Selecting Plural Stimulation Patterns Patents (Class 607/15)
  • Patent number: 11517244
    Abstract: A method of deriving depth EEG data from non-invasive 2D EEG data is described. The method receives several EEG scalp signals, each of which is produced by a contact of an EEG recording device. The method converts each EEG scalp signal into multiple frequency band signals. The method identifies a set of contacts that have similar signal fragments in frequency band signals for a particular frequency band. The method determines relative time delay in frequency band signal arrival at the set of contacts. The method determines relative radius of sphere for the set of contacts based on the relative time delay in frequency band signal arrival at the set of contacts. The method then determines a signal source location by performing trilateration on the set of contacts using locations of the set of contacts and the relative radius of sphere for the set of contacts.
    Type: Grant
    Filed: August 19, 2015
    Date of Patent: December 6, 2022
    Inventors: Venkatraman Sadanand, Siddharth Sadanand
  • Patent number: 11497918
    Abstract: Systems and methods for monitoring and treating patients with heart failure (HF) are discussed. The system may sense cardiac signals, and receives information about patient physiological or functional conditions. A stimulation parameter table that includes recommended values of atrioventricular delay (AVD) or other timing parameters maybe created at a multitude of patient physiological or functional conditions. The system may periodically reassess patient physiological or functional conditions. A therapy programmer circuit may dynamically switch between left ventricular-only pacing and biventricular pacing, or switch between single site pacing and multisite pacing based on the patient condition. The therapy programmer circuit may adjust AVD and other timing parameters using the cardiac signal input and the stored stimulation parameter table. A HF therapy may be delivered according to the determined stimulation site, stimulation mode, and the stimulation timing.
    Type: Grant
    Filed: June 13, 2018
    Date of Patent: November 15, 2022
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: David J. Ternes, Yinghong Yu, Jason Humphrey, David L. Perschbacher, Michael James Dufresne, Adam MacEwen, Keith L. Herrmann
  • Patent number: 11351383
    Abstract: A method and implantable medical device system for delivering a left ventricular (LV) cardiac pacing therapy via a single-pass coronary sinus lead and sensing far-field cardiac signals via one or more far-field sensing vectors formed between the plurality of electrodes. Beat morphologies corresponding to the far-field cardiac signals are determined, and a beat morphology match between each of the far-field beat morphologies and an intrinsic beat morphology template is determined so that one of loss of LV capture, pseudo fusion and loss of synchrony is determined in response to the determined beat morphology match. One of a loss of capture adjustment, a pseudo fusion adjustment, and a resynchronization adjustment is performed in response to the determined one of loss of LV capture, pseudo fusion and loss of synchrony in response to the determined beat morphology match to generate an adjusted LV cardiac pacing therapy.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: June 7, 2022
    Assignee: Medtronic, Inc.
    Inventors: Aleksandre Sambelashvili, Yong Cho, Jeffrey Gillberg
  • Patent number: 11103186
    Abstract: An implantable medical device system includes a pacemaker and an implantable cardioverter defibrillator (ICD). The pacemaker is configured to confirm a hemodynamically unstable rhythm based on an activity metric determined from an activity sensor signal after detecting a ventricular tachyarrhythmia and withhold anti-tachycardia pacing (ATP) pulses in response to confirming the hemodynamically unstable rhythm. The pacemaker may deliver ATP when a hemodynamically unstable rhythm is not confirmed based on the activity metric. The ICD is configured to detect the ATP and withhold a shock therapy in response to detecting the ATP in some examples.
    Type: Grant
    Filed: July 15, 2019
    Date of Patent: August 31, 2021
    Assignee: Medtronic, Inc.
    Inventors: Todd J. Sheldon, Wade M. Demmer, Teresa A. Whitman
  • Patent number: 10207116
    Abstract: An intracardiac ventricular pacemaker is configured to operate in in a selected one of an atrial-tracking ventricular pacing mode and a non-atrial tracking ventricular pacing mode. A control circuit of the pacemaker determines at least one motion signal metric from the motion signal, compares the at least one motion signal metric to pacing mode switching criteria; and responsive to the pacing mode switching criteria being satisfied, switches from the selected one of the non-atrial tracking pacing mode and the atrial tracking pacing mode to the other one of the non-atrial tracking pacing mode and the atrial tracking pacing mode for controlling ventricular pacing pulses delivered by the pacemaker.
    Type: Grant
    Filed: December 1, 2016
    Date of Patent: February 19, 2019
    Assignee: Medtronic, Inc.
    Inventors: Todd J Sheldon, Yong K Cho, Wade M Demmer, Mark K Erickson, Vincent E Splett
  • Patent number: 9446234
    Abstract: The disclosure is directed to gastric stimulation programmers, stimulators and methods for controlling delivery of gastric stimulation therapy to maintain the efficacy of the therapy over time. Maintaining the efficacy of gastric stimulation therapy may be possible by implementing one or more anti-desensitization features in a gastric stimulation controller or stimulator. As electrical stimulation therapy is continuously delivered to a patient, the stimulated tissue may become desensitized to the electrical stimulation therapy such that the beneficial effect of the electrical stimulation is diminished. Once desensitization occurs, the affected tissue may not respond favorably to electrical stimulation therapy. Application of one or more anti-desensitization features to control gastric stimulation therapy may reduce or prevent desensitization and effectively extend the efficacy of the therapy over time.
    Type: Grant
    Filed: September 24, 2008
    Date of Patent: September 20, 2016
    Assignee: Medtronic, Inc.
    Inventors: Warren L. Starkebaum, Charlene X. Yuan, Roland C. Maude-Griffin, Luiz Geraldo Pivotto
  • Patent number: 9283395
    Abstract: An implantable medical device, IMD, comprises atrial and ventricular sensing units for sensing atrial or ventricular electric events. The IMD also comprises atrial and ventricular pulse generators for generating atrial or ventricular pacing pulses. A controller controls the operation of the IMD (100) according to a first mode, in which the ventricular pulse generator is prevented from generating a back-up pulse if an evoked response detector fails to detect evoked response to a delivered ventricular pacing pulse, and a second mode, in which the ventricular pulse generator is controlled to generate a back-up pulse if no evoked response is detected following delivery of a ventricular stimulating pulse. The controller switches operation from the first mode to the second mode based on the evoked response detector failing to detect an evoked response to a delivered ventricular pacing pulse.
    Type: Grant
    Filed: February 26, 2014
    Date of Patent: March 15, 2016
    Assignee: ST. JUDE MEDICAL AB
    Inventor: Johan Eckerdal
  • Patent number: 9031649
    Abstract: An implantable medical device (IMD) identifies suspected non-lethal ventricular arrhythmia, and takes one or more actions in response to the identification to avoid or delay delivery of a defibrillation or cardioversion shock. The IMD employs number of intervals to detect (NID) thresholds for detection of ventricular arrhythmias. When a NID threshold is met, the IMD determines whether the ventricular rhythm is a suspected non-lethal rhythm despite satisfying a NID threshold. In some embodiments, the IMD increases the NID threshold, i.e., extends the time for detection, in response to identifying a rhythm as a suspected non-lethal rhythm, and monitors subsequent ventricular beats to determine if the increased NID threshold is met before detecting a ventricular arrhythmia and delivering therapy. The IMD can determine whether a rhythm is a suspected non-lethal arrhythmia by, for example, comparing the median ventricular cycle length (VCL) to the median atrial cycle length (ACL).
    Type: Grant
    Filed: November 25, 2013
    Date of Patent: May 12, 2015
    Assignee: Medtronic, Inc.
    Inventor: Kevin T. Ousdigian
  • Patent number: 9014804
    Abstract: An implantable medical device such as an implantable pulse generator that includes EEG sensing for monitoring and treating neurological conditions, and leadless ECG sensing for monitoring cardiac signals. The device includes a connector block with provisions for cardiac leads which may be used/enabled when needed. If significant co-morbid cardiac events are observed in patients via the leadless ECG monitoring, then cardiac leads may be subsequently connected for therapeutic use.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: April 21, 2015
    Assignee: Medtronic, Inc.
    Inventors: Jonathon E. Giftakis, Nina M. Graves, Jonathan C. Werder, Eric J. Panken
  • Patent number: 8977356
    Abstract: Systems and methods for arrhythmia therapy in MRI environments are disclosed. Various systems disclosed utilize ATP therapy rather than ventricular shocks when patients are subjected to electromagnetic fields in an MRI scanner bore and shock therapy is not available. As the patient is moved out from within the scanner bore and away from the MRI scanner, the magnetic fields diminish in strength eventually allowing a high voltage capacitor within the IMD to charge if necessary. The system may detect when the electromagnetic fields no longer interfere with the shock therapy and will transition the IMD back to a normal operational mode where shock therapy can be delivered. Then, if the arrhythmia still exists, the system will carry out all of the system's prescribed operations, including the delivery of electric shocks to treat the arrhythmia.
    Type: Grant
    Filed: January 23, 2014
    Date of Patent: March 10, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Scott R. Stubbs, James O. Gilkerson, Diane Schuster
  • Patent number: 8977365
    Abstract: An electronic system activatable by electrical power is described. The system is useful for influencing cellular functions or malfunctions in a warm-blooded mammalian subject. The system includes one or more controllable low energy HF (High Frequency) carrier signal generator circuits, one or more data processors for receiving control information, one or more amplitude modulation control generators and one or more amplitude modulation frequency control generators. The amplitude modulation frequency control generators are adapted to accurately control the frequency of the amplitude modulations to within an accuracy of at least 1000 ppm, most preferably to within about 1 ppm, relative to one or more determined or predetermined reference amplitude modulation frequencies.
    Type: Grant
    Filed: August 22, 2012
    Date of Patent: March 10, 2015
    Assignee: TheraBionic, LLC
    Inventors: Boris Pasche, Alexandre Barbault
  • Publication number: 20150045846
    Abstract: For terminating a high frequency arrhythmic electric state of a heart an electric signal representative of the present electric state of the heart is obtained. From the electric signal a dominant frequency of the present electric state is determined, and from the dominant frequency it is determined whether the present electric state of the heart is a high frequency arrhythmic electric state displaying at least one rotating wave. Further, a dominance level indicative of how dominant the dominant frequency is in the high frequency arrhythmic electric state is determined from the electric signal. Depending on the at least one dominant frequency, at least one series of electric pulses at intervals is generated. The electric pulses are applied to the heart starting at a point in time at which the dominance level exceeds a predefined threshold value for the heart being in a determined high frequency arrhythmic electric state.
    Type: Application
    Filed: October 23, 2014
    Publication date: February 12, 2015
    Inventors: Stefan Luther, Eberhard Bodenschatz, Valentin Krinski, Robert Gilmour, Flavio Fenton
  • Patent number: 8914130
    Abstract: One example includes an implantable lead including an elongate lead body which includes a proximal portion and a distal portion. In the example, the lead includes a coupler configured to couple to an implantable medical device. The lead includes a first conductor, coupled to the coupler, and extending away from the coupler at least partially through the lead. The lead includes a first electrode, located on the lead away from the coupler and a first switch, located on the lead away from the coupler, the first switch configured to control conductivity between the conductor and the electrode. The lead also includes a first controller circuit, coupled to the conductor and including a first multiplexer circuit configured to multiplex over the conductor a first signal and a second signal, the first controller circuit configured to control the first switch based at least on the first signal.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: December 16, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventor: David R. Wulfman
  • Patent number: 8868183
    Abstract: An implantable cardiac function management device including a programmable controller can be used to include a user-specifiable therapy control parameter set. The therapy control parameter set may then be configured to include at least one therapy control parameter that is user-configurable to automatically switch from a first parameter value to a second parameter value at a time that occurs between separate user programming sessions of the device. Various attributes of physiological measures may allow for refinement of the parameter sets to adapt to changed conditions of the subject. Methods of use are also presented.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: October 21, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Alok S. Sathaye, Shelley Cazares, Andrew P. Kramer
  • Patent number: 8842953
    Abstract: An apparatus for applying energy to an object and/or sensing the object. The apparatus includes an optical device for applying and/or sensing light energy and an electrical device for applying and/or sensing electrical energy. At least one optical fiber is provided for applying light energy to the object and/or sensing the object. The at least one optical fiber is connected to the optical device and includes a conductive coating forming an electrical conductor for applying electrical energy to the object and/or sensing the object. The electrical conductor is connected to the electrical device.
    Type: Grant
    Filed: December 2, 2008
    Date of Patent: September 23, 2014
    Assignee: Koninklijke Philips N.V.
    Inventors: Nenad Mihajlovic, Szabolcs Deladi, Joachim Kahlert
  • Patent number: 8838240
    Abstract: Systems and methods provide for sensing, during an event of tachycardia, hemodynamic signals concurrently from at least two spatially separated locations within a patient, and quantifying a spatial relationship between the hemodynamic signals. Hemodynamic stability or state of the patient during the tachycardia event is determined based at least in part on the quantified spatial relationship. One or more anti-tachycardia therapies to treat the tachycardia may be selected based at least in part on the determined stability or state of patient hemodynamics, and the selected one or more anti-tachycardia therapies may be delivered to treat the tachycardia. The hemodynamic signals may comprise at least two, or a mixed combination, of cardiac impedance signals, cardiac chamber pressure signals, arterial pressure signals, heart sounds; and acceleration signals.
    Type: Grant
    Filed: September 10, 2008
    Date of Patent: September 16, 2014
    Assignee: Cardiac Pacemakers Inc.
    Inventors: Dan Li, Krzysztof Siejko, Abhilash Patangay
  • Patent number: 8831723
    Abstract: A cardiac medical device and associated method control delivery of dual chamber burst pacing pulses in response to detecting tachycardia. A number of cardiac cycles occurring in a first cardiac chamber are identified subsequent to the dual chamber pacing pulses. The number of sensed intrinsic events occurring in a second cardiac chamber during the first chamber cardiac cycles is determined as a number of second chamber events. The tachycardia episode is classified in response to the number of second chamber events.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: September 9, 2014
    Assignee: Medtronic, Inc.
    Inventors: Mark L. Brown, Troy Edward Jackson, Jeffrey M. Gillberg
  • Patent number: 8812102
    Abstract: An apparatus comprises a cardiac signal sensing circuit, a physiologic sensor circuit configured to provide a physiologic sensor signal representative of mechanical cardiac activity, a therapy circuit, and a control circuit. The control circuit includes a cardiac depolarization detection circuit, a tachyarrhythmia detection circuit, and a timer circuit. A time interval between a mechanical cardiac event and a detected fiducial electrical cardiac event is monitored. The control circuit is configured to correct the monitored time interval for variation with heart rate to form a corrected electromechanical time interval, initiate anti-tachyarrhythmia therapy when the corrected electromechanical time interval satisfies a specified time interval threshold value during a detected episode of tachyarrhythmia, and withhold anti-tachyarrhythmia therapy otherwise.
    Type: Grant
    Filed: May 9, 2012
    Date of Patent: August 19, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Dan Li, Amy Jean Brisben
  • Patent number: 8812106
    Abstract: A new pacemaker apparatus for treating the physiological electric conduction of the heart that includes a conduction abnormality in a ventricle. The pacemaker includes a pulse generator and a pacing electrode located in the heart, the pulse generator providing pacing signals to the pacing electrode. The pacemaker further includes a signal generation circuit that generates electrical signals from heart-related feedback signals that indicate that the pacing electrode is delivering the pacing signals in a region at or near the His bundle of the heart. The combination of the pulse generator and the signal generation circuit indicates that the pacing electrode is delivering the pacing signals in the region, at or near the His bundle of the heart, to electrically bypass the conduction abnormality of the heart in the ventricle.
    Type: Grant
    Filed: May 2, 2013
    Date of Patent: August 19, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Daniel Felipe Ortega, Alberto German Giniger
  • Patent number: 8792998
    Abstract: Methods, systems and devices efficiently identify cardiac resynchronization therapy (CRT) pacing parameter set(s) that provide improved hemodynamic response relative to an initial CRT pacing parameter set, wherein each CRT pacing parameter set includes at least two CRT pacing parameters. User input(s) are accepted that specify a maximum amount of time and/or parameter sets that can be used to perform testing, and specify relative importance of parameters within the sets. Based on the accepted user input(s), there is a determination of how many different variations of each of the CRT pacing parameters can be tested, and based on this determination different CRT pacing parameter sets are selected and tested to obtain a hemodynamic response measure corresponding to each of the different sets tested. Additionally, one or more of the tested CRT pacing parameter sets, if any, that provide improved hemodynamic response relative to the initial CRT pacing parameter set is/are identified.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: July 29, 2014
    Assignee: Pacesetter, Inc.
    Inventors: Cecilia Qin Xi, Yasser Sowb
  • Patent number: 8781579
    Abstract: An implantable medical device, IMD, (100) is connectable to at least one ventricular lead (210) having a ventricular basal electrode (214) and a ventricular apical electrode (212). The IMD (100) comprises a pulse generator (120) for generating pacing pulses applied to a heart (10) through the ventricular lead (210). The operation of this pulse generator (120) is controlled by a controller (130) that is configured to control the pulse generator to first deliver a pacing pulse to the ventricular basal electrode (214) to stimulate the basal portion of the ventricle (12, 14) before a pacing pulse is delivered to the apical portion of the ventricle (12, 14) by the ventricular apical electrode (212). This pulse sequence achieves a biologically more correct cardiac stimulation and a contraction pattern that reduces the risk for valvular regurgitation.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: July 15, 2014
    Assignee: St. Jude Medical AB
    Inventors: Nils Holmstrom, John Gustafsson, Michael Broome
  • Publication number: 20140135864
    Abstract: An implantable neurostimulator-implemented method for managing tachyarrhythmias upon a patient's awakening from sleep through vagus nerve stimulation is provided. An implantable neurostimulator, including a pulse generator, is configured to deliver electrical therapeutic stimulation in a manner that results in creation and propagation (in both afferent and efferent directions) of action potentials within neuronal fibers comprising the cervical vagus nerve of a patient. Operating modes of the pulse generator are stored. An enhanced dose of the electrical therapeutic stimulation is parametrically defined and tuned to prevent initiation of or disrupt tachyarrhythmia upon the patient's awakening from a sleep state through at least one of continuously-cycling, intermittent and periodic ON-OFF cycles of electrical pulses. Other operating modes, including a maintenance dose and a restorative dose are defined.
    Type: Application
    Filed: November 9, 2012
    Publication date: May 15, 2014
    Applicant: CYBERONICS, INC.
    Inventors: Imad LIBBUS, Badri AMURTHUR, Bruce H. KENKNIGHT
  • Patent number: 8718762
    Abstract: A cardiac medical device and associated method control delivery of dual chamber burst pacing pulses in response to detecting tachycardia. In one embodiment, a single chamber pacing pulse is delivered in response to detecting a tachycardia. Dual chamber pacing pulses are delivered subsequent to the single chamber pacing pulse. An intrinsic depolarization is sensed subsequent to delivering the dual chamber pacing pulses. The tachycardia episode is classified in response to the sensed intrinsic depolarization.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: May 6, 2014
    Assignee: Medtronic, Inc.
    Inventors: Mark L. Brown, Troy Edward Jackson, Jeffrey M. Gillberg
  • Patent number: 8700139
    Abstract: A late potential detecting system has an implantable medical device connected to at least one cardiac lead having implantable electrodes positioned at different sites of a ventricle myocardium. A sampling unit of the implantable medical device records electrogram samples for the different implantable electrodes to get different sample sets. The electrogram samples of the sample sets are time synchronized and magnitude potential representations of the potential data of the electrogram samples are determined. The magnitude potential representations of the time synchronized electrogram samples are then co-processed and used for determining a parameter that is indicative of any late potentials of the monitored ventricle.
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: April 15, 2014
    Assignee: St. Jude Medical AB
    Inventor: Andreas Blomqvist
  • Patent number: 8639331
    Abstract: Systems and methods for arrhythmia therapy in MRI environments are disclosed. Various systems disclosed utilize ATP therapy rather than ventricular shocks when patients are subjected to electromagnetic fields in an MRI scanner bore and shock therapy is not available. As the patient is moved out from within the scanner bore and away from the MRI scanner, the magnetic fields diminish in strength eventually allowing a high voltage capacitor within the IMD to charge if necessary. The system may detect when the electromagnetic fields no longer interfere with the shock therapy and will transition the IMD back to a normal operational mode where shock therapy can be delivered. Then, if the arrhythmia still exists, the system will carry out all of the system's prescribed operations, including the delivery of electric shocks to treat the arrhythmia.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: January 28, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Scott R. Stubbs, James O. Gilkerson, Diane Schuster
  • Patent number: 8600500
    Abstract: Methods and systems are provided to deliver a neural stimulation (NS) therapy utilizing a first NS operating configuration to assist anti-tachycardia pacing (ATP) therapy in response to a detected tachyarrhythmia. Before and after delivering of the NS therapy, characteristic values are measured for a rate-related physiologic characteristic (rate RPC) and a stability-related physiologic characteristic (stability RPC). The rate RPC is indicative of a frequency of a reentrant circuit within the tachyarrhythmia. The stability RPC is indicative of a hemodynamic stability of the reentrant circuit. The pre-NS and post-NS characteristic values for the rate and stability RPCs are analyzed to determine a rate RPC difference and a stability RPC difference. Different ATP therapies are delivered based on the type associated with the tachyarrhythmia, the rate RPC difference and the stability RPC difference.
    Type: Grant
    Filed: December 11, 2012
    Date of Patent: December 3, 2013
    Assignee: Pacesetter, Inc.
    Inventors: Stuart Rosenberg, Taraneh Ghaffari Farazi, Rupinder Bharmi, Kyungmoo Ryu, Edward Karst, Yelena Nabutovsky, Allen Keel, Riddhi Shah, Fujian Qu, Ryan Rooke
  • Patent number: 8583230
    Abstract: Techniques are provided for use with implantable cardiac stimulation devices equipped for multi-site left ventricular (MSLV) cardiac pacing. Briefly, intraventricular and interventricular conduction delays are detected for paced cardiac events. Maximum pacing time delays are determined for use with MSLV pacing where the maximum pacing time delays are set based on the conduction delays to values sufficient to avoid capture problems due to wavefront propagation, such as fusion or lack of capture. MSLV pacing delays are then set to values no greater than the maximum pacing delays and cardiac resynchronization therapy (CRT) is delivered using the MSLV pacing delays. In an example where an optimal interventricular pacing delay (VV) is determined in advance using intracardiac electrogram-based or hemodynamic-based optimization techniques, the optimal value for VV can be used as a limiting factor when determining the maximum MSLV pacing time delays.
    Type: Grant
    Filed: January 19, 2011
    Date of Patent: November 12, 2013
    Assignee: Pacesetter, Inc.
    Inventors: Kyungmoo Ryu, Allen Keel, Heidi Hellman, Tomas Svensson
  • Patent number: 8571652
    Abstract: Adaptively creating a table of optimal, patient-specific atrioventricular (AV) delays for a an implantable medical device (IMD) begins as the IMD detects the patient entering a target heart rates within a defined range of elevated heart rates. On detection, the device begins testing AV delays by pacing the heart at a number of different AV delays. The IMD selects the optimal AV delay based on a comparison of measurements of cardiac output obtained during each delay's test pacing period. The optimal AV delay corresponds to the one which resulted in the highest cardiac output. The device selects this optimal AV delay and stores it in an AV delay table on the device. The process continues as the device detects the patient entering the other target heart rates in order to complete the table.
    Type: Grant
    Filed: February 8, 2010
    Date of Patent: October 29, 2013
    Assignee: Pacesetter, Inc.
    Inventor: Steve Koh
  • Patent number: 8560067
    Abstract: A cardiac electro-stimulatory device and method for operating same in which stimulation pulses are distributed among a plurality of electrodes fixed at different sites of the myocardium in order to reduce myocardial hypertrophy brought about by repeated pacing at a single site and/or increase myocardial contractility. In order to spatially and temporally distribute the stimulation, the pulses are delivered through a switchable pulse output configuration during a single cardiac cycle, with each configuration comprising one or more electrodes fixed to different sites in the myocardium.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: October 15, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Rodney W. Salo, Julio C. Spinelli, Bruce H. KenKnight
  • Patent number: 8538523
    Abstract: A medical system comprises a plurality of electrodes; at least one sensor configured to output at least one signal based on at least one physiological parameter of a patient; and a processor. The processor is configured to control delivery of stimulation to the patient using a plurality of electrode configurations. Each of the electrode configurations comprises at least one of the plurality of electrodes. For each of the electrode configurations, the processor is configured to determine a first response of target tissue to the stimulation based on the signals, and a second response of non-target tissue to the stimulation based on the signals. The processor is also configured to select at least one of the electrode configurations for delivery of stimulation to the patient based on the first and second responses for the electrode configurations. As examples, the target tissue may be a left ventricle or vagus nerve.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: September 17, 2013
    Assignee: Medtronic, Inc.
    Inventors: John L. Sommer, David Wayne Bourn, Mark T. Marshall, Michael D. Eggen, Gabriela C. Miyazawa
  • Patent number: 8489207
    Abstract: A medical device having a unit in communication with ancillary components wherein the unit and the ancillary components each have a sensory output through which communication with a user of the medical device may be accomplished and to which the user's attention directed. In one aspect, the medical device is an AED unit with associated pads, which are an ancillary component electrically connected to the AED unit. In this illustrative example, the unit has a unit sensory output (e.g., a speaker or a display), and the pads, and/or their associated packaging, have an ancillary sensory output (e.g. a speaker or display). Programming in the AED unit controls output to the sensory outputs such that the user's attention is directed between the unit and the ancillary components.
    Type: Grant
    Filed: January 5, 2010
    Date of Patent: July 16, 2013
    Inventors: Gintaras A Vaisnys, Glenn W. Laub, Giovanni C Meier
  • Patent number: 8483826
    Abstract: This document discusses, among other things, an apparatus comprising an implantable cardiac depolarization sensing circuit, an electrical stimulation circuit, and a pacing mode controller. The pacing mode controller is configured to deliver pacing therapy according to a first pacing mode that is a normal operating mode, and to deliver pacing therapy according to second and third pacing modes. The second and third pacing modes increase mechanical stress on at least a particular portion of the ventricle as compared to the pacing therapy delivered during the first pacing mode. The pacing mode controller alternates between the second and third pacing modes when pacing is changed from the normal operating mode to a stress augmentation mode. The pacing mode controller suspends the change from the normal operating mode to the stress augmentation mode when a condition to prevent the change is detected.
    Type: Grant
    Filed: March 17, 2009
    Date of Patent: July 9, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: John R. Zielinski, Shantha Arcot-Krishnamurthy, Joseph M. Pastore, Jeffrey E. Stahmann, Allan C. Shuros
  • Patent number: 8478405
    Abstract: An implantable system terminates atrial fibrillation by applying optimized anti-tachycardia pacing (ATP). In one implementation, the system senses and paces at multiple sites on the left atrium. At each site, the system senses reentrant circuits causing the atrial fibrillation. In one implementation, the system applies ATP tuned to the frequency of the reentrant circuit at the electrode that senses the most regular reentrant circuit. In another implementation, the system applies ATP at multiple electrodes, delivering each pulse at each site when the excitable gap is near the site. In other variations, the ATP is optimized for different patterns of sequential, simultaneous, or syncopated delivery to terminate the atrial fibrillation. The system can also monitor multiple heart chambers for cardiac events that favor terminating atrial fibrillation via ATP. The system then times delivery of the ATP according to these cardiac events.
    Type: Grant
    Filed: July 21, 2010
    Date of Patent: July 2, 2013
    Assignee: Pacesetter, Inc.
    Inventors: Kyungmoo Ryu, Jong Gill, Gene A. Bornzin
  • Patent number: 8437848
    Abstract: A new pacemaker apparatus for treating the physiological electric conduction of the heart that includes a conduction abnormality in a ventricle. The pacemaker includes a pulse generator and a pacing electrode located in the heart, the pulse generator providing pacing signals to the pacing electrode. The pacemaker further includes a signal generation circuit that generates electrical signals from heart-related feedback signals that indicate that the pacing electrode is delivering the pacing signals in a region at or near the His bundle of the heart. The combination of the pulse generator and the signal generation circuit indicates that the pacing electrode is delivering the pacing signals in the region, at or near the His bundle of the heart, to electrically bypass the conduction abnormality of the heart in the ventricle.
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: May 7, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Daniel Felipe Ortega, Alberto German Giniger
  • Patent number: 8428715
    Abstract: Treating the physiological electric conduction of the heart includes methods that involve guiding an electrode to a location, near the His bundle of the heart, that is determined by pacing the heart and sensing signals in response thereto, and electrically bypassing a conduction abnormality of the heart by presenting extrinsic pacing signals to the location near the His bundle of the heart. The pacing electrode may then be fixed at the location, near the His bundle, to provide subsequent pacing of the heart such that the subsequent pacing exhibits electrical bypassing of the conduction abnormality.
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: April 23, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Daniel Felipe Ortega, Alberto German Giniger
  • Patent number: 8412325
    Abstract: Embodiments of the invention are related to medical devices and methods for delivery high-energy anti-tachycardia therapy to a subject, amongst other things. In an embodiment, the invention includes a medical device including a controller module configured to administer a plurality of electrical pulses to a patient in response to a detected tachycardia, the electrical pulses comprising an amplitude of greater than 3 Volts and less than 40 Volts, the controller configured to modulate the amplitude of the electrical pulses. In an embodiment, the invention includes a method of treating a tachyarrhythmia including administering a first series of electrical pulses to a patient with an implantable medical device, the electrical pulses including an amplitude of greater than 8 Volts and less than 40 Volts, the first series of electrical pulses having an interval of less than about 600 ms in between individual pulses. Other embodiments are also included herein.
    Type: Grant
    Filed: April 6, 2009
    Date of Patent: April 2, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Allan Charles Shuros, Shantha Arcot-Krishnamurthy, Dan Li
  • Patent number: 8406876
    Abstract: Various aspects of the present subject matter relate to a method. According to various method embodiments, cardiac activity is detected, and neural stimulation is synchronized with a reference event in the detected cardiac activity. Neural stimulation is titrated based on a detected response to the neural stimulation. Other aspects and embodiments are provided herein.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: March 26, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Aaron R. McCabe, Imad Libbus, Yi Zhang, Paul A. Haefner, Alok S. Sathaye, Anthony V. Caparso, M. Jason Brooke
  • Patent number: 8364260
    Abstract: An external defibrillator having a battery; a capacitor electrically communicable with the battery; at least two electrodes electrically communicable with the capacitor and with the skin of a patient; a controller configured to charge the capacitor from the battery and to discharge the capacitor through the electrodes; and a support supporting the battery, capacitor, electrodes and controller in a deployment configuration, the defibrillator having a maximum weight per unit area in the deployment configuration of 0.1 lb/in2 and/or a maximum thickness of 1 inch. The support may be a waterproof housing.
    Type: Grant
    Filed: August 5, 2011
    Date of Patent: January 29, 2013
    Assignee: Kuman and Rao Family Trust
    Inventor: Uday N. Kumar
  • Patent number: 8359096
    Abstract: An active implantable medical device for cardiac resynchronization with automatic and almost in real time optimization of the interventricular and atrio-ventricular delays is disclosed. The active implantable medical device includes a closed-loop for continuously controlling the atrio-ventricular delay AVD and the inter-ventricular delay VVD according to a hemodynamic signal delivered by a hemodynamic sensor. The closed-loop provides controlled modulation (38) and demodulation (42) the AVD, and modulation (48) and demodulation (52) the VVD, the modulation and demodulation being functionally interdependent (54, 56) by a sequence of alternating operation. A closed-loop regulator (36) for controlling the AVD receives as input an error signal (EAVD) delivered based on demodulating the AVD (42) and outputs an AVD signal. A closed-loop regulator (46) for controlling the VVD receives as input a signal error (EVVD) based on demodulating the DVV and outputs a VVD signal.
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: January 22, 2013
    Assignee: Sorin CRM S.A.S.
    Inventor: Alaa Makdissi
  • Patent number: 8346359
    Abstract: Techniques are provided for use by implantable medical devices for controlling ventricular pacing, particularly during atrial fibrillation. In one example, during a V sense test for use in optimizing ventricular pacing, the implantable device determines relative degrees of variation within antecedent and succedent intervals detected between ventricular events sensed on left ventricular (LV) and right ventricular (RV) sensing channels. Preferred or optimal ventricular pacing delays are then determined, in part, based on a comparison of the relative degrees of variation obtained during the V sense test. In another example, during RV and LV pace tests, the device distinguishes QRS complexes arising due to interventricular conduction from QRS complexes arising due to atrioventricular conduction from the atria, so as to permit the determination of correct paced interventricular conduction delays for the patient. The paced interventricular conduction delays are also used to optimize ventricular pacing.
    Type: Grant
    Filed: July 22, 2009
    Date of Patent: January 1, 2013
    Assignee: Pacesetter, Inc.
    Inventor: Xiaoyi Min
  • Patent number: 8346358
    Abstract: A pacemaker is disclosed which reestablishes or keeps the physiological electric conduction of the heart and a method of application. The pacemaker is a pulse generator, it has a ventricular output including at least two superimposed monopolar pulsewaves of reversed polarity between each other, with programmable configuration, with respect to a neutral which can be the pacemaker's metallic box or a third electrode in the case of a tripolar catheter. The catheter can have a deflectable sheath, with an electrode on its distal tip. The invention consists of a new pacemaker, and a method of application in the right ventricular septum, being able to use in order to facilitate the implantation and to avoid the connection and the disconnection, a sheath to check a proper place and then screw the catheter in said place.
    Type: Grant
    Filed: December 13, 2005
    Date of Patent: January 1, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Daniel Felipe Ortega, Alberto German Giniger
  • Patent number: 8326423
    Abstract: Tools and methods are particularly suited for certain cardiac conditions involving use of a catheter for pacing of the right and left ventricles from a lead in the right ventricle, e.g., to facilitate mechanically and/or electrically synchronous contractions for resynchronization. Certain aspects involve pacing and/or mapping by delivering pulses to a cardiac site useful for improving heart function as measured, e.g., by QRS width, fractionation, late LV activation timing, mechanical synchronicity of free wall and septal wall, effective throughput/pressure, or a combination thereof. In one embodiment, a catheter arrangement includes a fixation mechanism to attach the catheter arrangement to heart tissue, individually-addressable electrodes for providing pacing signals to the heart tissue, and an elongated structure that supports the fixation mechanism and the electrodes.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: December 4, 2012
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Qingsheng Zhu, Daniel Felipe Ortega
  • Patent number: 8326418
    Abstract: A medical system comprises a plurality of electrodes; at least one sensor configured to output at least one signal based on at least one physiological parameter of a patient; and a processor. The processor is configured to control delivery of stimulation to the patient using a plurality of electrode configurations. Each of the electrode configurations comprises at least one of the plurality of electrodes. For each of the electrode configurations, the processor is configured to determine a first response of target tissue to the stimulation based on the signals, and a second response of non-target tissue to the stimulation based on the signals. The processor is also configured to select at least one of the electrode configurations for delivery of stimulation to the patient based on the first and second responses for the electrode configurations. As examples, the target tissue may be a left ventricle or vagus nerve.
    Type: Grant
    Filed: August 20, 2008
    Date of Patent: December 4, 2012
    Assignee: Medtronic, Inc.
    Inventors: John L. Sommer, David Wayne Bourn, Mark T. Marshall, Michael D. Eggen, Gabriela C. Miyazawa
  • Patent number: 8306620
    Abstract: A cardiac medical device and associated method control delivery of dual chamber burst pacing pulses in response to detecting tachycardia. In one embodiment, a single chamber pacing pulse is delivered in response to detecting a tachycardia. Dual chamber pacing pulses are delivered subsequent to the single chamber pacing pulse. An intrinsic depolarization is sensed subsequent to delivering the dual chamber pacing pulses. The tachycardia episode is classified in response to the sensed intrinsic depolarization.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: November 6, 2012
    Assignee: Medtronic, Inc.
    Inventors: Mark L. Brown, Troy Edward Jackson, Jeffrey M. Gillberg
  • Patent number: 8239022
    Abstract: A ventricular rate based on first candidate waveforms and second candidate waveforms within sensed ventricular waveforms is compared to an atrial rate. If the ventricular rate exceeds the atrial rate, the first candidate waveforms and second candidate waveforms are compared to a ventricular polarization complex template to obtain a first morphology indicator and a second morphology indicator. If a morphology match inconsistency is present, the amount by which the ventricular rate exceeds the atrial rate is compared to a threshold. If the threshold is exceeded, high-ventricular-rate therapy to the heart is inhibited. The ventricular polarization complex template may be a QRS-complex template, in which case a match inconsistency is present if each of the first candidate waveforms and the second candidate waveforms do not match the QRS-complex template.
    Type: Grant
    Filed: January 20, 2009
    Date of Patent: August 7, 2012
    Assignee: Pacesetter, Inc.
    Inventor: Andrew Miller
  • Patent number: 8204591
    Abstract: A method is provided, including identifying that a subject is at risk of suffering from atrial fibrillation (AF). Responsively to the identifying, a risk of an occurrence of an episode of the AF is reduced by applying an electrical current to a site of the subject selected from the group consisting of: a vagus nerve, a sinoatrial (SA) node fat pad, a pulmonary vein, a carotid artery, a carotid sinus, a coronary sinus, a vena cava vein, a jugular vein, an azygos vein, an innominate vein, and a subclavian vein, and configuring the current to stimulate autonomic nervous tissue in the site. Other embodiments are also described.
    Type: Grant
    Filed: January 24, 2007
    Date of Patent: June 19, 2012
    Assignee: Bio Control Medical (B.C.M.) Ltd.
    Inventors: Tamir Ben-David, Omry Ben-Ezra, Ehud Cohen
  • Publication number: 20120095520
    Abstract: A system and method for use in a medical device for discriminating cardiac events establishes population-based thresholds corresponding to cardiac signal morphology metrics for discriminating between a first cardiac event and a second cardiac event. A population-based threshold criterion for discriminating cardiac events is established. The population-based threshold criterion is applied to a cardiac signal segment and the segment is classified if the criterion is satisfied. A patient-specific threshold is established in response to the sensed cardiac signal segment not being classified after applying the population-based threshold criterion. The sensed signal segment is classified in response to the patient-specific threshold comparison.
    Type: Application
    Filed: October 13, 2010
    Publication date: April 19, 2012
    Inventors: Xusheng Zhang, Robert W. Stadler, Jeffrey M. Gillberg
  • Patent number: 8116866
    Abstract: A method and apparatus for delivering cardiac resynchronization therapy (CRT) in which an evoked response electrogram is recorded during one or more cardiac cycles and used to aid in the selection of resynchronization pacing parameters and/or to monitor the effectiveness of resynchronization therapy. The morphology of an evoked response electrogram may be recorded and analyzed to determine if and when intrinsic activation of one ventricle is occurring in order to optimally adjust the programmed atrio-ventricular (AV) delay interval for ventricular resynchronization pacing of a patient with intact AV node conduction.
    Type: Grant
    Filed: July 6, 2009
    Date of Patent: February 14, 2012
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: David J. Yonce, David Ternes
  • Patent number: 8090442
    Abstract: A cardiac electro-stimulatory device and method for operating same in which stimulation pulses are distributed among a plurality of electrodes fixed at different sites of the myocardium in order to reduce myocardial hypertrophy brought about by repeated pacing at a single site and/or increase myocardial contractility. In order to spatially and temporally distribute the stimulation, the pulses are delivered through a switchable pulse output configuration during a single cardiac cycle, with each configuration comprising one or more electrodes fixed to different sites in the myocardium.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: January 3, 2012
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Rodney W. Salo, Julio C. Spinelli, Bruce H. KenKnight
  • Publication number: 20110301656
    Abstract: A preferred atrial-based pacing method and apparatus is provided using an intelligent cardiac pacing system to having the ability to continue atrial-based pacing as long as relatively reliable AV conduction is present. In the event that such relatively reliable AV conduction is not present, mode switching to a DDD/R or a DDI/R pacing mode while continually biased to mode switch back to atrial-based pacing. The standard or relatively reliable AV conduction may be changed either automatically or manually. This increases pacing that utilizes natural AV conduction however possible so as to gain all the benefits of cardiac contractile properties resulting therefrom, while tolerating the occasional missed ventricular depolarization (i.e., non-conducted P-wave). In the event where relatively reliable AV conduction is not present, the pacing mode is switched to a DDD/R mode while detecting a return of the relatively reliable AV conduction (and resulting mode switch to preferred atrial based pacing).
    Type: Application
    Filed: June 7, 2011
    Publication date: December 8, 2011
    Applicant: Medtronic, Inc.
    Inventors: David A. Casavant, Paul Belk, Thomas J. Mullen, John C. Stroebel