can further include a system controller in communication with the scanning delivery system. The system controller can be configured to control the scanning delivery system to scan the laser beam along the scan pattern to create a pattern of cuts for relaxing ophthalmic tissue in the ocular target region. Each cut of the pattern of cuts can extend only partially through the ophthalmic tissue.
    Type: Grant
    Filed: December 17, 2015
    Date of Patent: August 20, 2019
    Assignee: Novartis AG
    Inventor: Ferenc Raksi
  • Patent number: 10384075
    Abstract: A light irradiation substrate (1) includes a flexible substrate (5), first electrical conducting material patterns (15) composed of wirings (2) and a dummy pattern (6) which are provided on a front surface of the flexible substrate (5), and LED chips (4) each of which is mounted on each of the wirings (2), front surfaces of the first electrical conducting material patterns (15) are formed of a reflecting material having total light flux reflectance of 80% or more, and area coverage of the first electrical conducting material patterns (15) at least in a region surrounded by the LED chips (4) is 85% or more.
    Type: Grant
    Filed: February 15, 2016
    Date of Patent: August 20, 2019
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Katsuji Iguchi, Jun Mori, Tohru Nakanishi