With Coolant Supply Patents (Class 606/22)
  • Patent number: 8998888
    Abstract: A cryogenic medical device for delivery of subcooled liquid cryogen to various configurations of cryoprobes is designed for the treatment of damaged, diseased, cancerous or other unwanted tissues. The device is a closed or semi-closed system in which the liquid cryogen is contained in both the supply and return stages. The device is capable of generating cryogen to a supercritical state and may be utilized in any rapid cooling systems. As designed, the device comprises a number of parts including a vacuum insulated outer dewar, submersible cryogen pump, baffled linear heat exchanger, multiple pressurization cartridges, a return chamber, and a series of valves to control the flow of the liquid cryogen. The cryogenic medical device promotes the subcooling to any external cryogenic instrument.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: April 7, 2015
    Assignee: Endocare, Inc.
    Inventors: John M. Baust, John G. Baust, Roy Cheeks, Anthony Robilotto, Kristi Snyder
  • Publication number: 20150094702
    Abstract: Cryogenic device for carrying out cryotherapy on the entire body of a patient, the cryogenic device includes a treatment cabin for taking up a patient, the treatment cabin having closed walls, a closed roof and a door for entering the treatment cabin; a cold treatment gas preparation and distribution system for preparing a cold gas mixture and introducing it into the treatment cabin; and a control system for controlling the introduction of cold treatment gas from the cold treatment gas preparation and distribution system into the treatment cabin, in which the treatment cabin further includes a breathing window for allowing a patient located inside the treatment cabin to breath air from outside of the treatment cabin, the breathing window including sealing means for allowing a tight contact between the breathing window and the face of the patient.
    Type: Application
    Filed: May 29, 2013
    Publication date: April 2, 2015
    Inventor: Vladimir SHUPPO
  • Patent number: 8951246
    Abstract: A cryosurgical device, with a control for the supply and/or removal of a coolant gas to a cryoprobe via a return flow or a supply flow. The device has at least one socket for the attachment of a rigid cryoprobe and a flexible cryoprobe. The socket and the plugs of the cryoprobes each form probe couplings. The configuration of the cryosurgical device allows both rigid and flexible cryoprobes to be automatically connected to the appropriate return flow conduit, independently of the level of knowledge of operating personnel.
    Type: Grant
    Filed: November 22, 2006
    Date of Patent: February 10, 2015
    Assignee: Erbe Elektromedizin GmbH
    Inventor: Franz Geiselhart
  • Patent number: 8945106
    Abstract: A cryogenic probe design is provided containing, for example, an inner coil injection tube with a continuous flow of circulating liquid and an outer jacket enclosing the inner coil injection tube. A transducer may monitor parameters in the region between the inner coil injection tube and the outer jacket. An outer jacket serves to prevent gas leakage. One or more embodiments of a probe design provide continuous flow for example via a continuous and controlled path from inlet to outlet and an expanded thermally transmissive region. Expanding a thermally transmissive region of the cooling zone may be provided, for example, in one or more embodiments of injection tube designs.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: February 3, 2015
    Inventors: Steve Arless, Daniel Nahon, Domenic Santoianni
  • Publication number: 20150018810
    Abstract: A cryogenic medical device for delivery of subcooled liquid cryogen to various configurations of cryoprobes is designed for the treatment of damaged, diseased, cancerous or other unwanted tissues. The device is a closed or semi-closed system in which the liquid cryogen is contained in both the supply and return stages. The device is capable of generating cryogen to a supercritical state and may be utilized in any rapid cooling systems. As designed, the device comprises a number of parts including a vacuum insulated outer dewar, submersible cryogen pump, baffled linear heat exchanger, multiple pressurization cartridges, a return chamber, and a series of valves to control the flow of the liquid cryogen interconnected with cryotreatment devices including cryoprobes and catheters. The cryogenic medical device promotes subcooling to the tips of various external cryogenic instrument configurations.
    Type: Application
    Filed: July 21, 2014
    Publication date: January 15, 2015
    Inventors: John M. Baust, Roy E. Cheeks, John G. Baust, Anthony Robilotto, Kristi K. Snyder
  • Patent number: 8906005
    Abstract: A cryo-surgical system may comprise a container containing a refrigerant, a delivery tube having a first end configured to be in flow communication with the container and a second end opposite the first end. The system may further include a plurality of flexible finger portions disposed proximate a second end of the delivery tube opposite the first end, an applicator bud having a body portion disposed within the plurality of flexible finger portions and a contact surface extending from the plurality of flexible finger portions. An adjustment ring may be disposed along the delivery tube adjacent to the plurality of flexible finger portions. The contact surface of the bud may be changeable by adjustment of the adjustment ring.
    Type: Grant
    Filed: June 11, 2009
    Date of Patent: December 9, 2014
    Assignee: Orasure Technologies, Inc.
    Inventor: Philip Michael Formica
  • Patent number: 8900222
    Abstract: A system and method for controlling the inflation, ablation, and deflation of a balloon catheter. The system includes a balloon catheter, a console, a pressurized gas or liquid inflation source, and an umbilical system to deliver pressurized coolant to the balloon catheter. The system may include controller that monitors the amount of pressure and volume within the balloon catheter. During inflation, the pressure and/or volume of fluid within the balloon is maintained at a target amount in order to provide sufficient mechanized pressure against the desired target region. The system limits the inflation pressure such that a safe quantity of gas would be released should a leak occur. If the amount falls below a certain threshold level, gas or fluid egress is presumed and the inflation process is halted.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: December 2, 2014
    Assignee: Medtronic Cryocath LP
    Inventors: Marwan Abboud, Rachid Mahrouche, Chadi Harmouche, Teresa Ann Mihalik, Giles Desrochers
  • Patent number: 8882755
    Abstract: A novel medical probe assembly, system, and methods for the use thereof to treat tissue are described. The system optionally comprises an energy source, two probe assemblies, and one or more cooling devices to provide cooling to at least one of the probe assemblies. The probe assemblies may be configured in a bipolar mode, whereby current flows preferentially between the probe assemblies. The probe assemblies and system described herein are particularly useful to deliver radio frequency energy to a patient's body. RF energy delivery may be used for various applications, including the treatment of pain, tumor ablation and cardiac ablation.
    Type: Grant
    Filed: April 14, 2005
    Date of Patent: November 11, 2014
    Assignee: Kimberly-Clark Inc.
    Inventors: Mark Leung, Krishan Shah, Laura Conquergood, Subashini Chandran
  • Patent number: 8845628
    Abstract: A cryoablation system includes thermally insulated containers for holding liquid refrigerant. The containers are placed in a docking station that charges the containers with a liquid refrigerant at a cryogenic temperature suitable for carrying out a surgical procedure. The charged containers are detachably connectable with an inlet line of a cryoablation probe. When the cryoprobe is activated, the chilled liquid refrigerant is transported from a delivery container, through the cryoprobe, and to a recovery container. The recovery container is preferably identical in design to the delivery container. The refilled recovery container is then placed in the docking station to charge. In another embodiment, a cartridge includes a delivery container and recovery container combined as a single unit. Methods are also described.
    Type: Grant
    Filed: October 8, 2012
    Date of Patent: September 30, 2014
    Assignee: CryoMedix, LLC
    Inventors: Alexei Babkin, Peter Littrup, William Nydam, Barron Nydam
  • Patent number: 8834416
    Abstract: Stabilizing an object in the body of a patient involves the injection of a lower critical solution temperature (LCST) material or other flowable material into the body of the patient so that the material contacts the object. The LCST material or other flowable material then forms a gel in the body such that the object is contained at least partially within the gel and thereby stabilized by the gel such that the object can then be easily fragmented within the body and/or retrieved from the body.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: September 16, 2014
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Ronald A. Sahatjian, Arthur Madenjian, William R. Little
  • Publication number: 20140243808
    Abstract: The present disclosure relates to a thermal ablation probe device that integrates deployable sensors with a freezing probe or heating probe for use in ablating tissues. The ablation probe includes a longitudinal body including a thermal ablation energy source which may be, e.g., a cryosource or a heat source. The longitudinal body has a proximal end and a distal end terminating at a probe tip; and at least one deployable assembly disposed within the longitudinal body. The deployable assembly includes a flexible and substantially rigid deployment member, and at least one sensor affixed to a distal end of the deployment member. The ablation probe further includes a control mechanism for controlling deployment and retraction of the deployable assembly.
    Type: Application
    Filed: February 26, 2014
    Publication date: August 28, 2014
    Applicant: CPSI HOLDINGS LLC
    Inventors: Marie Molnar-Hammond, John M. Baust
  • Publication number: 20140207131
    Abstract: A method for purging a cryotreatment system, in particular, for clearing moisture and thus preventing ice blockages within a fluid flow path that may be formed when moisture pockets within the fluid flow path of the system are encountered by a first injection of refrigerant at the beginning of a cryotreatment procedure. The method may include injecting refrigerant from a refrigerant source into a fluid delivery conduit at a preselected pressure for a first period of time, the refrigerant flowing from the fluid delivery conduit through a fluid injection element and into a fluid recovery conduit, and evacuating refrigerant from the fluid recovery conduit by vacuum pressure generated by the vacuum pump for a second period of time. This method may be repeated for a plurality of cycles.
    Type: Application
    Filed: January 23, 2013
    Publication date: July 24, 2014
    Applicant: MEDTRONIC CRYOCATH LP
    Inventors: Chadi HARMOUCHE, Rachid MAHROUCHE, Eric MONGER, Bertin SIMÉON, Vladimir TZONEV
  • Patent number: 8784409
    Abstract: A cryogenic medical device for delivery of subcooled liquid cryogen to various configurations of cryoprobes is designed for the treatment of damaged, diseased, cancerous or other unwanted tissues. The device is a closed or semi-closed system in which the liquid cryogen is contained in both the supply and return stages. The device is capable of generating cryogen to a supercritical state and may be utilized in any rapid cooling systems. As designed, the device comprises a number of parts including a vacuum insulated outer dewar, submersible cryogen pump, baffled linear heat exchanger, multiple pressurization cartridges, a return chamber, and a series of valves to control the flow of the liquid cryogen interconnected with cryotreatment devices including cryoprobes and catheters. The cryogenic medical device promotes subcooling to the tips of various external cryogenic instrument configurations.
    Type: Grant
    Filed: November 2, 2009
    Date of Patent: July 22, 2014
    Assignee: Endocare, Inc.
    Inventors: Anthony Robilotto, Kristi K. Snyder, John G Baust, John M. Buast, Roy E. Cheeks
  • Patent number: 8764740
    Abstract: Systems, apparatus and methods for dispersing a coolant along different portions of a supply tube of a cryo-ablation device which may be in the form of a linear ablation device or catheter probe or a balloon catheter. A supply tube includes multiple tubes that are in fluid communication with an inner space of a transmissive region or an inner space of an inflatable balloon. The tubes are coaxially arranged and extend to different lengths or to different locations such that the coolant is dispersed from different tubes at different axial locations. Annular apertures are defined by pairs of tubes and have different sizes. The tubes and arrangement thereof are structured to provide uniform or substantially uniform coolant distribution to provide uniform or substantially uniform cryo-ablation of surrounding tissue.
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: July 1, 2014
    Assignee: Boston Scientific Scimed, Inc.
    Inventor: James R. Watson
  • Patent number: 8747396
    Abstract: A cryosurgical probe assembly that includes a gas delivery assembly, including a stem and a fluid conduit subassembly bonded to the stem. The fluid conduit subassembly delivers and returns cooling fluid used for cryogenic cooling. The fluid conduit subassembly, comprises a shaft for providing a heat exchange surface for cryogenic ablation; a housing securely connected to said shaft; and, an insulation element slideably engaged with an inner surface of the shaft and slideably engaged with the stem. The cryosurgical probe assembly includes an adjustable sliding apparatus that includes a slider assembly securely attached to said insulation tube for slideably guiding the insulation tube along said shaft; and, a button assembly operatively connected to the slider assembly for allowing a user to actuate the slider assembly to provide a desired adjustment of the insulation tube relative to the shaft. A handle assembly is positioned about the housing.
    Type: Grant
    Filed: October 18, 2009
    Date of Patent: June 10, 2014
    Assignee: Endocare, Inc.
    Inventors: Thach Duong, Jay J. Eum
  • Patent number: 8740891
    Abstract: A flexible multi-tubular cryoprobe, including a housing for receiving an inlet flow of near critical cryogenic fluid from a fluid source and for discharging an outlet flow of the cryogenic fluid. A plurality of fluid transfer tubes are securely attached to the housing. This includes a set of inlet fluid transfer tubes for receiving the inlet flow from the housing; and, a set of outlet fluid transfer tubes for discharging the outlet flow to the housing. Each of the fluid transfer tubes is formed of material that maintains flexibility in a full range of temperatures from ?200° C. to ambient temperature. Each fluid transfer tube has an inside diameter in a range of between about 0.10 mm and 1.0 mm and a wall thickness in a range of between about 0.01 mm and 0.30 mm. An end cap is positioned at the ends of the plurality of fluid transfer tubes to provide fluid transfer from the inlet fluid transfer tubes to the outlet fluid transfer tubes.
    Type: Grant
    Filed: November 19, 2008
    Date of Patent: June 3, 2014
    Assignee: Endocare, Inc.
    Inventors: Alexei V. Babkin, Peter J. Littrup, Robert V. Duncan, William J. Nydam
  • Patent number: 8740892
    Abstract: An expandable, flexible multi-tubular cryoprobe operational with a near critical cryogenic working fluid. The inlet fluid transfer micro-tubes utilized are formed of material that maintains flexibility in a full range of temperatures from ?200° C. to ambient temperature. During operation, the cryoprobe is mechanically actuated to provide radial expansion of the inlet fluid transfer micro-tubes. Thus, enhanced thermal contact with target biological tissue to be treated is provided.
    Type: Grant
    Filed: November 19, 2008
    Date of Patent: June 3, 2014
    Assignee: Endocare, Inc.
    Inventors: Alexei V. Babkin, Anatoly I. Efremov, Jay J. Eum
  • Patent number: 8727983
    Abstract: A catheter-based medical device includes a catheter that is configured and arranged for at least partial insertion into a patient and that defines at least one lumen that is configured and arranged to receive a first fluid. A conductive-fluid detector is coupled to the at least one lumen and is configured and arranged to detect when a second fluid is disposed within the at least one lumen that is more conductive than the first fluid. The conductive-fluid detector includes a plurality of axially-positioned bodies, each body defining a lumen. The lumens of the axially-positioned bodies are aligned to form a shared lumen in fluid communication with the at least one lumen of the catheter. Spaced apart electrodes are disposed within the shared lumen.
    Type: Grant
    Filed: August 12, 2010
    Date of Patent: May 20, 2014
    Assignee: Boston Scientific Scimed, Inc.
    Inventor: Charlotte F. Kinnison
  • Patent number: 8715275
    Abstract: Medical devices, systems, and methods for pain management and other applications may apply cooling with at least one probe inserted through an exposed skin surface of skin. The cooling may remodel one or more target tissues so as to effect a desired change in composition of the target tissue and/or a change in its behavior, often to interfere with transmission of pain signals along sensory nerves. Alternative embodiments may interfere with the function of motor nerves, the function of contractile muscles, and/or some other tissue included in the contractile function chain so as to inhibit muscle contraction and thereby alleviate associated pain. In some embodiments, other sources of pain such as components of the spine (optionally including herniated disks) may be treated.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: May 6, 2014
    Assignee: MyoScience, Inc.
    Inventors: Keith Burger, Lisa Elkins, Ronald Williams
  • Patent number: 8685014
    Abstract: A system and method for use with at least one cryoprobe for the treatment of biological tissue controls the energy applied to the tissue. The invention receives live procedure data such as temperature information from locations along the pathway of the cryogenic liquids, and calculates a procedure signature or profile based on the procedure data. In one embodiment, volumetric isotherms are calculated. The procedure signature is compared to a planning signature based on previously acquired image data and estimates of the thermal gradients from models. The system and method are further configured to automatically regulate the application of power based on analysis of the planning data to the procedure data.
    Type: Grant
    Filed: November 1, 2012
    Date of Patent: April 1, 2014
    Assignee: CryoMedix, LLC
    Inventors: Alexei Babkin, Peter Littrup
  • Patent number: 8679104
    Abstract: The present invention advantageously provides a method and system for cryogenically ablating large areas of tissue within the left atrium. In an exemplary embodiment a cryotherapy device includes a catheter body having a substantially fixed diameter, a proximal end and a distal end; a first lumen for permitting passage of a cooling fluid from the proximal end to the distal end; a second lumen permitting return of the cooling fluid from the distal end to the proximal end; and an ablation element expandable from a first diameter that is substantially the same as the diameter of the catheter body to a second diameter that is at least twice the diameter of the catheter body, the ablation element having a surface portion that conforms to the uneven surface topography of the cardiac tissue. The ablation element can include one or more balloon and/or a flexible element that is deformed by moving the distal end of the catheter toward the proximal end of the catheter.
    Type: Grant
    Filed: May 14, 2008
    Date of Patent: March 25, 2014
    Assignee: Medtronic Cryocath LP
    Inventors: Marwan Abboud, Fredric L. Milder, George Klein
  • Patent number: 8679059
    Abstract: Stabilizing an object in the body of a patient involves the injection of a lower critical solution temperature (LCST) material or other flowable material into the body of the patient so that the material contacts the object. The LCST material or other flowable material then forms a gel in the body such that the object is contained at least partially within the gel and thereby stabilized by the gel such that the object can then be easily fragmented within the body and/or retrieved from the body.
    Type: Grant
    Filed: February 11, 2013
    Date of Patent: March 25, 2014
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Ronald A. Sahatjian, Arthur Madenjian, William R. Little
  • Patent number: 8672938
    Abstract: A system for controlling temperature of a fluid used during treatment of biological tissue includes a fluid temperature control apparatus. The apparatus includes at least one heat transfer device and a solution bag and/or a heat transfer membrane. The solution bag and/or the heat transfer membrane reside in thermal communication with the heat transfer device. When the solution bag and/or the heat transfer membrane is fluidically coupled to an electrosurgical device, fluid is supplied to the electrosurgical device at a controlled temperature during a surgical procedure utilizing the electrosurgical device to enable more efficient treatment of the biological tissue. A corresponding method includes fluidically coupling the fluid temperature control apparatus to the electrosurgical device and supplying fluid at a controlled temperature during a surgical procedure utilizing the electrosurgical device to enable more efficient treatment of the biological tissue.
    Type: Grant
    Filed: July 23, 2009
    Date of Patent: March 18, 2014
    Assignee: Covidien LP
    Inventors: Steven P. Buysse, David N. Heard
  • Patent number: 8672931
    Abstract: A cryosurgical device and system is provided comprising a pressurized container, a metered valve that regulates the retrieval of a coolant solution stored in the pressurized container and regulates the volume of coolant solution dispensed with each actuation of the device, an actuator that engages the metered valve when engaged, and directs the coolant solution to an extension tube, which directs the coolant solution away from the pressurized container, and an applicator head configuring an open-ended enclosure attached to a distal end of the extension tube.
    Type: Grant
    Filed: August 18, 2008
    Date of Patent: March 18, 2014
    Assignee: 3JT Enterprises, LLC
    Inventors: Anthony Goldboss, Charles Incorvia, Judy Goldboss
  • Patent number: 8647337
    Abstract: A dispensing head for dispensing a cryogenic fluid may comprise a flow passage configured to be placed in flow communication with a reservoir containing a cryogenic fluid, the flow passage defining a flow passage inlet opening configured to receive the cryogenic fluid from the reservoir, and a flow passage outlet opening opposite the flow passage inlet opening. The dispensing head may further comprise a dispensing member configured to dispense the cryogenic fluid, the dispensing member defining a lumen having a lumen inlet opening and a lumen outlet opening; and at least one porous member disposed in the flow passage, the at least one porous member being configured as a primary flow regulation mechanism to limit a flow rate of the cryogenic fluid as it flows from the reservoir to the lumen outlet opening.
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: February 11, 2014
    Assignee: STC Consulting, LLC
    Inventors: R. Sam Niedbala, Lincoln C. Young, Peng Zhou
  • Patent number: 8613937
    Abstract: Certain embodiments disclosed herein relate to compositions, methods, devices, systems, and products regarding frozen particles. In certain embodiments, the frozen particles include materials at low temperatures. In certain embodiments, the frozen particles provide vehicles for delivery of particular agents. In certain embodiments, the frozen particles are administered to at least one biological tissue.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: December 24, 2013
    Assignee: The Invention Science Fund I, LLC
    Inventors: Edward S. Boyden, Daniel B. Cook, Roderick A. Hyde, Eric C. Leuthardt, Nathan P. Myhrvold, Elizabeth A. Sweeney, Lowell L. Wood, Jr.
  • Patent number: 8608730
    Abstract: A thermal treatment medical system including an umbilical having a first portion and a second portion, and a connector including a male coupling body connected to the first portion, the male coupling body having a central shank defining first and second lumens, a female coupling body connected to the second portion, the female coupling body, matable with the male coupling body and defining third and fourth lumens matable to be in fluid communication with the first and second lumens, respectively, to define first and second fluid flow pathways, respectively, through the connector when the male coupling body is mated with the female coupling body. The second fluid flow pathway is co-axially disposed about a central axis coincident with the first fluid flow pathway. The connector includes a mating mechanism for spatially locking the male and female coupling bodies with respect to each other.
    Type: Grant
    Filed: September 6, 2005
    Date of Patent: December 17, 2013
    Assignee: Medtronic CryoCath LP
    Inventors: Marwan Abboud, Domenic Santoianni, Philippe Marchand, Rachid Mahrouche, Patrick St-Louis
  • Patent number: 8603496
    Abstract: Certain embodiments disclosed herein relate to compositions, methods, devices, systems, and products regarding frozen particles. In certain embodiments, the frozen particles include materials at low temperatures. In certain embodiments, the frozen particles provide vehicles for delivery of particular agents. In certain embodiments, the frozen particles are administered to at least one biological tissue.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: December 10, 2013
    Assignee: The Invention Science Fund I, LLC
    Inventors: Edward S. Boyden, Daniel B. Cook, Roderick A. Hyde, Eric C. Leuthardt, Nathan P. Myhrvold, Elizabeth A. Sweeney, Lowell L. Wood, Jr.
  • Patent number: 8603494
    Abstract: Certain embodiments disclosed herein relate to compositions, methods, devices, systems, and products regarding frozen particles. In certain embodiments, the frozen particles include materials at low temperatures. In certain embodiments, the frozen particles provide vehicles for delivery of particular agents. In certain embodiments, the frozen particles are administered to at least one biological tissue.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: December 10, 2013
    Assignee: The Invention Science Fund I, LLC
    Inventors: Edward S. Boyden, Daniel B. Cook, Roderick A. Hyde, Eric C. Leuthardt, Nathan P. Myhrvold, Elizabeth A. Sweeney, Lowell L. Wood, Jr.
  • Patent number: 8603495
    Abstract: Certain embodiments disclosed herein relate to compositions, methods, devices, systems, and products regarding frozen particles. In certain embodiments, the frozen particles include materials at low temperatures. In certain embodiments, the frozen particles provide vehicles for delivery of particular agents. In certain embodiments, the frozen particles are administered to at least one biological tissue.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: December 10, 2013
    Assignee: The Invention Science Fund I, LLC
    Inventors: Edward S. Boyden, Daniel B. Cook, Roderick A. Hyde, Eric C. Leuthardt, Nathan P. Myhrvold, Elizabeth A. Sweeney, Lowell L. Wood, Jr.
  • Patent number: 8585688
    Abstract: The handpiece for treating the skin with irradiation using a light beam (F1), comprises a first window (1) and a second window (2) and first means for cooling the first window (1). Said first window (1) and said second window (2) are positioned opposite one another and are separated by a gas-filled space. They are capable of transmitting a light beam (F1) and said first window (1) is intended to be applied in contact with the skin during the treatment. The handpiece comprises means for heating the gas between the two windows (1, 2).
    Type: Grant
    Filed: August 5, 2008
    Date of Patent: November 19, 2013
    Assignee: LSO Medical
    Inventors: Jaouad Zemmouri, Jean Ringot, Mohammed Zemmouri
  • Patent number: 8579890
    Abstract: Described herein are methods and devices for performing ablation via a cryoablation catheter. An ablation catheter having a cyroablation chamber at its distal end can be used to achieve a uniform ablation band in or around the pulmonary veins. The cyrochamber can house a dispersion member in fluid communication with a refrigerant supply and can function to evenly distribute received refrigerant over some portion of the inner wall of the cryochamber. As a result of this even distribution of refrigerant within the cyrochamber, uniform ablation of the targeted tissue of the patient can be achieved.
    Type: Grant
    Filed: March 12, 2009
    Date of Patent: November 12, 2013
    Assignee: Boston Scientific Scimed, Inc.
    Inventor: Raphael Hon
  • Publication number: 20130296837
    Abstract: Methods and apparatus for the treatment of a body cavity or lumen are described where a heated fluid and/or gas may be introduced through a catheter and into treatment area within the body contained between one or more inflatable/expandable members. The catheter may also have optional pressure and temperature sensing elements which may allow for control of the pressure and temperature within the treatment zone and also prevent the pressure from exceeding a pressure of the inflatable/expandable members to thereby contain the treatment area between these inflatable/expandable members. Optionally, a chilled, room temperature, or warmed fluid such as water may then be used to rapidly terminate the treatment session.
    Type: Application
    Filed: May 23, 2013
    Publication date: November 7, 2013
    Inventors: Daniel R. BURNETT, Ric COTE, William W. MALECKI, Brian M. NEIL, David BEAULIEU, Benjamin D. VOILES
  • Patent number: 8563012
    Abstract: Certain embodiments disclosed herein relate to compositions, methods, devices, systems, and products regarding frozen particles. In certain embodiments, the frozen particles include materials at low temperatures. In certain embodiments, the frozen particles provide vehicles for delivery of particular agents. In certain embodiments, the frozen particles are administered to at least one biological tissue.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: October 22, 2013
    Assignee: The Invention Science Fund I, LLC
    Inventors: Edward S. Boyden, Daniel B. Cook, Roderick A. Hyde, Eric C. Leuthardt, Nathan P. Myhrvold, Elizabeth A. Sweeney, Lowell L. Wood, Jr.
  • Patent number: 8551505
    Abstract: Certain embodiments disclosed herein relate to compositions, methods, devices, systems, and products regarding frozen particles. In certain embodiments, the frozen particles include materials at low temperatures. In certain embodiments, the frozen particles provide vehicles for delivery of particular agents. In certain embodiments, the frozen particles are administered to at least one biological tissue.
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: October 8, 2013
    Assignee: The Invention Science Fund I, LLC
    Inventors: Edward S. Boyden, Roderick A. Hyde, Eric C. Leuthardt, Nathan P. Myhrvold, Elizabeth A. Sweeney, Lowell L. Wood, Jr.
  • Patent number: 8551081
    Abstract: A cryosurgical system and method for supplying cryogen to a probe. The system including a container filled with cryogen and having bellows of a pump submerged within said cryogen. Conduits fluidly interconnect the bellows and a probe that is outside the container to permit the cryogen to be forced from the bellows to the probe upon activation of pump. A pressure relief valve is fluidly coupled to the conduits and positioned between the bellows and the probe. After initially forcing cryogen to the probe at a pressure that establishes a colligative-based sub-cooling of the liquid cryogen, the pressure relief valve is activated to lower the pressure of the cryogen to a running pressure.
    Type: Grant
    Filed: October 3, 2010
    Date of Patent: October 8, 2013
    Assignee: Endocare, Inc.
    Inventors: John G. Baust, Roy Cheeks
  • Patent number: 8551506
    Abstract: Certain embodiments disclosed herein relate to compositions, methods, devices, systems, and products regarding frozen particles. In certain embodiments, the frozen particles include materials at low temperatures. In certain embodiments, the frozen particles provide vehicles for delivery of particular agents. In certain embodiments, the frozen particles are administered to at least one biological tissue.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: October 8, 2013
    Assignee: The Invention Science Fund I, LLC
    Inventors: Edward S. Boyden, Daniel B. Cook, Roderick A. Hyde, Eric C. Leuthardt, Nathan P. Myhrvold, Elizabeth A. Sweeney, Lowell L. Wood, Jr.
  • Patent number: 8545855
    Abstract: Certain embodiments disclosed herein relate to compositions, methods, devices, systems, and products regarding frozen particles. In certain embodiments, the frozen particles include materials at low temperatures. In certain embodiments, the frozen particles provide vehicles for delivery of particular agents. In certain embodiments, the frozen particles are administered to at least one biological tissue.
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: October 1, 2013
    Assignee: The Invention Science Fund I, LLC
    Inventors: Edward S. Boyden, Daniel B. Cook, Roderick A. Hyde, Eric C. Leuthardt, Nathan P. Myhrvold, Elizabeth A. Sweeney, Lowell L. Wood, Jr.
  • Patent number: 8545856
    Abstract: Certain embodiments disclosed herein relate to compositions, methods, devices, systems, and products regarding frozen particles. In certain embodiments, the frozen particles include materials at low temperatures. In certain embodiments, the frozen particles provide vehicles for delivery of particular agents. In certain embodiments, the frozen particles are administered to at least one biological tissue.
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: October 1, 2013
    Assignee: The Invention Science Fund I, LLC
    Inventors: Edward S. Boyden, Daniel B. Cook, Roderick A. Hyde, Eric C. Leuthardt, Nathan P. Myhrvold, Elizabeth A. Sweeney, Lowell L. Wood, Jr.
  • Patent number: 8545806
    Abstract: Certain embodiments disclosed herein relate to compositions, methods, devices, systems, and products regarding frozen particles. In certain embodiments, the frozen particles include materials at low temperatures. In certain embodiments, the frozen particles provide vehicles for delivery of particular agents. In certain embodiments, the frozen particles are administered to at least one biological tissue.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: October 1, 2013
    Assignee: The Invention Science Fund I, LLC
    Inventors: Edward S. Boyden, Daniel B. Cook, Roderick A. Hyde, Eric C. Leuthardt, Nathan P. Myhrvold, Elizabeth A. Sweeney, Lowell L. Wood, Jr.
  • Patent number: 8545857
    Abstract: Certain embodiments disclosed herein relate to compositions, methods, devices, systems, and products regarding frozen particles. In certain embodiments, the frozen particles include materials at low temperatures. In certain embodiments, the frozen particles provide vehicles for delivery of particular agents. In certain embodiments, the frozen particles are administered to at least one biological tissue.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: October 1, 2013
    Assignee: The Invention Science Fund I, LLC
    Inventors: Edward S. Boyden, Daniel B. Cook, Roderick A. Hyde, Eric C. Leuthardt, Nathan P. Myhrvold, Elizabeth A. Sweeney, Lowell L. Wood, Jr.
  • Patent number: 8545491
    Abstract: A system and method for controlling the inflation, ablation, and deflation of a balloon catheter. The system includes a balloon catheter, a console, having a pressurized gas or liquid inflation source, and an umbilical system to deliver pressurized coolant to the balloon catheter. The system comprises a PID (Proportional Integral Derivative) controller or other pressure-sensing device that monitors the amount of pressure and volume within the balloon catheter. During inflation, the pressure and/or volume of fluid within the balloon is maintained at a target amount in order to provide sufficient mechanized pressure against the desired target region. The system limits the inflation pressure such that a safe quantity of gas would be released should a leak occur. If the amount falls below a certain threshold level, gas or fluid egress is presumed and the inflation process is halted. In one embodiment, an intermediate console is placed between the console and the balloon catheter and coupled thereto.
    Type: Grant
    Filed: December 13, 2005
    Date of Patent: October 1, 2013
    Assignee: Medtronic CryoCath LP
    Inventors: Marwan Abboud, Rachid Mahrouche, Teresa Mihalik, Chadi Harmouche, Eric Monger
  • Publication number: 20130231651
    Abstract: An improved cryosurgical system for application of medical-grade liquid nitrogen to a treatment area via a small, low pressure, open tipped catheter. The system includes a console, including a touch panel computer, a cryogen module, a suction module and an electronics module, all packaged in a mobile cart, and a disposable spray kit. Improved features include optional low cryogen flow setting to reduce the cryogen flow rate by 50%, improved cryogen flow consistency reducing pressure pulses and peaks (improved sensors, control systems, and control algorithms), an integrated suction pump for improved consistency and self-checks, specified vent tube areas and corresponding maximum expected pressures during cryospray procedure; optional pressure sensing capability to monitor pressure during a treatment, and improved catheter design.
    Type: Application
    Filed: March 2, 2012
    Publication date: September 5, 2013
    Inventors: Ron Burr, Janel Petrilli
  • Patent number: 8518031
    Abstract: Certain embodiments disclosed herein relate to compositions, methods, devices, systems, and products regarding frozen particles. In certain embodiments, the frozen particles include materials at low temperatures. In certain embodiments, the frozen particles provide vehicles for delivery of particular agents. In certain embodiments, the frozen particles are administered to at least one substrate.
    Type: Grant
    Filed: October 30, 2009
    Date of Patent: August 27, 2013
    Assignee: The Invention Science Fund I, LLC
    Inventors: Edward S. Boyden, Daniel B. Cook, Roderick A. Hyde, Eric C. Leuthardt, Nathan P. Myhrvold, Elizabeth A. Sweeney, Lowell L. Wood, Jr.
  • Publication number: 20130218150
    Abstract: The medical instrument includes a male instrument connector, which includes at least one male fluid connector arranged on a flat face. A venting bore may also be arranged on the same face and disposed to act as pressure relief by which leaking fluids that accumulate in the instrument can be discharged. A cover cap may be attached to the face. The cover cap allows for sterilization of the instrument, including the male instrument connector.
    Type: Application
    Filed: February 22, 2013
    Publication date: August 22, 2013
    Applicant: ERBE ELEKTROMEDIZIN GMBH
    Inventor: ERBE ELEKTROMEDIZIN GMBH
  • Publication number: 20130218151
    Abstract: A catheter includes a first expandable membrane having a first pressurization limit and a second expandable membrane, having a second pressurization limit, wherein the second pressurization limit is greater than the first pressurization limit, the first expandable membrane defines a cooling chamber, the second expandable membrane being disposed around the first expandable membrane to define an junction therebetween. The catheter includes a coolant injection lumen in fluid communication with the at least one fluid inlet port and the cooling chamber, and a primary coolant return lumen in fluid communication with the at least one fluid outlet port and the cooling chamber. The coolant injection tube, the cooling chamber, and the primary coolant return lumen define a first fluid pathway. The catheter further includes a secondary coolant return lumen in fluid communication with the at least one fluid outlet port and the junction. The junction and the secondary coolant return lumen define a second fluid pathway.
    Type: Application
    Filed: March 19, 2013
    Publication date: August 22, 2013
    Applicant: MEDTRONIC CRYOCATH LP
    Inventor: MEDTRONIC CRYOCATH LP
  • Publication number: 20130218149
    Abstract: A device for cryotherapy treatment of gastrointestinal lesions includes a cooling member that may be attached to a first tube for pressurizing cryogenic fluid through the tube and into the cooling member through nozzles located at the distal end of the first tube. A second tube may be attached to the cooling member for evacuating the cryogenic fluid from within the cooling member, following the fluid's expansion once it exits the first tube. The cryotherapy device may be attached to an endoscope such that the first tube may be passed through the endoscope's working channel, while the second tube may be passed along the endoscope's circumference. The cryotherapy device may further comprise securing means attached to the first tube, for securing the first tube to the endoscope's working channel, thus preventing free rotation of the cryotherapy device within the endoscope, relative to the rotation of the endoscope.
    Type: Application
    Filed: July 7, 2011
    Publication date: August 22, 2013
    Applicant: GIVEN IMAGING LTD.
    Inventors: Ori Braun, Gavriel J. Iddan, Eyal Kochavi, Elisha Rabinovitz, Zvika Gilad
  • Publication number: 20130197501
    Abstract: A system and method is disclosed for cryogenic medical treatment, having a stabilizer for a reservoir of cryogenic fluid. Accordingly, the stabilizer allows the reservoir some limited range of motion to enhance accuracy of a load sensor engaged by the reservoir, and to resist tipping or other undesirable movement by the reservoir. The stabilizer may allow the reservoir a range of vertical movement, and may limit the reservoir to a range of positions or alignments relative to the load sensor. Additional configurations are disclosed, providing stabilizers of various types and features.
    Type: Application
    Filed: April 4, 2012
    Publication date: August 1, 2013
    Applicant: MEDTRONIC CRYOCATH LP
    Inventor: Eric MONGER
  • Publication number: 20130178824
    Abstract: Apparatus, systems, and methods provide access to the renal pelvis of a kidney to treat renal nerves embedded in tissue surrounding the renal pelvis. Access to the renal pelvis may be via the urinary tract or via minimally invasive incisions through the abdomen and kidney tissue. Treatment is effected by exchanging energy, typically delivering heat or extracting heat through a wall of the renal pelvis, or by delivering active substances.
    Type: Application
    Filed: July 12, 2012
    Publication date: July 11, 2013
    Applicant: Verve Medical, Inc.
    Inventor: Terrence J. Buelna
  • Patent number: 8475441
    Abstract: A system and method for use with at least one cryoprobe for the treatment of biological tissue controls the energy applied to the tissue. The invention receives live procedure data such as temperature information from locations along the pathway of the cryogenic liquids, and calculates a procedure signature or profile based on the procedure data. In one embodiment, volumetric isotherms are calculated. The procedure signature is compared to a planning signature based on previously acquired image data and estimates of the thermal gradients from models. The system and method are further configured to automatically regulate the application of power based on analysis of the planning data to the procedure data.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: July 2, 2013
    Assignee: CryoMedix, LLC
    Inventors: Alexei Babkin, Peter Littrup