With Drug Or Medicament-dispensing Patents (Class 607/120)
  • Patent number: 11541243
    Abstract: A biostimulator, such as a leadless cardiac pacemaker, including coaxial fixation elements to engage or electrically stimulate tissue, is described. The coaxial fixation elements include an outer fixation element extending along a longitudinal axis and an inner fixation element radially inward from the outer fixation element. One or more of the fixation elements are helical fixation elements that can be screwed into tissue. The outer fixation element has a distal tip that is distal to a distal tip of the inner fixation element, and an axial stiffness of the outer fixation element is lower than an axial stiffness of the inner fixation element. The relative stiffnesses are based on one or more of material or geometric characteristics of the respective fixation elements. Other embodiments are also described and claimed.
    Type: Grant
    Filed: February 13, 2020
    Date of Patent: January 3, 2023
    Assignee: PACESETTER, INC.
    Inventors: Thomas B. Eby, Tyler J. Strang, Keith Victorine, Wesley Alleman
  • Patent number: 11471677
    Abstract: Articles and methods for non-invasively treating peripheral neuropathy via transcutaneous electrical stimulation of target nerve tissue are described. An exemplary article includes a support on which an electrode pair is positioned; a controller attached to the electrode pair via one or more leads; and a power supply connected to the controller. The article delivers electrical stimulation to the target nerve tissue via the electrode pair at a level sufficient to initiate vasodilation of vasculature within or adjacent the tissue. Meanwhile, the method includes positioning at least one electrode pair adjacent an area of skin overlying or in close proximity to the target nerve tissue and delivering electrical stimulation to the tissue via the electrode pair. The electrical stimulation is delivered at a level sufficient to initiate vasodilation of vasculature within or adjacent the tissue.
    Type: Grant
    Filed: December 8, 2017
    Date of Patent: October 18, 2022
    Assignee: Avent, Inc.
    Inventors: Jeremy D. Ollerenshaw, Leah M. Roldan, Elliot Blake Bourgeois, Eric A. Schepis
  • Patent number: 11448639
    Abstract: A DNA or genome sequencing structure is disclosed. The structure includes an electrode pair, each electrode having a tip-shaped end, the electrodes separated by a nanogap defined by facing tip-shaped ends; at least one conductive island deposited at or near each tip-shaped end; and a biomolecule having two ends, each end attached to the conductive islands in the electrode pair such that one biomolecule bridges over the nanogap in the electrode pair, wherein nucleotide interactions with the biomolecule provides electronic monitoring of DNA or genome sequencing without the use of a fluorescing element.
    Type: Grant
    Filed: May 28, 2020
    Date of Patent: September 20, 2022
    Assignee: Roswell Biotechnologies, Inc.
    Inventors: Chulmin Choi, Sungho Jin, Paul W. Mola, Barry L. Merriman
  • Patent number: 11311234
    Abstract: A sensing and treatment device includes an array of metal nanorod electrodes formed on a substrate, the array including first electrodes for sensing, and second electrodes for electrical pulsation. A data processing system is configured to monitor a parameter using the first electrodes and to activate the electrical pulsation in the second electrodes in accordance with a reading of the parameter.
    Type: Grant
    Filed: November 9, 2017
    Date of Patent: April 26, 2022
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hariklia Deligianni, Bruce B. Doris, Steven J. Holmes, Emily R. Kinser, Qinghuang Lin, Roy R. Yu
  • Patent number: 11147976
    Abstract: Various aspects of the present disclosure are directed toward apparatuses, methods and systems that include implantable lead. The implantable lead may include an electrode arranged and a fixation element arranged about the lead body. The fixation element may extend circumferentially about the lead body.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: October 19, 2021
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Allan C. Shuros, Arthur J. Foster
  • Patent number: 11083889
    Abstract: An implantable medical lead having an elongated lead body extending from a proximal end to a distal end, at least one conductor extending within the lead body from the proximal end to the distal end, and a fixation member having a proximal end and a distal end, the proximal end of the electrode configured to be electrically coupled to the distal end of the lead body.
    Type: Grant
    Filed: January 31, 2018
    Date of Patent: August 10, 2021
    Assignee: Medtronic, Inc.
    Inventors: Zhongping Yang, Andrea Asleson, Gonzalo Martinez, Rick D. McVenes, Christopher W. Storment
  • Patent number: 11083871
    Abstract: Catheters with deployable instruments (e.g., needles) can damage tissue if the instrument unintentionally deploys during use. Described herein are devices and methods for controlling the position of a deployable catheter instrument. In one embodiment, a catheter can include an instrument slidably disposed within an inner lumen of the catheter and coupled to at least one protrusion, as well as a retraction stop coupled to the catheter. The catheter can further include a biasing element coupled to the instrument that can urge the instrument proximally such that the at least one protrusion abuts against the retraction stop, as well as an advancing mechanism to selectively engage the instrument and urge it distally. In some embodiments, the biasing element can be omitted and a deployment stop can be included distal to the retraction stop. These configurations can prevent unintentional instrument deployment and provide greater positioning precision during instrument deployment.
    Type: Grant
    Filed: May 3, 2018
    Date of Patent: August 10, 2021
    Assignee: Thermedical, Inc.
    Inventors: Michael G. Curley, Fredrick J. Kim, Michael T. Howard, Erik Delly, Gregory R. Eberl, Jeffrey J. Lesica
  • Patent number: 11020587
    Abstract: A distal electrode of an electrode assembly, for example, employed by an implantable medical electrical lead device, extends distally from a distal terminal end of a sleeve of the assembly; and the sleeve, which defines a longitudinal axis of the assembly, includes a plurality of channels that provide fluid communication between a steroid eluting component, which is seated in an external groove of the sleeve, and an area distal to the distal terminal end of the sleeve. Floors of some or all of the sleeve channels may angle toward the longitudinal axis of the assembly, being closer to the axis at the distal terminal end of the sleeve. The assembly may further include a proximal electrode secured to a proximal end of the sleeve, wherein the proximal electrode may be mounted around an outer surface of the sleeve or coupled to the sleeve by means of a coupling component.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: June 1, 2021
    Assignee: Medtronic, Inc.
    Inventors: William J. Clemens, Linda L. Franke, Mark T. Marshall, Timothy M. Ramos, Vania Lee
  • Patent number: 10905885
    Abstract: A cardiac defibrillation system that includes a pulse generator to generate therapeutic electrical pulses and at least one lead inserted through an intercostal space in the region of a cardiac notch of the left lung of a patient, the lead having a distal end configured to transmit the therapeutic electrical pulses generated by the pulse generator to defibrillate the heart of the patient.
    Type: Grant
    Filed: May 10, 2019
    Date of Patent: February 2, 2021
    Assignee: ATACOR MEDICAL, INC.
    Inventors: Rick Sanghera, Alan Marcovecchio, Sean P. McGeehan
  • Patent number: 10799151
    Abstract: A method to identify feature points associated with the heart valve movement, heart contraction or cardiac hemodynamics is revealed. The mechanocardiography (MCG) is a technology that makes use of vibrational waveforms acquired using at least one gravity sensor attached on one of the four heart valve auscultation sites on the body surface. The data of the electrocardiography (ECG) is recorded simultaneously with the MCG The feature points are identified by comparing P, R and T points of synchronized ECG with the MCG spectrum. By the time sequences and amplitudes of the feature points, the method provides additional clinical information of cardiac cycle abnormalities for diagnosis.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: October 13, 2020
    Assignee: Chang Gung University
    Inventors: Wen-Yen Lin, Ming-Yih Lee, Po-Cheng Chang, Wen-Zheng Zhou
  • Patent number: 10646716
    Abstract: Systems and methods are provided for delivering vagus nerve stimulation and carotid baroreceptor stimulation to patients for treating chronic heart failure and hypertension. The vagus nerve stimulation and carotid baroreceptor stimulation therapies may be provided using a single implantable pulse generator, which can coordinate delivery of the therapies.
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: May 12, 2020
    Assignee: LivaNova USA, Inc.
    Inventors: Imad Libbus, Bruce H. Kenknight, Badri Amurthur
  • Patent number: 10603487
    Abstract: Medical devices and methods for making and using medical devices are disclosed. An example medical device may include an implantable medical device. The implantable medical device may include an implantable pacing member having a housing and a lead input. A lead may be coupled to the lead input. The lead may be designed to extend along a pericardial space, epicardium, or both and engage a heart chamber. A passageway may be defined along a portion of the length of the lead.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: March 31, 2020
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Bruce Alan Tockman, Lili Liu, Brendan Early Koop, Brian Soltis, Arthur J. Foster, G. Shantanu Reddy
  • Patent number: 10556114
    Abstract: One aspect provides a housing for an implantable medical device, the housing including a metal substrate having an external surface, and a polymer coating disposed on the external surface of the metal housing, the polymer coating comprising at least one layer of polymer material.
    Type: Grant
    Filed: January 8, 2015
    Date of Patent: February 11, 2020
    Assignee: Heraeus Deutschland GmbH & Co. KG
    Inventors: Jami A. Hafiz, Jeremy Glynn, Steven Harein
  • Patent number: 10335089
    Abstract: Biocompatible stiffness enhanced pliable electrically conductive filaments configured for contact with living tissue and electrical communication with such tissue. The pliability of the filaments allows the distal end of the filaments to remain at the original site of penetration into the tissue despite the movement of the tissue relative to their surrounding environment. To temporarily stiffen the filaments, a soluble stiffness enhancing coating is disposed over the filaments. The coating may be in the form of a liquid which dries to a solid state after being applied to the filaments and renders the filaments sufficiently rigid such that under appropriate force, the filaments are capable of penetrating into dense tissue. Once in place, the stiffness enhancing coating dissolves due to contact with body fluids, the filaments, in the absence of such a coating, return to their initial pliability.
    Type: Grant
    Filed: October 14, 2016
    Date of Patent: July 2, 2019
    Assignee: The Alfred E. Mann Foundation for Scientific Research
    Inventors: Joseph H. Schulman, David L. Hankin
  • Patent number: 10279184
    Abstract: Devices and methods described herein may, among other uses, favorably cause the activation and/or deactivation of vascular baroreceptors in order to achieve a desired impact on a physiological condition, such as baroreflex-regulated conditions, hypertension, hypotension, nervous system disorders, metabolic disorders, cardiovascular disease, heart failure, cardiac arrhythmia, renal disease, respiratory disease, diabetes, and insulin resistance. The devices and methods may be used in concert with each other and/or other treatments, medications, interventions, or behavioral regimens. They may also be used in concert with devices and methods that perform or assist with assessing or measuring a mammal's blood pressure assessing, measuring, or predicting the impact of the described methods and devices on the patient's condition (including blood pressure), and/or protecting the surrounding anatomy from adverse effects.
    Type: Grant
    Filed: December 8, 2014
    Date of Patent: May 7, 2019
    Inventors: Ryan Kendall Pierce, Benjamin Kahn Cline
  • Patent number: 10213197
    Abstract: Polymeric fibers, and apparatuses for and methods of processing such fibers to be useful as sutures, where at least one end of a fiber includes a termination feature. The termination feature is formed through the application of energy to a coiled region of the fiber.
    Type: Grant
    Filed: October 20, 2015
    Date of Patent: February 26, 2019
    Assignee: Ethicon LLC
    Inventors: David C. Lindh, Sr., Robert A. Rousseau, Darrell J. Lindh
  • Patent number: 10092764
    Abstract: An implantable medical device has a housing with a fixation element disposed adjacent a first end of the housing and a retrieval element disposed adjacent a second end of the housing. An outer housing surface includes a first region having a first surface texture with a first average surface roughness and a second region having a second surface texture with a second average surface roughness that is different from the first average surface roughness. An insulative layer includes a first region overlying the first surface texture and a second region overlying the second surface texture, wherein an outer surface of the insulative layer emulates the first surface texture in the first region of the insulative layer and emulates the second surface texture in the second region of the insulative layer.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: October 9, 2018
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Bryan J. Swackhamer, Brian L. Schmidt
  • Patent number: 9457186
    Abstract: Apparatus comprising (1) a breathing sensor, configured to detect a breathing-related factor of a subject; (2) at least a first electrode configured to be placed in a vicinity of a respective first hypoglossal nerve, and to be driven, in response to the detected breathing-related factor, to apply a first electrical current to the first hypoglossal nerve; (3) at least a second electrode configured to be placed in a vicinity of a respective second hypoglossal nerve, and to be driven, in response to the detected breathing-related factor, to apply a second electrical current to the second hypoglossal nerve; and (4) circuitry configured to, in response to a detected symmetry-related factor indicative of a degree of symmetry of the subject, configure at least one current selected from the group consisting of: the first current and the second current. Other embodiments are also described.
    Type: Grant
    Filed: July 29, 2014
    Date of Patent: October 4, 2016
    Assignee: BLUEWIND MEDICAL LTD.
    Inventor: Yossi Gross
  • Patent number: 9392949
    Abstract: Various aspects of the present disclosure are directed toward an asynchrony index that is related to data of a subject's heart. The asynchrony index includes intra-ventricular or inter-ventricular electrical asynchrony data. The intra-ventricular or inter-ventricular electrical asynchrony data can be specific to a certain subject, and indicative of a different conditions specific to that subject.
    Type: Grant
    Filed: October 2, 2013
    Date of Patent: July 19, 2016
    Assignee: XSYNCHRO, INC.
    Inventors: Daniel Felipe Ortega, Julio César Spinelli, Maria Paula Bonomini, Luis Dante Barja
  • Patent number: 9381347
    Abstract: A pre-electrode for a stimulation lead includes a generally cylindrical body having an exterior surface, an interior surface, a proximal end, and a distal end. The body includes multiple segmented electrodes disposed along the body; connecting material disposed along the outer surface of the body and coupling each of the segmented electrodes to one another; and multiple cutouts defined between adjacent segmented electrodes. The body also includes one or more of the following 1) a end wall step section formed in the exterior surface of the body on either the distal end or the proximal end of the body; 2) an alignment feature selected from a slot or a notch extending inwardly from the exterior surface of the body, or 3) a longitudinal step section formed in the exterior surface of the body.
    Type: Grant
    Filed: August 31, 2015
    Date of Patent: July 5, 2016
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Joshua Dale Howard, Anne Margaret Pianca
  • Patent number: 9339233
    Abstract: A lead has an electrically controlled switch at a proximal end of a rotatable shaft. The electrically controlled switch has a first configuration to electrically connect a first electric conductor to a second electric conductor for electrically activating the pin and has a second configuration to electrically connect the first electric conductor to the rotatable shaft for electrically activating the helix. Proper fixation of the helix to an organ is determined by switching the electrically controlled switch to the first configuration to render the pin electrically active and to electrically deactivate the helix. Upon determination of proper fixation of the helix to the organ, the electrically controlled switch is switched to the second configuration to render the helix electrically active and to electrically deactivate the pin.
    Type: Grant
    Filed: October 20, 2014
    Date of Patent: May 17, 2016
    Assignee: ST. JUDE MEDICAL AB
    Inventors: Sara Hallander, Marcus Helgesson
  • Patent number: 9272147
    Abstract: A medical device system and method for delivering mechanically fused left ventricular cardiac stimulation. A sensor monitors left ventricular acceleration while left ventricular cardiac stimulation is provided at an AV interval. The left ventricular acceleration is used to calculate a mechanical response interval and the mechanical response interval is compared to a desired mechanical response interval. The AV interval is adjusted until the mechanical response interval is equal to the desired mechanical response interval.
    Type: Grant
    Filed: April 18, 2011
    Date of Patent: March 1, 2016
    Assignee: Medtronic, Inc.
    Inventors: Rajan Prakash, Aleksandre T. Sambelashvili
  • Patent number: 9101332
    Abstract: A lead comprises a mechanical switch at a proximal end of a rotatable shaft. The mechanical switch has a first position to electrically connect a first electric conductor to a second electric conductor for electrically activating a pin and has a second position to electrically connect the first electric conductor to the rotatable shaft for electrically activating a helix. Proper fixation of the helix to an organ is determined by inserting a stylet into the mechanical switch to render the pin electrically active and the helix electrically inactive. Upon determination of proper fixation of the helix to the organ, the stylet is removed from the mechanical switch to render the helix electrically active and the pin electrically inactive.
    Type: Grant
    Filed: October 20, 2014
    Date of Patent: August 11, 2015
    Assignee: ST. JUDE MEDICAL AB
    Inventors: Sara Hallander, Marcus Helgesson
  • Patent number: 9020607
    Abstract: The invention provides an implantable multi-electrode device (300) and related methods and apparatuses. In one embodiment, the invention includes an implantable device (300) comprising: an assembly block (320); and a plurality of leads (340 . . . 348) radiating from the assembly block (320), each of the plurality of leads (340 . . . 348) containing at least one electrode (342A), such that the electrodes are distributed within a three-dimensional space, wherein the assembly block (320) includes a barb (350) for anchoring the assembly block (320) within implanted tissue.
    Type: Grant
    Filed: June 26, 2014
    Date of Patent: April 28, 2015
    Assignee: Sapiens Steering Brain Stimulation B.V.
    Inventors: Matthias Merz, Youri V. Ponomarev, Remco H.W. Pijnenburg
  • Publication number: 20150080709
    Abstract: One aspect of the present disclosure relates to an implantable medical device. The implantable medical device can include a main body portion having at least one photosensitive nanoparticle associated therewith. Delivery of energy to the main body portion promotes extraction of said implantable medical device from a subject.
    Type: Application
    Filed: June 27, 2014
    Publication date: March 19, 2015
    Inventor: Neha Chaturvedi
  • Publication number: 20140243946
    Abstract: An assembly for an implantable device can be made from PEEK and can incorporate one or more radiopaque agents and one or more elutable drug components into a polymeric lead tip. The assembly can be machined or injection molded and can be configured, for example, as a housing for an active fixation lead or as an electrode base supporting a foil electrode.
    Type: Application
    Filed: February 25, 2014
    Publication date: August 28, 2014
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Steve H. Zhang, Bryan Clem, Daniel I. Codner, Arthur J. Foster, Peter J. Wolf
  • Patent number: 8798737
    Abstract: The invention provides an implantable multi-electrode device (300) and related methods and apparatuses. In one embodiment, the invention includes an implantable device (300) comprising: an assembly block (320); and a plurality of leads (340 . . . 348) radiating from the assembly block (320), each of the plurality of leads (340 . . . 348) containing at least one electrode (342A), such that the electrodes are distributed within a three-dimensional space, wherein the assembly block (320) includes a barb (350) for anchoring the assembly block (320) within implanted tissue.
    Type: Grant
    Filed: September 18, 2007
    Date of Patent: August 5, 2014
    Assignee: Sapiens Steering Brain Stimulation B.V.
    Inventors: Matthias Merz, Youri V. Ponomarev, Remco H. W. Pijnenburg
  • Patent number: 8753708
    Abstract: A solventless method for forming a coating on a medical electrical lead is described. The method includes combining particles of a therapeutic agent with a polymeric material in a flowable form in the absence of a solvent to form a uniform suspension. A predetermined amount of the suspension is dispensed onto a portion of the lead and is then cured to form the therapeutic agent eluting layer. Additional layers such as a primer layer, fluoro-opaque layer and/or a topcoat layer can be formed using the solventless method. Employing a solventless method may avoid contraction of the layer being formed due to solvent evaporation during the curing process, and may facilitate greater control over the thickness of the therapeutic agent eluting coating.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: June 17, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Larry L. Hum, James Q. Feng, Arienne P. Simon, Tolga Tas
  • Publication number: 20140155975
    Abstract: Medical devices and therapeutic methods for use in the field of cardiology, cardiac rhythm management and interventional cardiology, and more specifically to catheter-based systems for implantation of pacing leads and electrodes, or intramural myocardial reinforcement devices, within the myocardial wall of the heart, such as the ventricles, to provide improved cardiac function.
    Type: Application
    Filed: May 27, 2013
    Publication date: June 5, 2014
    Inventor: Richard C. Satterfield
  • Patent number: 8740900
    Abstract: An embodiment of an open-irrigated catheter system comprises a tip section, a distal insert, and mapping electrodes. The tip section has an exterior wall that defines an open interior region within the tip section. The exterior wall includes mapping electrode openings and irrigation ports. The exterior wall is conductive for delivering radio frequency (RF) energy for an RF ablation procedure. The irrigation ports are in fluid communication with the open interior region to allow fluid to flow from the open interior region through the irrigation ports. The distal insert is positioned within the tip section to separate the open region into a distal fluid reservoir and a proximal fluid reservoir. The mapping electrodes are positioned in the mapping electrode openings in the tip section.
    Type: Grant
    Filed: April 9, 2013
    Date of Patent: June 3, 2014
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Isaac J. Kim, Josef V. Koblish, Simplicio A. Velilla, Mark D. Mirigian
  • Patent number: 8694128
    Abstract: A medical device lead is presented. One embodiment of the claimed invention includes a lead body, a conductor, and a flexible component. The lead body includes a proximal end and a distal end. The conductor is coupled to the lead body. A sleeve is coupled to the distal end of the lead body. The flexible component is coupled to the distal end of the sleeve. The distal end of the flexible component includes an outer diameter that is greater than the outer diameter of the proximal end.
    Type: Grant
    Filed: January 25, 2008
    Date of Patent: April 8, 2014
    Assignee: Medtronic, Inc.
    Inventors: Kevin R. Seifert, Gregory A. Boser
  • Patent number: 8685924
    Abstract: An agent for the prophylaxis or treatment of stress urinary incontinence, which contains a substance that activates a serotonin 5-HT2C receptor, an agent for the prophylaxis or treatment of stress urinary incontinence, which contains a substance that stimulates an androgen binding site, and a method of screening for a drug for the prophylaxis or treatment of abdominal pressure incontinence, which includes electrostimulating the abdominal muscles or a nerve controlling them of an animal to increase the abdominal pressure, and measuring the leak point pressure at that time.
    Type: Grant
    Filed: August 24, 2005
    Date of Patent: April 1, 2014
    Assignee: Takeda Pharmaceutical Company Limited
    Inventor: Izumi Kamo
  • Publication number: 20140031912
    Abstract: An anchorage device comprising a mesh substrate coupled to an implantable medical device is disclosed, where the mesh substrate has a coating comprising a polymer, and the mesh further comprises at least one active pharmaceutical ingredient. The active pharmaceutical agent is designed to elute from the mesh over time. The mesh substrate can be configured to reduce the mass of the anchorage device such that tissue in-growth and/or scar tissue formation at the treatment site is reduced. In some embodiments, the mesh substrate can be formed with a mesh having a low areal density. In some embodiments, the mesh substrate can include one or more apertures or pores to reduce the mass of the substrate.
    Type: Application
    Filed: October 4, 2013
    Publication date: January 30, 2014
    Applicant: TYRX, INC.
    Inventors: William McJames, Frank Do, Satish Pulapura, Qing Ge
  • Publication number: 20130331920
    Abstract: An implantable electrode device designed for heart stimulation and/or cardioversion/defibrillation in connection with a pacemaker or a defibrillator. The electrode device comprises a large-surface area indifferent reference electrode pole permanently implanted in the atrial septum and in electrical communication with a pacemaker or defibrillator. The electrode pole is made from biocompatible metal braiding and has a tube like opening. The electrical communication is positioned from the pacemaker/defibrillator via the right atrium of the heart through the indifferent electrode pole into the left atrium via the opening. Thus allowing electrical pulses to be delivered to the electrode pole and stimulating the heart.
    Type: Application
    Filed: June 7, 2013
    Publication date: December 12, 2013
    Inventor: Peter Osypka
  • Patent number: 8588939
    Abstract: Disclosed herein is a method of assembling an implantable medical lead configured to receive a stylet. The lead is provided with a tubular insulation layer, an electrode is disposed on the tubular insulation layer, an electrical conductor is routed through the tubular insulation layer, and a stylet stop is inserted into a distal end of the tubular insulation layer. The electrical conductor is directly and mechanically connected to the stylet stop and is in electrical communication with the electrode.
    Type: Grant
    Filed: October 9, 2012
    Date of Patent: November 19, 2013
    Assignee: Pacesetter, Inc.
    Inventor: Steven R. Conger
  • Patent number: 8527067
    Abstract: A medical electrical lead includes a tapered distal tip having a tapered drug-eluting component incorporated therein. The drug-eluting component can be an overmolded drug-eluting collar or a pre-molded drug eluting collar. The drug-eluting collar is disposed in a recess formed in the tapered distal tip and maintains the overall tapered profile of the distal tip.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: September 3, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Andrew De Kock, Ronald W. Kunkel, Kimberly A. Morris
  • Patent number: 8515560
    Abstract: Devices for the delivery of a bioactive substance to a cochlea and methods of delivery thereof. The devices include means to allow the release of the bioactive substance within a cochlea.
    Type: Grant
    Filed: November 28, 2003
    Date of Patent: August 20, 2013
    Assignee: Cochlear Limited
    Inventors: Kristine Debruyne, Dirk Fiedler, Thomas Kaiser, Ben Kloeck, Dusan Milojevic, John Parker
  • Patent number: 8463399
    Abstract: The various embodiments disclosed herein relate to medical electrical leads. More specifically, certain embodiments relate to leads having one or more drug-eluting components that are overmolded or otherwise positioned on the lead. Other embodiments relate to leads having one or more patterned surfaces, including some leads with one or more patterned surfaces over which one or more drug-eluting components are positioned. Further implementations relate to leads having one or more overmolded patterned surfaces, including some embodiments in which the overmolded surfaces contain at least one drug-eluting component.
    Type: Grant
    Filed: October 28, 2009
    Date of Patent: June 11, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Jeannette C. Polkinghorne, Joseph A. Cihlar, Mitchell L. Horn-Wyffels, Joseph J. Nelsen, Raymond Gessler, Erin K. Webb, Joseph J. Schachtner, Arienne P. Simon, Andrew De Kock
  • Patent number: 8414579
    Abstract: An embodiment of an open-irrigated catheter system comprises a tip section, a distal insert, and mapping electrodes. The tip section has an exterior wall that defines an open interior region within the tip section. The exterior wall includes mapping electrode openings and irrigation ports. The exterior wall is conductive for delivering radio frequency (RF) energy for an RF ablation procedure. The irrigation ports are in fluid communication with the open interior region to allow fluid to flow from the open interior region through the irrigation ports. The distal insert is positioned within the tip section to separate the open region into a distal fluid reservoir and a proximal fluid reservoir. The mapping electrodes are positioned in the mapping electrode openings in the tip section.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: April 9, 2013
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Isaac Kim, Josef Koblish, Simplicio Velilla, Mark Mirigian
  • Patent number: 8412320
    Abstract: A power supply for an implantable cardioverter-defibrillator for subcutaneous positioning between the third rib and the twelfth rib and using a lead system that does not directly contact a patient's heart or reside in the intrathoracic blood vessels and for providing anti-tachycardia pacing energy to the heart, comprising a capacitor subsystem for storing the anti-tachycardia pacing energy for delivery to the patient's heart; and a battery subsystem electrically coupled to the capacitor subsystem for providing the anti-tachycardia pacing energy to the capacitor subsystem.
    Type: Grant
    Filed: August 17, 2005
    Date of Patent: April 2, 2013
    Assignee: Cameron Health, Inc.
    Inventors: Alan H. Ostroff, William J. Rissmann, Gary P. Mezack, Gust H. Bardy
  • Publication number: 20120330122
    Abstract: A cardiac lead includes a half-domed, or semi-spherical shaped, or asymmetrical oval or circular distal assembly with or without an active fixation mechanism. The half-domed or semi-spherical or asymmetrical oval or circular shape provides directionality as to whether a flat side of the lead is facing the myocardial tissue and therefore the active fixation mechanism can be deployed safely into the myocardial tissue. Pacing/sensing electrodes may be constructed on the flat side of the lead to avoid the stimulation of the phrenic nerve.
    Type: Application
    Filed: June 22, 2012
    Publication date: December 27, 2012
    Inventors: Sen Ji, Danya Zhang
  • Patent number: 8335572
    Abstract: An implantable medical device lead includes an insulative lead body, an outer conductive coil extending through the lead body, and an inner conductive coil extending coaxially with the outer conductive coil. The outer conductive coil, which is coupled to a proximal electrode at a distal end of the outer conductive coil, has a first outer conductive coil diameter. The inner conductive coil is coupled to a distal electrode at a distal end of the inner conductive coil. The inner conductive coil includes a filar having a filar diameter and a coil pitch that is about one to one and a half times the filar diameter. The inner conductive coil transitions from a first inner conductive coil diameter to a larger second inner conductive coil diameter between the proximal electrode and the distal electrode.
    Type: Grant
    Filed: July 26, 2010
    Date of Patent: December 18, 2012
    Assignee: Cardiac Pacemakers, Inc.
    Inventor: Masoud Ameri
  • Patent number: 8306631
    Abstract: An implantable lead for a medical device with a coplanar coupling for connecting a conductor to a contact reduces conductor bending moments to improve lead reliability. The implantable lead comprises a lead body having a proximal end and a distal end, at least one conductor, at least one contact carried on the proximal end, at least one contact carried on the distal end, and at least one coupling. The lead body has an exterior surface. The conductor is contained in the lead body and extends from the lead proximal end to the distal end. The conductor is also electrically insulated. The contact carried on the proximal end is electrically connected to the conductor. The coupling has a conductor coupling and a contact coupling. The conductor coupling is placed over the conductor and attached to the conductor. The contact coupling exits the lead body and has a weld to connect the contact coupling to the contact.
    Type: Grant
    Filed: August 5, 2011
    Date of Patent: November 6, 2012
    Assignee: Medtronic, Inc.
    Inventors: Mary Lee Cole, Xavier Pardo, Brian T. Stolz
  • Patent number: 8275468
    Abstract: The lead includes a helical fixation member coupled to the distal end of the lead body. The helical fixation member has at least one internal reservoir and a plurality of elution ports in fluid communication with the internal reservoir. A therapeutic agent composition is disposed within the internal reservoir. Additionally, the helical fixation member includes a sealed distal end to prevent coring of the cardiac tissue.
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: September 25, 2012
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Arthur J. Foster, Matthew J. Miller
  • Patent number: 8271101
    Abstract: A system for delivering therapeutic agents to biological tissue includes a surgically implantable lead configured to be inserted into the biological tissue, the surgically implantable lead including a preformed cavity; and a modular capsule containing a therapeutic agent which includes dexamethasone base; the modular capsule being secured within the preformed cavity; the modular capsule releasing the therapeutic agent into the biological tissue. A method of delivering therapeutic agents to biological tissue includes obtaining a surgically implantable lead with a preformed cavity; obtaining a modular capsule containing a therapeutic agent comprising dexamethasone base and securing it within the preformed cavity; and inserting the surgically implantable lead into the biological tissue.
    Type: Grant
    Filed: July 31, 2009
    Date of Patent: September 18, 2012
    Assignee: Advanced Bionics
    Inventors: Edward H. Overstreet, Jian Xie, Michael S. Colvin, Michael A. Faltys
  • Patent number: 8239018
    Abstract: An electrode assembly for use in an iontophoresis device for the transcutaneous administration of an active therapeutic species has a base layer of including a linking conductive base material which is consumed (oxidizes or reduces) preferentially to water, a first upper layer of sacrificial material coated on a first portion of the base layer wherein the sacrificial material is consumed preferentially to the linking conductive base material of the base layer. A second upper layer of non-conducting material is coated on a second portion of the base layer, the second upper layer being spaced from the first upper layer, connected by a narrow exposed linking area of the base layer material remaining exposed therebetween.
    Type: Grant
    Filed: August 25, 2010
    Date of Patent: August 7, 2012
    Assignee: Teikoku Pharma USA, Inc.
    Inventors: Carter R. Anderson, Russell L. Morris
  • Publication number: 20120165914
    Abstract: An implantable lead having a distal assembly including a coupler, a fixation helix secured to the coupler, a housing in which the fixation helix and the coupler are disposed, and a resilient seal that is fixedly secured to the coupler between proximal and distal ends thereof and able to translate with the coupler relative to the housing. The seal is positioned to sealingly engage an internal surface of the housing. When the coupler is translated such that the fixation helix is in a fully extended position, the seal is positioned to substantially seal off the housing to prevent tissue ingrowth.
    Type: Application
    Filed: October 5, 2011
    Publication date: June 28, 2012
    Inventors: Joseph Walker, Ronald W. Heil, JR., G. Shantanu Reddy
  • Publication number: 20120165913
    Abstract: An implantable electrical lead suitable for left sided cardiac placement, the implantable medical electrical lead having an external blood contacting surface having an external coating including a monolayer of at least one biological agent that promotes endothelialization covalently attached to a polymeric lead surface.
    Type: Application
    Filed: December 23, 2010
    Publication date: June 28, 2012
    Inventor: Zhongping C. Yang
  • Patent number: 8209033
    Abstract: A system delivers stimulation to volume receptors in the cardiovascular system to induce diuresis in a patient suffering volume overload. The system senses a volume signal indicative of a level of fluid retention in the patient's body and controls the delivery of the stimulation using the volume signal. In various embodiments, the stimulation includes one or more of electrical stimulation, which delivers electrical pulses to the volume receptors, and mechanical stimulation, which physically stretches the volume receptors.
    Type: Grant
    Filed: May 14, 2007
    Date of Patent: June 26, 2012
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Yunlong Zhang, James G. Bentsen, Yousufali Dalal
  • Patent number: 8195307
    Abstract: A combined electrical and chemical stimulation lead is especially adapted for providing treatment to intervertebral discs. The combination lead may be placed proximate to intervertebral disc cellular matrix and nucleus pulposus tissue to promote tissue regeneration and repair, as well as nociceptor and neural tissue modulation. The stimulation lead includes electrodes that may be selectively positioned along various portions of the stimulation lead in order to precisely direct electrical energy to stimulate the target tissue. The lead also includes a central infusion passageway or lumen that communicates with various infusion ports spaced at selected locations along the lead to thereby direct the infusion of nutrients/chemicals to the target tissue. One embodiment utilizes a dissolvable matrix for infusion as opposed to remote delivery through an infusion pump.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: June 5, 2012
    Inventor: Bradley D. Vilims