Cyrogenic Application Patents (Class 606/20)
  • Patent number: 10383787
    Abstract: A treatment device for removing heat from subcutaneous lipid-rich cells of a subject having an actuator that provides mechanical energy to the tissue. The mechanical energy provided may include a vibratory component that can range between low and ultra-high frequencies, and such energy may include various combinations of two or more frequencies tailored to produce the desired effect on the subcutaneous tissue. Disruption of adipose tissue cooled by an external treatment device may be enhanced by applying mechanical energy to cooled tissue. Furthermore, such mechanical energy may impart a vibratory effect, a massage effect, a pulsatile effect, or combinations thereof on the tissue.
    Type: Grant
    Filed: November 16, 2017
    Date of Patent: August 20, 2019
    Assignee: Zeltiq Aesthetics, Inc.
    Inventors: Jesse Nicasio Rosen, Mitchell E. Levinson
  • Patent number: 10293190
    Abstract: Methods and apparatus are provided for thermally-induced renal neuromodulation. Thermally-induced renal neuromodulation may be achieved via direct and/or via indirect application of thermal energy to heat or cool neural fibers that contribute to renal function, or of vascular structures that feed or perfuse the neural fibers. In some embodiments, parameters of the neural fibers, of non-target tissue, or of the thermal energy delivery element, may be monitored via one or more sensors for controlling the thermally-induced neuromodulation. In some embodiments, protective elements may be provided to reduce a degree of thermal damage induced in the non-target tissues.
    Type: Grant
    Filed: October 5, 2015
    Date of Patent: May 21, 2019
    Assignee: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Denise Zarins, Nicolas Zadno, Benjamin J. Clark, Erik Thai, Howard R. Levin, Mark Gelfand
  • Patent number: 10292686
    Abstract: A medical ultrasonic probe includes an ultrasonic probe having a probe head and a connector. The connector includes a fluid cooling system comprising a pump configured to pump a cooling fluid between the connector and the probe head. A damper including a housing has a first portion defining a cavity receiving the cooling fluid and a second portion including a gas that is separated from the first portion by a membrane.
    Type: Grant
    Filed: December 30, 2013
    Date of Patent: May 21, 2019
    Assignee: General Electric Company
    Inventors: Erich Birglehner, Thomas Rittenschober
  • Patent number: 10206739
    Abstract: A method and apparatus are disclosed for delivering energy substantially distal to an electrosurgical device. Embodiments of a device of the present invention may comprise an elongate member having one or more electrically insulated portions and a distal face comprising one or more electrically exposed conductive portions for delivering energy substantially distal to the elongate member. At least one of the one or more electrically insulated portions may extend from a proximal region of the elongate member to a distal end of the elongate member. In addition, a method is provided for creating a lesion at a target site within a body of a human or animal using an electrosurgical device.
    Type: Grant
    Filed: July 14, 2006
    Date of Patent: February 19, 2019
    Assignee: Avent, Inc.
    Inventors: Neil Godara, Taylor Hillier
  • Patent number: 10085787
    Abstract: A cryosurgical probe assembly including a cryosurgical probe having a shaft, an insulation element housed within the cryosurgical probe and being slideably repositionable relative to the shaft, and a fluid supply line having an inlet portion for connection to a cryogenic fluid source.
    Type: Grant
    Filed: October 29, 2013
    Date of Patent: October 2, 2018
    Assignee: ENDOCARE, INC.
    Inventors: Thach Duong, Jay J. Eum
  • Patent number: 10085789
    Abstract: A system for alleviating occipital neuralgia. The system has a needle probe having at least one needle. The at least one needle has a proximal end, a distal end, and a needle lumen therebetween, the needle configured for insertion proximate to a location of the occipital nerve. A cooling fluid supply lumen extends distally within the needle lumen to a distal portion of the needle lumen. A cooling fluid source is coupled to the cooling fluid supply lumen to direct cooling fluid flow into the needle lumen. A controller that has at least one processor configured implements an occipital neuralgia treatment algorithm for controlling the cooling fluid source so that liquid from the cooling flow vaporizes within the needle lumen to provide a treatment phase to location of the occipital nerve such that the occipital neuralgia is mitigated.
    Type: Grant
    Filed: March 13, 2017
    Date of Patent: October 2, 2018
    Assignee: Myoscience, Inc.
    Inventors: Clint Carnell, John Allison, Jwala Karnik, Jesse Rosen
  • Patent number: 10070910
    Abstract: Apparatus and methods for performing cryogenic ablation of tissue and adjusting the size and/or location of a cryogenic cooling region. A cooling assembly may include tubes for dispensing and exhausting a coolant or refrigerant. One or both of the tubes may be moved, e.g., slidably adjusted, in order to adjust the location or size of a cryogenic ablation region. The cooling assembly may be integrated into cryogenic ablation devices including a cryogenic balloon device that includes an inner inflatable balloon and another balloon that is at least partially wrapped around the inner balloon and carries refrigerant for performing cryo-ablation. Electrodes permit electrical mapping of tissue before or after cryo-ablation to verify success of the procedure.
    Type: Grant
    Filed: July 9, 2013
    Date of Patent: September 11, 2018
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Frank W. Ingle, Robert F. Bencini, Josef V. Koblish, Jonathan A. Wohlgemuth, Paul A. Roche
  • Patent number: 10058371
    Abstract: A cryotreatment catheter for treating tissue. The catheter may include an outer elongate body, a balloon treatment element coupled to the distal portion of the elongate body with a plurality of balloon lobes radially arranged around the outer elongate body, an inner elongate body rotatably movable within the lumen of the outer elongate body, and a fluid delivery lumen located within the lumen of the outer elongate body and at least partially within the lumen of the inner elongate body. The fluid delivery lumen may be branched at a distal portion into a plurality of linear segments, each linear segment being in fluid communication with one of the plurality of balloon lobes. Each of the balloon lobes may be inflated independently of each other by the linear segments of the fluid delivery lumen.
    Type: Grant
    Filed: November 18, 2015
    Date of Patent: August 28, 2018
    Assignee: Medtronic CryoCath LP
    Inventors: Rahmani Sara, Lies Safar Remali
  • Patent number: 10058370
    Abstract: An embodiment of the disclosure includes a method for treating a lung. The method may include inserting a cooling element into an airway of the lung; and damaging tissue disposed radially outward of surface tissue defining the airway via the cooling element.
    Type: Grant
    Filed: April 23, 2015
    Date of Patent: August 28, 2018
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Christopher J. Danek, Bryan E. Loomas, Thomas M. Keast
  • Patent number: 10028780
    Abstract: Methods and devices for treating nasal airways are provided. Such devices and methods may improve airflow through an internal and/or external nasal valve, and comprise the use of mechanical re-shaping, energy application and other treatments to modify the shape, structure, and/or air flow characteristics of an internal nasal valve, an external nasal valve or other nasal airways.
    Type: Grant
    Filed: April 6, 2017
    Date of Patent: July 24, 2018
    Assignee: AERIN MEDICAL, INC.
    Inventors: Scott J. Wolf, Andrew Frazier
  • Patent number: 10022516
    Abstract: A method is provided for treating a neuromuscular defect in a subject. One step of the method includes locating a target nerve. After locating the target nerve, a treatment probe is provided. The treatment probe includes an elongated body member having a proximal end portion and a distal end portion. The distal end portion includes an energy delivery mechanism for stimulating or ablating the target nerve, a monitoring mechanism, and a fluid aspiration/delivery mechanism. Next, the target nerve is verified as an appropriate target for ablation by stimulating and then monitoring the target nerve via the energy delivery mechanism and the monitoring mechanism, respectively. After verifying the target nerve, a tumescent fluid is injected into the tissue surrounding the target nerve. An electric current is then delivered to the energy delivery mechanism to substantially ablate the target nerve.
    Type: Grant
    Filed: February 19, 2016
    Date of Patent: July 17, 2018
    Assignee: The Cleveland Clinic Foundation
    Inventor: Francis A. Papay
  • Patent number: 9999789
    Abstract: The invention relates to a temperature distribution determining apparatus for determining a temperature distribution within an object caused by applying energy to the object. A temperature distribution measuring unit (6, 7) measures a spatially and temporally dependent first temperature distribution in the object (3), while the energy is applied to the object (3) such that the object (3) is heated to a temperature within a first temperature range, and a temperature distribution estimating unit (5) estimates a spatially and temporally dependent second temperature distribution in the object (3) within a second temperature range, which is different to the first temperature range, based on the spatial and temporal dependence of the measured first temperature distribution. Since temperature distributions can be obtained not only in the first temperature range, but also in the second temperature range, the overall temperature range, in which the temperature distribution can be determined, can be increased.
    Type: Grant
    Filed: May 9, 2011
    Date of Patent: June 19, 2018
    Assignee: Koninklijke Philips N.V.
    Inventor: Michael Harald Kuhn
  • Patent number: 9980765
    Abstract: The present invention provides methods and apparatus for use in the selective disruption of visceral fat tissue by controlled cooling.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: May 29, 2018
    Assignee: The General Hospital Corporation
    Inventors: Matthew M. Avram, Richard R. Anderson, Joshua Tam
  • Patent number: 9956032
    Abstract: An internally-cooled RF electrode can have a construction that provides for an electrode hub having reduced weight and size.
    Type: Grant
    Filed: February 13, 2015
    Date of Patent: May 1, 2018
    Assignee: COSMAN INSTRUMENTS, LLC
    Inventors: Eric R. Cosman, Eric R. Cosman
  • Patent number: 9883900
    Abstract: A method of operating a medical system, including coupling a medical system to an outlet of a fluid distribution network having a plurality of fluid outlets in a patient treatment center; delivering fluid from the outlet to the medical system; compressing the delivered fluid with the medical system; decreasing the moisture content of the delivered fluid with the medical system; cooling the fluid with the medical system; delivering the fluid from the medical system to a medical device; and removing the fluid from medical device with the medical system.
    Type: Grant
    Filed: March 24, 2015
    Date of Patent: February 6, 2018
    Assignee: Medtronic CryoCath LP
    Inventor: Jean-Pierre Lalonde
  • Patent number: 9883901
    Abstract: Systems, methods, and other embodiments associated with characterizing Radio Frequency Ablation (RFA) lesions using Optical Coherence Tomography (OCT) are described. One example method includes acquiring an OCT signal from a Region Of Interest (ROI) in an ablated material. The example method may also include determining whether a lesion was formed by the ablation by analyzing optical properties of the ROI as recorded in the OCT signal.
    Type: Grant
    Filed: March 31, 2015
    Date of Patent: February 6, 2018
    Assignee: Case Western Reserve University
    Inventors: Andrew M. Rollins, Christine P. Fleming
  • Patent number: 9867648
    Abstract: A method and system for automated and semi-automated predictable, consistent, safe, effective, and lumen-specific and patient-specific cryospray treatment of airway tissue in which treatment duration is automatically set by the system following entry of patient information and treatment location information into the system by the user, and treatment spray is automatically stopped by the system when the automatically selected treatment duration has been achieved as determined by the system.
    Type: Grant
    Filed: July 27, 2015
    Date of Patent: January 16, 2018
    Assignee: CSA Medical, Inc.
    Inventors: Thomas Mulcahey, Marc Davidson, Brian M. Hanley, Ellen Sheets, Wei Li Fan
  • Patent number: 9849038
    Abstract: Fluid removal systems and methods for removing a fluid from a tissue site are presented. The systems include a semi-permeable inbound conduit, which is fluidly coupled to a treatment-fluid delivery unit, for placement proximate to the tissue site, and a semi-permeable outbound conduit, which is fluidly coupled to the inbound conduit and to a treatment-fluid collector, for placement proximate to the tissue site of a patient. The treatment-fluid collector receives a treatment fluid and a recruited fluid from the tissue site. A recruited-fluid determination unit may be coupled to the treatment-fluid collector to determine a volume of the recruited fluid recruited from the patient. The treatment fluid is any fluid (including a gas) that pulls the fluid from an interstitial and intracellular space. A reduced-pressure treatment subsystem may also be included, among other things, for removing ascites and other fluids from a body cavity.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: December 26, 2017
    Assignee: KCI Licensing, Inc.
    Inventors: George Hutchinson, Richard Paul Mormino
  • Patent number: 9833282
    Abstract: An electrode for an electrosurgical unit is used for ablating and necrosing a living tissue by RF electric energy. The electrode can be a hollow electrode formed in an elongated hollow tube shape, including a non-insulating region of a predetermined length formed on one side, and an insulating region formed on an outer surface other than the non-insulating region. The electrode further can include a saline solution circulation structure that supplies pressurized saline solution for cooling a living tissue which is in contact with the hollow electrode from the outside of the living tissue to the inside of the hollow electrode, and one or more saline solution discharge holes formed in the non-insulating region of the hollow electrode to discharge some of the circulating pressurized saline solution to the living tissue.
    Type: Grant
    Filed: May 14, 2009
    Date of Patent: December 5, 2017
    Inventor: Myong-Ki Jun
  • Patent number: 9808304
    Abstract: An intravascular ablation device, including a flexible elongate body; an expandable element positioned on the elongate body; a radiofrequency or electroporation treatment segment located distally of the expandable element; a cryogenic coolant source in fluid communication with an interior of the expandable element; and a radiofrequency or electroporation energy source in communication with the radiofrequency or electroporation treatment segment.
    Type: Grant
    Filed: November 9, 2016
    Date of Patent: November 7, 2017
    Assignee: Medtronic CryoCath LP
    Inventor: Jean-Pierre Lalonde
  • Patent number: 9724492
    Abstract: A lumen extension member is provided for a catheter having a catheter body and an elongate electrode coupled to the catheter body. The elongate electrode defines an electrode lumen extending therethrough. The lumen extension member is positioned within the electrode lumen and is coupled to the catheter body. The lumen extension member includes a tubular member including a sidewall and at least one opening that extends through the sidewall.
    Type: Grant
    Filed: February 3, 2015
    Date of Patent: August 8, 2017
    Assignee: ST. JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC.
    Inventors: Alan de la Rama, Cary Hata, William Du, Yongxing Zhang
  • Patent number: 9668671
    Abstract: Navigation and tissue capture systems and methods for navigation to and/or capture of selected tissue using the innate electrical activity of the selected tissue and/or other tissue are described. In the context of left atrial appendage closure, the systems and methods can be used to navigate to the left atrial appendage and capture/control the appendage while a closure instrument (suture, clip, ring) is placed over the appendage and tightened down or a closure method (ablation, cryogenic procedures, stapling, etc.) is performed to close the left atrial appendage. The use of innate electrical activity for navigating devices may be used in connection with other tissues and/or areas of the body.
    Type: Grant
    Filed: September 28, 2015
    Date of Patent: June 6, 2017
    Assignees: MAYO FOUNDATION FOR MEDICAL EDUCATION AND RESEARCH, AEGIS MEDICAL INNOVATIONS INC.
    Inventors: Paul A. Friedman, Charles J. Bruce, Samuel J. Asirvatham, Trevor A. McCaw, Elliot Y. K. Hong
  • Patent number: 9668800
    Abstract: A system for alleviating spasticity of a skeletal muscle having an associated motor nerve. The system may include a needle probe having at least one needle. The at least one needle has a proximal end, a distal end, and a needle lumen therebetween. The needle is configured for insertion proximate to the nerve. A cooling fluid supply lumen can extend distally within the needle lumen to a distal portion of the needle lumen. A cooling fluid source is couplable to the cooling fluid supply lumen to direct cooling fluid flow into the needle lumen. A controller having at least one processor configured to implement a spasticity treatment algorithm for controlling the cooling fluid source so that liquid from the cooling flow vaporizes within the needle lumen to provide a treatment phase to the motor nerve such spasticity of the skeletal muscle is mitigated.
    Type: Grant
    Filed: March 18, 2014
    Date of Patent: June 6, 2017
    Assignee: MYOSCIENCE, INC.
    Inventors: Jwala Karnik, Clint Carnell, Jesse Rosen, John Allison
  • Patent number: 9662162
    Abstract: An ablation device comprising an ablation applicator adapted for ablating material from an object upon delivery of an ablation medium to the ablation applicator in an ablation mode, an ablation medium supply line adapted for supplying the ablation medium to the ablation applicator in the ablation mode, an ablation medium drain line adapted for draining the ablation medium received from the ablation applicator in the ablation mode, and a closure mechanism adapted for selectively enclosing a predefined volume in a fluidic path upon operating the ablation device in a no-flow mode or upon detecting a leak in the fluidic path, the fluidic path including the ablation applicator and being defined between the ablation medium supply line and the ablation medium drain line.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: May 30, 2017
    Assignee: AFreeze GmbH
    Inventors: Gerald Fischer, Florian Hintringer
  • Patent number: 9610112
    Abstract: A method in which a location is determined on the skin that is proximate to a sensory nerve that is associated with a painful condition. At least one needle of a cryogenic device is inserted into the location on the skin such that the needle is proximate to the sensory nerve. The device is activated such that the at least one needle creates a cooling zone about the sensory nerve, thereby eliminating or reducing severity of the painful condition.
    Type: Grant
    Filed: March 18, 2014
    Date of Patent: April 4, 2017
    Assignee: MYOSCIENCE, INC.
    Inventors: Jwala Karnik, Jason Reynolds, John Allison, Clint Carnell
  • Patent number: 9603650
    Abstract: Methods and apparatus for the treatment of a body cavity or lumen are described where a heated fluid and/or gas may be introduced through a catheter and into treatment area within the body contained between one or more inflatable/expandable members. The catheter may also have optional pressure and temperature sensing elements which may allow for control of the pressure and temperature within the treatment zone and also prevent the pressure from exceeding a pressure of the inflatable/expandable members to thereby contain the treatment area between these inflatable/expandable members. Optionally, a chilled, room temperature, or warmed fluid such as water may then be used to rapidly terminate the treatment session.
    Type: Grant
    Filed: March 7, 2016
    Date of Patent: March 28, 2017
    Assignee: Channel Medsystems, Inc.
    Inventors: Daniel R. Burnett, Ric Cote, William W. Malecki, Brian M. Neil, David Beaulieu, Benjamin D. Voiles
  • Patent number: 9549772
    Abstract: The present invention relates to devices and methods for altering the tissue in and around an intervertebral disc through localized hypothermia therapy to restore function of the disc and reduce pain. Hypothermia therapy is defined as the reduction of tissue temperature to below that of the equilibrium temperature. Target therapeutic temperatures and times are varied according to the desired treatment effect. Intended effects of hypothermia of the intervertebral disc include cellular disruption leading to cell death and or structural and chemical denaturation within the anulus fibrosus, nucleus pulposus, or nerve fibers, temporary or permanent deadening of the nerves within or surrounding the disc, induction of a healing response, angiogenesis, or accelerated degeneration and/or drying of the nucleus pulposus and/or anulus fibrosus. Various effects can be achieved by reaching different temperatures for differing periods of time or by the proximity of the hypothermia therapy device to the treatment target.
    Type: Grant
    Filed: June 26, 2014
    Date of Patent: January 24, 2017
    Inventor: Allen Carl
  • Patent number: 9510888
    Abstract: An intravascular ablation device, including a flexible elongate body; an expandable element positioned on the elongate body; a radiofrequency or electroporation treatment segment located distally of the expandable element; a cryogenic coolant source in fluid communication with an interior of the expandable element; and a radiofrequency or electroporation energy source in communication with the radiofrequency or electroporation treatment segment.
    Type: Grant
    Filed: November 4, 2015
    Date of Patent: December 6, 2016
    Assignee: Medtronic CryoCath LP
    Inventor: Jean-Pierre Lalonde
  • Patent number: 9480521
    Abstract: A mapping catheter includes an elongated body for inserting into patient vasculature. A distal end of the elongated body includes a distal portion that includes a plurality of electrodes, a proximal portion disposed proximal to the distal portion, and a reduced-dimension portion disposed between the proximal and distal portions. The distal end is formed, at least in part, from a memory shape material that bends into a preformed shape upon release from a confined space. The preformed shape includes a first loop formed, at least in part, by the distal portion. The first loop is transverse to a longitudinal axis of the proximal portion. The reduced-dimension portion is configured and arranged to bend such that the reduced-dimension section advances distally through the first loop when the first loop is held in a fixed position and a force is applied distally along the longitudinal axis of the proximal portion.
    Type: Grant
    Filed: May 20, 2014
    Date of Patent: November 1, 2016
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Isaac Kim, Josef V. Koblish, David McGee
  • Patent number: 9439709
    Abstract: A cryoablation system has a catheter that receives working cryogen, the catheter having a catheter body that has a distal section having a freezing element which delivers the working cryogen to a treatment location, and a balloon enclosing the freezing element. The catheter body includes an outer tube that has two delivery tubes and a guide wire tube positioned inside the outer tube.
    Type: Grant
    Filed: January 31, 2014
    Date of Patent: September 13, 2016
    Assignee: Cryofocus Medtech (Shanghai) Co., Ltd.
    Inventors: Thach Buu Duong, Min Frank Zeng
  • Patent number: 9408655
    Abstract: A cryoablation apparatus includes a distal energy delivery section to facilitate energy transfer to the tissue, resulting in faster achievement of tissue target temperatures. The energy delivery section includes a first heat exchange region and a second heat exchange region having a different heat exchange efficiency than the first heat exchange region. The first heat exchange region may comprise an increased surface area along a radial portion or length of the cryoprobe in contact with surrounding tissue. The heat exchange region may include ridges, texture, threads, and microtubes which serve to increase the thermal-contacting surface area and provide enhanced cryoenergy to the tissue.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: August 9, 2016
    Assignee: CryoMedix, LLC
    Inventors: Alexei Babkin, Peter Littrup, William Nydam
  • Patent number: 9402676
    Abstract: Cryoablation balloon catheters and methods are described herein. The cryoablation balloon catheter comprises a distal end section and an inflatable balloon member disposed along the distal end section for contacting a target tissue. The balloon member may be inflated with a thermally conductive liquid. One or more cooling microtubes are positioned within the balloon and a single phase liquid coolant is transported from a liquid source, through the microtubes to the distal section, and returned to a reservoir. Cryogenic energy is transferred from the microtubes, through the conductive liquid filling the balloon, through the wall of the balloon, and to the tissue. In a cryoablation balloon catheter, a plurality of flexible microtubes are adhered to a surface of the expandable balloon. Cryoenergy from the microtubes is directly transferred to the tissue.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: August 2, 2016
    Assignee: CryoMedix, LLC
    Inventors: Alexei Babkin, Peter Littrup, Barron Nydam, William Nydam
  • Patent number: 9402675
    Abstract: A tweezers device for the application of cryogenic matter directly on a skin lesion while protecting the collateral skin tissue from being damaged by the cryogenic matter, the device comprising an applicator body configured with opposing tweezer arms, each tweezer arm including a cryogenic matter application element such that when the opposing tweezer arms are closed about the skin lesion, the skin lesion is substantially encased by the cryogenic matter application elements.
    Type: Grant
    Filed: February 3, 2011
    Date of Patent: August 2, 2016
    Assignee: TUVIDERM LLC
    Inventor: Zecharia Lind
  • Patent number: 9400499
    Abstract: Systems and methods for integrating quantum computing systems into mobile systems for the purpose of providing real-time, quantum computer-based control of the mobile systems are described. A mobile system includes a data extraction subsystem that extracts data from an external environment of the mobile system and a quantum computing subsystem that receives data from the data extraction subsystem and performs a quantum computing operation in real-time using the data from the data extraction subsystem. A result of the quantum computing operation influences a behavior of the mobile system, such as the navigation of the mobile system or an action performed by the mobile system. The on-board quantum computing subsystem includes on-board quantum computing infrastructure that is adapted to suit the needs and spatial constraints of the mobile system.
    Type: Grant
    Filed: October 2, 2015
    Date of Patent: July 26, 2016
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: Colin P. Williams, Jeremy P. Hilton
  • Patent number: 9345527
    Abstract: A system and a method for its use are provided to cool a cryotip at the distal end of a probe for a cryosurgical procedure. In particular, the cryotip is cooled by a liquid refrigerant to cryogenic temperatures in order to perform a cryosurgical procedure on biological tissue. The system is closed-loop, and during transit of the liquid refrigerant through the entire system, the liquid refrigerant always remains in a liquid state at a relatively low pressure.
    Type: Grant
    Filed: November 9, 2011
    Date of Patent: May 24, 2016
    Assignee: CRYOMEDIX, LLC
    Inventors: Alexei V. Babkin, Peter J. Littrup, William J. Nydam
  • Patent number: 9295512
    Abstract: A method in which a location is determined on the skin that is proximate to a sensory nerve that is associated with a painful condition. At least one needle of a cryogenic device is inserted into the location on the skin such that the needle is proximate to the sensory nerve. The device is activated such that the at least one needle creates a cooling zone about the sensory nerve, thereby eliminating or reducing severity of the painful condition.
    Type: Grant
    Filed: September 12, 2013
    Date of Patent: March 29, 2016
    Assignee: MyoScience, Inc.
    Inventors: John Allison, Richard Radnovich, Jason Reynolds
  • Patent number: 9277952
    Abstract: Methods and apparatus for the treatment of a body cavity or lumen are described where a heated fluid and/or gas may be introduced through a catheter and into treatment area within the body contained between one or more inflatable/expandable members. The catheter may also have optional pressure and temperature sensing elements which may allow for control of the pressure and temperature within the treatment zone and also prevent the pressure from exceeding a pressure of the inflatable/expandable members to thereby contain the treatment area between these inflatable/expandable members. Optionally, a chilled, room temperature, or warmed fluid such as water may then be used to rapidly terminate the treatment session.
    Type: Grant
    Filed: October 10, 2014
    Date of Patent: March 8, 2016
    Assignee: Channel Medsystems, Inc.
    Inventors: Daniel R. Burnett, Ric Cote, William W. Malecki, Brian M. Neil, David Beaulieu, Benjamin D. Voiles
  • Patent number: 9243825
    Abstract: Cooling apparatus is provided which comprises a mechanical refrigerator and a heat pipe. The mechanical refrigerator has a first cooled stage and a second cooled stage, the second cooled stage being adapted to be coupled thermally with target apparatus to be cooled. The heat pipe has a first part coupled thermally to the first stage of the mechanical refrigerator and a second part coupled thermally to a cooled member which may comprise the second stage of the mechanical refrigerator. The heat pipe is adapted to contain a condensable gaseous coolant when in use. An example coolant is Krypton. The apparatus is operated in a first cooling mode in which the temperature of the cooled member causes the coolant within the second part of the heat pipe to be gaseous and the temperature of the first stage causes the coolant in the first part to condense, whereby the cooled member is cooled by the movement of the condensed liquid from the first part to the second part of the heat pipe.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: January 26, 2016
    Assignee: Oxford Instruments Nanotechnology Tools Limited
    Inventors: Vladimir Mikheev, Par G. Teleberg, Anthony Matthews, Justin Elford
  • Patent number: 9232197
    Abstract: An endoscope apparatus includes an imaging element, a flexible substrate, and a flexible heat release sheet. The imaging element is built in an endoscope front end portion so as to receive incident light from a subject. The imaging element and components of a circuit for driving the imaging element are mounted on the flexible substrate and the flexible substrate is built in the endoscope front end portion. The flexible heat release sheet includes a first region attached to a given region of the imaging element other than a light receiving surface of the imaging element and a second region thermally contacted to a heat release member disposed in the endoscope front end portion.
    Type: Grant
    Filed: September 28, 2011
    Date of Patent: January 5, 2016
    Assignee: FUJIFILM Corporation
    Inventor: Kazuhiko Nakamura
  • Patent number: 9204916
    Abstract: An intravascular ablation device, including a flexible elongate body; an expandable element positioned on the elongate body; a radiofrequency or electroporation treatment segment located distally of the expandable element; a cryogenic coolant source in fluid communication with an interior of the expandable element; and a radiofrequency or electroporation energy source in communication with the radiofrequency or electroporation treatment segment.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: December 8, 2015
    Assignee: Medtronic CryoCath LP
    Inventor: Jean-Pierre Lalonde
  • Patent number: 9131975
    Abstract: Ablation devices useful for destroying nerve and soft tissue via a minimally invasive procedure to alleviate pain are provided. The device comprises a probe comprising an outer tube having an exterior surface comprising a tip and an interior surface that defines an internal passage. An inner tube is disposed within the outer tube and comprises an interior surface that defines an internal passage having a filament disposed therein. The filament has an opening configured to release a pressurized material into the interior surface of the probe so as to cool the exterior surface of the outer tube to a selected temperature. Disposal of the inner tube within the internal passage of the outer tube produces an air gap that surrounds the exterior surface of the inner tube, and the tip is configured for ablating nerve and/or soft tissue. Methods for ablating nerve and/or soft tissue utilizing the ablation devices are also provided.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: September 15, 2015
    Assignee: Warsaw Orthopedic, Inc.
    Inventor: William F. McKay
  • Patent number: 9101343
    Abstract: A cryoablation system has a gas source which provides a working gas at room temperature and at a constant set pressure. The system also includes a liquid generator which is coupled to the gas source to receive the working gas, and which then generates a working cryogen fluid in a liquid phase that operates at a temperature and pressure that lies on its Joule-Thomson Inversion Curve, with the Joule-Thomson coefficient maintained within the range 0.00±0.08 degrees F./Atmosphere. The system also includes a catheter coupled to the liquid generator for receiving the working cryogen, the catheter having a distal section which delivers the working cryogen to a treatment location.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: August 11, 2015
    Inventors: Thach Buu Duong, Min Frank Zeng
  • Patent number: 9050069
    Abstract: The present invention provides a medical system, including a catheter defining an injection lumen, a chamber in fluid communication with the injection lumen, and an exhaust lumen in fluid communication with the chamber; a first temperature sensor positioned in the exhaust lumen proximal to the chamber; a second temperature sensor positioned in the chamber; and a console in electrical communication with the first and second temperature sensors, the controller modifying coolant flow through the medical device based at least in part upon a signal received from the first and second temperature sensor. The system may further include a thermally-conductive element circumscribing a substantial portion of the exhaust lumen proximal to the chamber, where the first temperature sensor is mounted to the thermally-conductive element, and the thermally-conductive element may include at least one of a braid, coil, and band.
    Type: Grant
    Filed: May 16, 2008
    Date of Patent: June 9, 2015
    Assignee: Medtronic CryoCath LP
    Inventors: Jean-Pierre Lalonde, Dan Wittenberger, Marwan Abboud, Constantin Bogdan Ciobotaru, Ramin Sabbaghe-Kermani
  • Patent number: 9039688
    Abstract: A method for cryogenically treating a target tissue comprises providing a cryogenic device having one or more tissue penetrating needle probes, and advancing the one or more tissue penetrating needle probes through skin disposed above the target tissue into the target tissue. The target tissue comprises a motor nerve. The method also includes cooling the target tissue with the one or more tissue penetrating needle probes, and temporarily disrupting signal conduction from the motor nerve thereby preventing contraction of a muscle operably coupled to the motor nerve. This reduces or eliminates hyperdynamic wrinkles of a patient's face.
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: May 26, 2015
    Assignee: MyoScience, Inc.
    Inventors: Francis R. Palmer, III, Michael Hsu, Kristine Tatsutani
  • Patent number: 9039687
    Abstract: A method of assessing lesion quality of an ablated tissue region comprising ablating at least a portion of the tissue region. The reactance of the ablated tissue region is measured at a plurality of frequencies. The lesion quality of the ablated tissue region is determined based on the measured reactance. For example, an untreated tissue reactance value and a predetermined thermally treated tissue region reactance threshold may be determined. The measured reactance at each of the plurality of frequencies is compared to the threshold to determine the lesion quality of the thermally treated tissue region. The thermal treatment of the tissue may be modified based on the lesion quality determination.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: May 26, 2015
    Assignee: Medtronic Ablation Frontiers LLC
    Inventors: Catherine R. Condie, Kathryn Elaine Kasischke, Marshall L. Sherman
  • Patent number: 9011420
    Abstract: A method of operating a medical system, including coupling a medical system to an outlet of a fluid distribution network having a plurality of fluid outlets in a patient treatment center; delivering fluid from the outlet to the medical system; compressing the delivered fluid with the medical system; decreasing the moisture content of the delivered fluid with the medical system; cooling the fluid with the medical system; delivering the fluid from the medical system to a medical device; and removing the fluid from medical device with the medical system.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: April 21, 2015
    Assignee: Medtronic CryoCath LP
    Inventor: Jean-Pierre Lalonde
  • Publication number: 20150105701
    Abstract: The invention provides a therapeutic system comprising: a console, wherein the console comprises a controller and an energy generator; a therapeutic device comprising: an operational head configured for transmitting the energy output from to a biological tissue; and a memory device comprising control instructions, wherein said control instructions comprise instructions for controlling the console; a reversible memory operable linkage linking the memory device to the controller; and a reversible connector configured for operably linking the energy generator to the operational head. Optionally, the energy generator is a generator of ablation energy or heat energy (e.g. RF generator) and the control instructions comprise instructions for controlling the output of the energy generator. Optionally, the control instructions comprise one or more parameters of energy output or an algorithm configured for controlling the energy output.
    Type: Application
    Filed: September 24, 2014
    Publication date: April 16, 2015
    Inventors: Carl Mayer, John Ellenz
  • Publication number: 20150099976
    Abstract: System, devices and methods are presented that integrate stretchable or flexible circuitry, including arrays of active devices for enhanced sensing, diagnostic, and therapeutic capabilities. The invention enables conformal sensing contact with tissues of interest, such as the inner wall of a lumen, a nerve bundle, or the surface of the heart. Such direct, conformal contact increases accuracy of measurement and delivery of therapy.
    Type: Application
    Filed: October 20, 2014
    Publication date: April 9, 2015
    Inventors: Roozbeh Ghaffari, Bassel de Graff, Gilman Callsen, William J. Arora, Benjamin Schlatka, Eugene Kuznetsov
  • Patent number: 8998888
    Abstract: A cryogenic medical device for delivery of subcooled liquid cryogen to various configurations of cryoprobes is designed for the treatment of damaged, diseased, cancerous or other unwanted tissues. The device is a closed or semi-closed system in which the liquid cryogen is contained in both the supply and return stages. The device is capable of generating cryogen to a supercritical state and may be utilized in any rapid cooling systems. As designed, the device comprises a number of parts including a vacuum insulated outer dewar, submersible cryogen pump, baffled linear heat exchanger, multiple pressurization cartridges, a return chamber, and a series of valves to control the flow of the liquid cryogen. The cryogenic medical device promotes the subcooling to any external cryogenic instrument.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: April 7, 2015
    Assignee: Endocare, Inc.
    Inventors: John M. Baust, John G. Baust, Roy Cheeks, Anthony Robilotto, Kristi Snyder
  • Publication number: 20150094700
    Abstract: There are provided an external cylinder for a probe equipped in a cryosurgical apparatus and a therapeutic-device unit, which are able to protect normal cells near a lesion, provide higher heat efficiency for the freeze and thawing, and simplify the structure. The external cylinder for the probe equipped in the cryosurgical apparatus and the therapeutic-device unit which includes the external cylinder for the probe equipped in the cryosurgical apparatus are provided. The external cylinder includes a given range in which the freezing gas enables an ice ball to be formed on an outer circumference including the distal end portion; and adiabatic means arranged in a range other than the given range so as to prevent heat from being exchanged between the inner space and an outside.
    Type: Application
    Filed: December 27, 2012
    Publication date: April 2, 2015
    Inventor: Kansei Iwata