Treating Or Preventing Abnormally High Heart Rate Patents (Class 607/14)
  • Patent number: 11344718
    Abstract: Embodiments of a wearable cardioverter defibrillator (WCD) system include a support structure for wearing by an ambulatory patient, a posture detector and at least one processor. When worn, the support structure maintains electrodes on the patient's body, and using the posture detector and the patient's ECG received via the electrodes, the processor determines the patient's posture, formulates posture-based templates of QRS complexes, and the patient's heart rate. The processor can use these determinations to distinguish between VT and SVT and make no-shock, and shock decisions.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: May 31, 2022
    Assignee: West Affum Holdings Corp.
    Inventor: Jaeho Kim
  • Patent number: 11321082
    Abstract: In some implementations, a system causes electronic devices to initiate different types of interactions with users of the electronic devices, the interactions being initiated based on rules to selectively cause initiation of the interactions for the users. The system receives user action data from electronic devices that are associated with a particular program. The system generates log data that tracks instances in which conditions or triggers of the rules of the particular program are satisfied. Based on the user action data of the multiple users and the log data, the system evaluates effectiveness of the rules in maintaining or improving engagement of the users with the particular program. The system generates rule adjustment information for the particular program, such as information indicating one or more changes to the rules of the particular program or one or more new rules for initiating interactions.
    Type: Grant
    Filed: December 4, 2019
    Date of Patent: May 3, 2022
    Assignee: VigNet Incorporated
    Inventors: Praduman Jain, Dave Klein, Yue Cao, Neeta Jain
  • Patent number: 11318321
    Abstract: Techniques are disclosed for determining, by an extracardiovascular implantable cardioverter defibrillator (ICD) implanted in a patient, whether one or more test therapy signals generated by another medical device implanted in the patient is detected. In response to detecting the one or more test therapy signals, the extracardiovascular ICD provides an indication that the extracardiovascular ICD has detected the one or more test therapy signals. In some examples, the indication is an audible tone provided to a clinician. In some examples, the other medical device is an intracardiac cardiac pacing device, and the one or more test therapy signals comprises a plurality of anti-tachycardia pacing (ATP) pulses.
    Type: Grant
    Filed: May 10, 2019
    Date of Patent: May 3, 2022
    Assignee: Medtronic, Inc.
    Inventor: Robert T. Sawchuk
  • Patent number: 11241579
    Abstract: The present invention provides systems and methods for monitoring cardiac autonomic nervous system activity and modulating parasympathetic control of cardiac function.
    Type: Grant
    Filed: April 21, 2017
    Date of Patent: February 8, 2022
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Jeffrey L. Ardell, Kalyanam Shivkumar
  • Patent number: 11241580
    Abstract: Methods and systems for providing neuromodulation therapy are disclosed. The methods and systems are configured to sense an evoked neural response and use the evoked neural response as feedback for providing neuromodulation therapy. Methods of reducing stimulation artifacts that obscure the sensed evoked neural response are disclosed. The methods of artifact reduction include recording a stimulation artifact in the absence of an evoked neural response, aligning and scaling the stimulation artifact with respect to the obscured signal, and subtracting the aligned and scaled artifact from the obscured signal.
    Type: Grant
    Filed: May 22, 2019
    Date of Patent: February 8, 2022
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Rosana Esteller, Pranjali Borkar, Tianhe Zhang, Kiran K. Gururaj
  • Patent number: 11205955
    Abstract: A current-averaging audio amplifier for vehicles. The current averaging audio amplifier is connectable to a DC power source and a load, and may generally comprise a power input to receive a DC electrical power from the DC power source. The system may further include a voltage converter, such as a boost converter, connected to the power input, such that the voltage converter can receive electrical power from the DC power source. The system also includes a rechargeable battery coupled to the voltage converter, such that the voltage converter charges the rechargeable battery. An audio amplifier can be powered by the rechargeable battery and connectable to supply power to the load, wherein the average power supplied by the rechargeable battery to the audio amplifier in a finite time interval differs from the average power supplied by the DC power source to the voltage converter.
    Type: Grant
    Filed: February 19, 2021
    Date of Patent: December 21, 2021
    Assignee: D'Amore Engineering, LLC
    Inventors: Anthony T. D'Amore, Juan Rodriguez
  • Patent number: 11191969
    Abstract: A method and implantable medical device system for delivering a cardiac pacing therapy that includes suspending delivery of the LV cardiac pacing therapy and sensing far-field cardiac signals via one or more far-field sensing vectors formed between a plurality of electrodes positioned on a single-pass coronary sinus lead. Far-field signal features are determined in response to the sensed far-field cardiac signals, a first offset interval and a second offset interval are determined in response to the determined far-field signal features, and an AV delay of the LV cardiac pacing therapy is adjusted in response to the determined first offset interval and second offset interval. Delivery of the LV cardiac pacing therapy having the adjusted AV delay is subsequently resumed.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: December 7, 2021
    Assignee: Medtronic, Inc.
    Inventors: Aleksandre Sambelashvili, Yong Cho, Jeffrey Gillberg
  • Patent number: 11153156
    Abstract: Systems, methods, and devices, including computer-readable media, for managing operation of devices in complex systems and changing environments. In some implementations, a server system stores data indicating management plans for each of a plurality of different devices, each management plan indicating a device-specific set of program states for programs in a predetermined set of programs. The server system alters the management plans and enforces interdependence of the programs, and the server system generates a customized instruction that alters operation of the device according to the device-specific set of program states assigned in the altered management plan for the device. The server system causes each device to perform one or more operations of the device determined according to the device-specific set of program states assigned in the altered management plan for the device.
    Type: Grant
    Filed: October 31, 2018
    Date of Patent: October 19, 2021
    Assignee: Vignet Incorporated
    Inventors: Praduman Jain, Dave Klein, Neeta Jain, Yue Cao
  • Patent number: 11134881
    Abstract: A system for detecting an atrial tachyarrhythmia episode includes a medical device having sensing circuitry configured to receive a cardiac electrical signal from electrodes coupled to the medical device and a processor configured to detect an atrial tachyarrhythmia episode in response to a time duration of the cardiac electrical signal classified as an atrial tachyarrhythmia being greater than or equal to a first detection threshold. The processor is configured to determine if detection threshold adjustment criteria are met based on at least the detected first atrial tachyarrhythmia episode and adjust the first detection threshold to a second detection threshold different than the first detection threshold in response to the detection threshold adjustment criteria being met.
    Type: Grant
    Filed: August 5, 2019
    Date of Patent: October 5, 2021
    Assignee: Medtronic, Inc.
    Inventors: Jian Cao, Mark L. Brown, Elise J. Higgins, Paul J. DeGroot
  • Patent number: 11129992
    Abstract: A method for managing bradycardia through vagus nerve stimulation is provided. An implantable neurostimulator configured to deliver electrical therapeutic stimulation in both afferent and efferent directions of a patient's cervical vagus nerve is provided. An operating mode is stored, which includes parametrically defining a maintenance dose of the electrical therapeutic stimulation tuned to restore cardiac autonomic balance through continuously-cycling, intermittent and periodic electrical pulses. The maintenance dose is delivered via a pulse generator through a pair of helical electrodes via an electrically coupled nerve stimulation therapy lead independent of cardiac cycle. The patient's physiology is monitored, and upon sensing a condition indicative of bradycardia, the delivery of the maintenance dose is suspended.
    Type: Grant
    Filed: March 15, 2018
    Date of Patent: September 28, 2021
    Assignee: LivaNova USA, Inc.
    Inventors: Imad Libbus, Badri Amurthur, Bruce H. KenKnight
  • Patent number: 11107565
    Abstract: Systems and methods are provided for providing diabetes patient treatment guidance for a patient in which a biochemical data set is obtained. The biochemical data set comprises test results from a single blood draw of the patient including at least three measurements selected from the set: a high-sensitivity c-reactive protein test, an adiponectin level test, an intact proinsulin level test, an insulin level test, a C-peptide test, a HbA1c test, and an eGFR level test. A demographic data set for the patient is also obtained that comprises the patient's gender and diabetes stage. The biochemical data set and demographic data set is run against one or more rules to determine a first patient therapy pattern. Then, a report is prepared based on an identity of the first therapy patient pattern. The report sets priorities among intervention classes for the patient based on the identity of the first patient pattern.
    Type: Grant
    Filed: November 2, 2018
    Date of Patent: August 31, 2021
    Assignee: TIGAR HEALTH, INC.
    Inventors: Robert Maurer, Barry Ginsberg
  • Patent number: 11065452
    Abstract: Methods, devices and program products are provided. The method is under control of one or more processors within an implantable medical device (IMD), obtains cardiac signals that comprise candidate episodes over a period of time and updates an episode count and episode density clock based on the candidate episodes within the period of time. Further, the method determines whether the candidate episodes are indicative of a ventricular storm arrhythmia based on the episode count and episode density clock, identifies a storm origin characteristic of interest preceding onset of the candidate episodes and directs the IMD to perform a storm intervention based on the identifying operation.
    Type: Grant
    Filed: May 3, 2017
    Date of Patent: July 20, 2021
    Assignee: PACESETTER, INC.
    Inventor: Malcolm Dennis
  • Patent number: 11064952
    Abstract: An external medical device is provided. The device can include monitoring circuitry configured to sense physiological information of a patient and a controller with one or more input components. The controller can be configured to: detect one or more patient events based, at least in part, on the physiological information; notify the patient of the detection of the one or more patient events; and receive a patient response to the notification. The patient response can include a response activity identifiable by the input component, which is configured to test a psychomotor ability of the patient, cognitive ability of the patient, strength, balance, stability, and flexibility of the patient, and/or to substantially confirm that a person performing the activity is the patient.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: July 20, 2021
    Assignee: ZOLL Medical Corporation
    Inventor: Shane Volpe
  • Patent number: 11033745
    Abstract: A pacemaker is configured to deliver pacing pulses that lead pacing pulses delivered by another medical device. The pacemaker may detect pacing pulses delivered by the other medical device by a pulse detector circuit of the pacemaker, produce a pulse detect signal in response to each one of the detected pacing pulses, determine a pulse detect interval between two pulse detect signals consecutively produced by the pulse detector circuit, set a pacing escape interval based on the pulse detect interval less a pre-interval, and deliver a pacing pulse upon expiration of the pacing escape interval.
    Type: Grant
    Filed: October 26, 2018
    Date of Patent: June 15, 2021
    Assignee: Medtronic, Inc.
    Inventors: Jonathan D. Edmonson, Troy E. Jackson, Robert W. Stadler
  • Patent number: 11013929
    Abstract: Techniques for facilitating improved power management for an implantable device are provided. In one example, an implantable device includes a telemetry circuit and a power management circuit. The telemetry circuit is configured to facilitate a telemetry session between the implantable device and an external device. The power management circuit is configured to connect a power supply to the telemetry circuit via a first current-limiting device based on a determination that the telemetry circuit satisfies a defined criterion. The power management circuit is also configured to connect the telemetry circuit to a second current-limiting device based on a determination that the telemetry circuit is connected to the first current-limiting device for a defined period of time.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: May 25, 2021
    Assignee: Medtronic, Inc.
    Inventors: James J. St. Martin, George C. Rosar, John D. Wahlstrand
  • Patent number: 10987518
    Abstract: An implantable system including an atrial leadless pacemaker (aLP) and a ventricular leadless pacemaker (vLP), and methods for use therewith, are configured or used to terminate a pacemaker mediated tachycardia (PMT). One of the aLP or the vLP detects a PMT and informs the other one. The aLP initiates a PMT PA interval that is shorter than a PA interval that the aLP would otherwise use for atrial pacing if a PMT was not detected. The vLP initiates a PMT PV interval that is longer than the PMT PA interval. If an intrinsic atrial or ventricular event is detected before PMT PA interval or the PMT PV interval expires, then these intervals will be terminated, otherwise an atrial chamber will be paced if the PMT PA interval expires, and/or a ventricular chamber will be paced if the PMT PV interval expires. This should have the effect of terminating the PMT.
    Type: Grant
    Filed: January 3, 2019
    Date of Patent: April 27, 2021
    Assignee: Pacesetter, Inc.
    Inventors: Chunlan Jiang, Matthew G. Fishler
  • Patent number: 10974050
    Abstract: Multi-modal stimulation therapy may be utilized in which two or more stimulation therapies having different stimulation parameters may be delivered to a single patient. This can preferentially stimulate different nerve fiber types and drive different functional responses in the target organs. The stimulation parameters that may vary between the different stimulation therapies include, for example, pulse frequency, pulse width, pulse amplitude, and duty cycle.
    Type: Grant
    Filed: June 14, 2018
    Date of Patent: April 13, 2021
    Assignees: LivaNova USA, Inc., East Tennessee State University
    Inventors: Imad Libbus, Badri Amurthur, Bruce H. KenKnight, Jeffrey L. Ardell, Gregory A. Ordway
  • Patent number: 10967187
    Abstract: Methods and devices are provided for sensing cardiac events from electrodes located proximate to one or more atrial or ventricular sites, over a period of time that includes a detection period followed by an observation period. One or more processors declare a ventricular arrhythmia episode and a corresponding VT/VF therapy based on the cardiac events during at least the detection period. The processors delay delivery of the VT/VF therapy for a self-termination period within the observation period. The self-termination period represents a time period during which the ventricular arrhythmia episode may self-terminate. The processors analyze a stability characteristic of interest (COI) from the cardiac events sensed over at least a portion the observation period and determine an end point for the self-termination period, within the observation period, based on the stability COI. The VT/VF therapy is delivered when the VT/VF arrhythmia episode continues past the end point.
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: April 6, 2021
    Assignee: PACESETTER, INC.
    Inventor: Xing Pei
  • Patent number: 10940325
    Abstract: An implantable cardioverter defibrillator (ICD) receives a cardiac electrical signal by a sensing circuit while operating in a sensing without pacing mode and detects asystole based on the cardiac electrical signal. The ICD determines, in response to detecting the asystole, if asystole backup pacing is enabled, and automatically switches to a temporary pacing mode in response to the asystole backup pacing being enabled. Other examples of detecting asystole and providing a response to detecting asystole by the ICD are described herein.
    Type: Grant
    Filed: November 19, 2018
    Date of Patent: March 9, 2021
    Assignee: Medtronic, Inc.
    Inventors: Yanina Grinberg, Robert T. Sawchuk, Amy E. Thompson-Nauman, Douglas A. Peterson, Paul R. Solheim, Joel R. Lauer
  • Patent number: 10888701
    Abstract: An implantable cardiac stimulation device provides electrical stimulation therapy to stabilize the ventricular rate of a heart during episodes of atrial fibrillation. The stimulation therapy may be a plurality of sub-threshold stimulation pulses delivered to capture AV node vagal innervations following the detection of atrial fibrillation.
    Type: Grant
    Filed: December 2, 2014
    Date of Patent: January 12, 2021
    Assignee: PACESETTER, INC.
    Inventors: Euljoon Park, You-Ho Kim, Taraneh Ghaffari Farazi
  • Patent number: 10881317
    Abstract: An apparatus comprises an arrhythmia detection circuit configured to: detect atrial arrhythmia in a first portion of a sensed cardiac signal using a first arrhythmia detection criteria, wherein the sensed cardiac signal is representative of cardiac activity of a subject; and upon detection of the atrial arrhythmia, analyze a second portion of the cardiac signal that is prior in time to the first portion using a second different arrhythmia detection criteria to detect the presence or absence of the atrial arrhythmia in the second portion of the cardiac signal.
    Type: Grant
    Filed: February 21, 2018
    Date of Patent: January 5, 2021
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: David L. Perschbacher, Sunipa Saha
  • Patent number: 10863916
    Abstract: Methods and systems for cardiac mapping are disclosed. An example system includes a catheter shaft with one or more electrodes coupled to a distal end of the catheter shaft. Electrodes sense electrical signals at anatomical locations within a heart. A processor coupled to the catheter shaft acquires electrogram signals of the heart using the electrodes. Each electrogram signal relates to three-dimensional positional data corresponding to the anatomical locations. The processor also store the electrogram signals of the heart corresponding to electrical activities sensed at corresponding anatomical locations, calculate an activation recovery interval associated with each of the corresponding anatomical locations, determine spatial gradient data of the activation recovery interval based on a distance between at least two neighboring anatomical locations.
    Type: Grant
    Filed: June 20, 2018
    Date of Patent: December 15, 2020
    Assignee: Boston Scientific Scimed Inc
    Inventors: Sarah R. Gutbrod, Jacob I. Laughner, Allan C. Shuros, Matthew S. Sulkin
  • Patent number: 10864378
    Abstract: Regulating cardiac activity may include pacing the patient's heart at a starting pacing rate and instigating an intrinsic heart beat search algorithm that includes pacing at a reduced rate for a period of time and capturing electrical signals representative of cardiac electrical activity while pacing at the reduced rate in order to determine a presence or absence of intrinsic heart beats. If intrinsic heart beats are not detected, the heart may be paced at a further reduced rate for a period of time. If intrinsic beats are detected, the heart may be paced again at the starting pacing rate. This may continue until intrinsic heart beats are detected or until a lower search rate limit is reached. Diagnostic data may be collected at each stage and transmitted to a display device for analysis by a physician or the like.
    Type: Grant
    Filed: March 8, 2018
    Date of Patent: December 15, 2020
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: David A. Casavant, Jeffrey E. Stahmann, Carolina Villarreal, James O. Gilkerson, Deepa Mahajan, Paul Richard Holleran
  • Patent number: 10835753
    Abstract: Implantable medical devices (IMD), such as but not limited to leadless cardiac pacemakers (LCP), subcutaneous implantable cardioverter defibrillators (SICD), transvenous implantable cardioverter defibrillators, neuro-stimulators (NS), implantable monitors (IM), may be configured to communicate with each other. In some cases, a first IMD may transmit instructions to a second IMD. In order to improve the chances of a successfully received transmission, the first IMD may transmit the instructions several times during a particular time frame, such as during a single heartbeat. If the second IMD receives the message more than once, the second IMD recognizes that the messages were redundant and acts accordingly.
    Type: Grant
    Filed: January 25, 2018
    Date of Patent: November 17, 2020
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Brendan Early Koop, Paul Huelskamp, Lance Eric Juffer, Kyle Leonard Nelson, Keith R. Maile, Jacob M. Ludwig
  • Patent number: 10835134
    Abstract: Methods of restoring homeostatic capacity of a subject are provided. Aspects of the invention further include compositions, systems and devices for practicing the methods. The methods and compositions described herein find use in a variety of applications. Aspects of certain embodiments of the methods include modulating a subject's autonomic nervous system in a manner sufficient to restore the homeostatic capacity of the subject. Aspects of other embodiments of the invention include administering to the subject an amount of an apoptosis modulator effective to at least partially restore homeostatic function of the neuroendocrine system of the subject.
    Type: Grant
    Filed: June 11, 2015
    Date of Patent: November 17, 2020
    Assignee: Palo Alto Investors
    Inventors: Anthony Joonkyoo Yun, Conrad Minkyoo Yun
  • Patent number: 10780288
    Abstract: Disclosed herein are implantable medical devices and systems, and methods for used therewith, that selectively perform atrial overdrive pacing while an intrinsic atrial rate of a patient is within a specified range. Such a method can involve measuring intervals between a plurality of intrinsic atrial depolarizations that occur during a specified period, and classifying intrinsic atrial activity as stable or unstable based on the measured intervals. In response to classifying the intrinsic atrial activity as stable, atrial overdrive pacing is performed. In response to classifying the intrinsic atrial rate as unstable, atrial overdrive pacing is not performed (i.e., is abstained from being performed). Over time, effectiveness of performing atrial overdrive pacing using various different atrial interval shorting deltas are recorded in a log and updated, and the log is used to determine a preferred rate at which to perform atrial overdrive pacing for various different measured intervals.
    Type: Grant
    Filed: January 3, 2018
    Date of Patent: September 22, 2020
    Assignee: Pacesetter, Inc.
    Inventor: Xing Pei
  • Patent number: 10765876
    Abstract: A medical device is configured to deliver anti-tachycardia pacing (ATP) in the presence of T-wave alternans. The device is configured to detect a ventricular tachyarrhythmia from a cardiac electrical signal received by the medical device. In response to the detected ventricular tachyarrhythmia, the device delivers a plurality of ATP pulses at alternating time intervals. The alternating time intervals comprise at least a first ATP time interval separating a first pair of the ATP pulses and a second ATP time interval different than the first ATP time interval. The second ATP time interval consecutively follows the first ATP time interval and separates a second pair of the ATP pulses.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: September 8, 2020
    Assignee: Medtronic, Inc.
    Inventor: Vladimir P. Nikolski
  • Patent number: 10769240
    Abstract: The present invention relates to a medical data processing method of determining an outcome quality of a medical procedure, the method comprising the following steps which are constituted to be executed by a computer: a) acquiring (S1) pre-completion medical image data describing an anatomical structure of a patient's body in a state before the medical procedure has been completed on the anatomical structure, the anatomical structure being subject to the medical procedure; b) acquiring (S1) pre-completion non-image medical data describing a state and medical history of the patient before the medical procedure has been completed on the anatomical structure; c) acquiring (S2) medical procedure planning data describing a plan for execution of the medical procedure to be carried out on the anatomical structure; d) determining (S2), based on the pre-completion medical image data and the medical procedure planning data, procedure application describing an application of the medical procedure planning data to the pr
    Type: Grant
    Filed: April 30, 2015
    Date of Patent: September 8, 2020
    Assignee: BRAINLAB AG
    Inventors: Stefan Vilsmeier, Bálint Varkuti
  • Patent number: 10765875
    Abstract: An implantable cardioverter defibrillator (ICD) and methods of detection and treatment of dangerous and life-threatening heart rhythms by delivering real-time, customized low-energy pacing pulses to specific anatomy in the heart. The ICD includes a power source, a controller, powered by the power source, including an electronic processor, a memory, and a signal generator. The ICD also includes a lead coupled to the controller and an electrode that is in electrical communication with a His-bundle of a patient's heart. The ICD detects a ventricular arrhythmia of the patient's heart using the controller, and is configured to provide a pulsed defibrillation signal to the electrode to terminate the ventricular arrhythmia.
    Type: Grant
    Filed: May 4, 2018
    Date of Patent: September 8, 2020
    Assignee: UNIVERSITY OF UTAH RESEARCH FOUNDATION
    Inventors: Derek J. Dosdall, Ravi Ranjan
  • Patent number: 10750967
    Abstract: The present invention concerns a method for identifying areas of the heart of a patient able to be involved in the perpetuation of atrial fibrillation. This method takes into account the reference cycle of the arrhythmia and has two variants: a local variant in which the areas of the heart are each analysed separately and a regional variant in which several areas of the heart are analysed together. The invention also concerns device for implementing said method a program and the medium thereof.
    Type: Grant
    Filed: December 23, 2015
    Date of Patent: August 25, 2020
    Assignee: SUBSTRATE HD
    Inventors: Clement Bars, Julien Seitz
  • Patent number: 10709347
    Abstract: A system is provided for displaying heart graphic information relating to sources and source locations of a heart disorder to assist in evaluation of the heart disorder. A heart graphic display system provides an intra-cardiogram similarity (“ICS”) graphic and a source location (“SL”) graphic. The ICS graphic includes a grid with the x-axis and y-axis representing patient cycles of a patient cardiogram with the intersections of the patient cycle identifiers indicating similarity between the patient cycles. The SL graphic provides a representation of a heart with source locations indicated. The source locations are identified based on similarity of a patient cycle to library cycles of a library cardiogram of a library of cardiograms.
    Type: Grant
    Filed: December 11, 2019
    Date of Patent: July 14, 2020
    Assignee: VEKTOR MEDICAL, INC.
    Inventor: Christopher Villongco
  • Patent number: 10675472
    Abstract: Systems and methods for evaluating electrostimulation of a heart are disclosed. A system can comprise an electrostimulation circuit that can deliver multi-site electrostimulation, including pacing at two or more sites of the heart during the same cardiac cycle. The system can comprise a heart sound sensor circuit configured to sense a heart sound (HS) signal during multi-site stimulation. The heart sound sensor circuit can also sense HS signals in response to uni-site stimulation at a specified site capturing at least a portion of the heart. The system can comprise a pacing analyzer circuit that uses the HS signals during the multi-site stimulation and during the uni-site stimulation to determine a capture status indication that indicates whether the multi-site stimulation captures the two or more sites of the heart, and can be one of a full capture indication, a partial capture indication, or a loss of capture indication.
    Type: Grant
    Filed: October 15, 2015
    Date of Patent: June 9, 2020
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Qi An, Pramodsingh Hirasingh Thakur, Yinghong Yu
  • Patent number: 10667737
    Abstract: Embodiments include methods, systems and computer program products for monitoring a person for a traumatic brain injury. Aspects include monitoring a gait of the user with one or more accelerometers embedded in the uniform and analyzing, by a processor, one or more characteristics of the gait of the user. Aspects also include determining whether the one or more characteristics of the gait indicate that the user may have suffered the traumatic brain injury and creating an alert that the user of the helmet may have suffered the traumatic brain injury.
    Type: Grant
    Filed: March 23, 2015
    Date of Patent: June 2, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: James R. Kozloski, Mark C. H. Lamorey, Clifford A. Pickover, John J. Rice
  • Patent number: 10661085
    Abstract: Methods and devices are provided for managing anti-tachycardia pacing therapy delivered by an implantable medical device (IMD). The methods and devices detect events from cardiac signals sensed at electrodes of the IMD. The cardiac signals represent a ventricular tachycardia (VT) episode that includes at least a select number of VT events having a corresponding VT cycle length. The methods and devices analyze the VT cycle length to define an anti-tachycardia pacing (ATP) therapy that includes a first coupling interval and deliver a first ATP pulse that is spaced the first coupling interval after a reference refractory VT event sensed at the electrodes. The methods and devices deliver a second ATP pulse following the first ATP pulse by a non-stimulation segment that is at least one and three-quarters (1.75) times a projected VT cycle length.
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: May 26, 2020
    Assignee: Pacesetter, Inc.
    Inventor: Gene A. Bornzin
  • Patent number: 10661080
    Abstract: A cardiac lead system is provided. The lead is placed epicardially through the transverse pericardial sinus with integrated curvatures to prevent the lead from slipping out of the transverse pericardial sinus. Interaction with multiple chambers of the heart is facilitated in a single lead, without anchors that embed into the heart wall. Multiple electrodes can be grouped over each targeted heart area to ensure adequate electrical contact.
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: May 26, 2020
    Assignee: Kobara Medical Inc.
    Inventors: Venkatakrishna N. Tholakanahalli, Andy C. Pfahnl, John J. Allen
  • Patent number: 10653353
    Abstract: Embodiments include methods, systems and computer program products for monitoring a person for a traumatic brain injury. Aspects include monitoring a gait of the user with one or more accelerometers embedded in the uniform and analyzing, by a processor, one or more characteristics of the gait of the user. Aspects also include determining whether the one or more characteristics of the gait indicate that the user may have suffered the traumatic brain injury and creating an alert that the user of the helmet may have suffered the traumatic brain injury.
    Type: Grant
    Filed: June 19, 2015
    Date of Patent: May 19, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: James R. Kozloski, Mark C. H. Lamorey, Clifford A. Pickover, John J. Rice
  • Patent number: 10595736
    Abstract: A system is provided for displaying heart graphic information relating to sources and source locations of a heart disorder to assist in evaluation of the heart disorder. A heart graphic display system provides an intra-cardiogram similarity (“ICS”) graphic and a source location (“SL”) graphic. The ICS graphic includes a grid with the x-axis and y-axis representing patient cycles of a patient cardiogram with the intersections of the patient cycle identifiers indicating similarity between the patient cycles. The SL graphic provides a representation of a heart with source locations indicated. The source locations are identified based on similarity of a patient cycle to library cycles of a library cardiogram of a library of cardiograms.
    Type: Grant
    Filed: June 10, 2019
    Date of Patent: March 24, 2020
    Assignee: VEKTOR MEDICAL, INC.
    Inventor: Christopher Villongco
  • Patent number: 10555684
    Abstract: An implantable cardioverter defibrillator (ICD) performs a method that includes determining whether first criteria for detecting a ventricular tachyarrhythmia are met by a cardiac electrical signal. The ICD determines features from cardiac signal segment of a group of cardiac signal segments and determines whether a first portion of the features satisfy monomorphic waveform criteria and determines whether a second portion of the features satisfy supraventricular beat criteria. The ICD determines whether second criteria for detecting the ventricular tachyarrhythmia are met and withholds detecting of the ventricular tachyarrhythmia in response to the monomorphic waveform criteria and the supraventricular beat criteria being met.
    Type: Grant
    Filed: April 25, 2017
    Date of Patent: February 11, 2020
    Assignee: Medtronic, Inc.
    Inventors: Xusheng Zhang, Jian Cao, Yuanzhen Liu
  • Patent number: 10553130
    Abstract: A system for assessing performance of a procedure comprises a tissue model or a tool comprising assessment indicators applied thereto, one or more image-capturing devices for capturing one or more assessment images of the assessment indicators while or after a user performs the medical procedure, and a processor configured to analyze the assessment indicators in the one or more assessment images and provide feedback to the user. A system can also comprise a tissue model, one or more image-capturing devices each configured to capture one or more images of the tissue model, and a processor configured to analyze the one or more images from the one or more image-capturing devices to determine a deformation of the tissue model and determine a force exerted on the tissue model based on the determined deformation of the tissue model.
    Type: Grant
    Filed: February 20, 2013
    Date of Patent: February 4, 2020
    Assignee: Regents of the University of Minnesota
    Inventors: Lauren H. Poniatowski, Robert M. Sweet, Troy E. Reihsen, Vincent Rotty, David Hananel, Jack B. Stubbs, Astrini Sie, Michael Winek, Timothy M. Kowalewski
  • Patent number: 10493290
    Abstract: A medical system for providing a defibrillation therapy to a patient includes a cardiac monitoring device (CMD) configured to sense and record physiological data indicative of the patient's cardiac function. The CMD includes a communication component. The system also includes an external therapy device configured to deliver defibrillation therapy, and configured to be positioned external to and supported by the patient. The external therapy device includes an external therapy device communication component. The CMD communication component and the external therapy device communication component are configured to operatively couple the CMD and the external therapy device to one another, so as to work as a system to detect and treat fibrillation.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: December 3, 2019
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Jacob M. Ludwig, Ron A. Balczewski, Todd W. Grotbeck, Keith R. Maile, Moira B. Sweeney
  • Patent number: 10463305
    Abstract: Methods, systems and devices for providing cardiac resynchronization therapy (CRT) to a patient using a leadless cardiac pacemaker (LCP) and an extracardiac device (ED). The system is configured to identify atrial events to use as timing markers for the LCP to deliver CRT, and further to determine whether the timing markers are incorrectly sensed and to make adjustment or call for re-initialization as needed.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: November 5, 2019
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Qi An, Pramodsingh Hirasingh Thakur, Stephen J. Hahn, Yinghong Yu, Krzysztof Z. Siejko, Viktoria A. Averina, Brendan Early Koop, Keith R. Maile, Bin Mi
  • Patent number: 10434315
    Abstract: The present disclosure provides systems and methods for automatically determining pace and sense configurations for an implantable cardiac device. A method of operating an implantable cardiac device includes automatically determining, during a detection phase, a pace and sense configuration for the implantable cardiac device based on a plurality of first impedance measurements. The method further includes confirming, during a confirmation phase, the pace and sense configuration based on a plurality of second impedance measurements, and operating the implantable cardiac device in accordance with the pace and sense configuration.
    Type: Grant
    Filed: October 17, 2016
    Date of Patent: October 8, 2019
    Assignee: Pacesetter, Inc.
    Inventors: Xing Pei, James Chien
  • Patent number: 10398668
    Abstract: Compositions and methods for treating various cardiovascular disorders include targeted delivery of glutamate for impairing a targeted portion of the autonomic nervous system (ANS). Targeted delivery may be via direct injection into the targeted portion of the ANS or via vascular injection of magnetically-targetable nanoparticles.
    Type: Grant
    Filed: August 25, 2017
    Date of Patent: September 3, 2019
    Assignee: The Board of Regents of the University of Oklahoma
    Inventor: Sunny Po
  • Patent number: 10391314
    Abstract: This disclosure describes, among other embodiments, systems and related methods for selecting electrode combinations to be used during nerve pacing procedures. A first set of electrode combinations of a nerve pacing system, such as a phrenic nerve pacing system for diaphragm activation, may be mapped (or tested) to determine the location of the electrode combinations relative to a target nerve. Once the general location of the target nerve is known, a more localized second set of electrode combinations may be tested to determine the most suitable electrode combinations for nerve stimulation. At various stages of the mapping process, electrode combinations that are non-optimal may be discarded as candidates for use in a nerve pacing procedure. The systems and methods described herein may allow for the selection of electrode combinations that are most suitable for stimulation of the left and right phrenic nerves during diaphragm pacing.
    Type: Grant
    Filed: February 8, 2017
    Date of Patent: August 27, 2019
    Assignee: Lungpacer Medical Inc.
    Inventors: Joaquin Andres Hoffer, Gautam Sadarangani, Marc-Andre Nolette, Viral Thakkar, Bao Dung Tran
  • Patent number: 10362946
    Abstract: A method and apparatus for monitoring a cardiovascular pressure signal in a medical device that includes determining whether the sensed pressure signal is greater than a first pressure threshold, determining a first metric of the pressure signal in response to the sensed pressure signal being greater than the first pressure threshold, determining whether the sensed pressure signal is greater than a second pressure threshold not equal to the first pressure threshold, determining a second metric of the pressure signal in response to the sensed pressure signal being greater than the first pressure threshold, and determining at least one of a systolic pressure or a diastolic pressure, wherein the at least one of a systolic pressure or a diastolic pressure is determined based on the first metric in response to the pressure signal not being greater than the second threshold, and based on the second metric in response to the pressure signal being greater than the second threshold.
    Type: Grant
    Filed: April 18, 2016
    Date of Patent: July 30, 2019
    Assignee: Medtronic, Inc.
    Inventor: Saul E. Greenhut
  • Patent number: 10350415
    Abstract: Apparatus, systems and methods are provided for prevention and/or remediation of cardiac arrhythmias, e.g. optimizing anti-tachycardia pacing (ATP) algorithms. More particularly, implantable devices are provided that measure and treat cardiac arrhythmias. By monitoring the ATP attempt from additional electrodes, far-field morphology analyzes, and/or measuring the return interval from a failed ATP attempt; the devices may estimate when entrainment has occurred, the amount of delay within the reentrant tachycardia, and/or tachycardia termination/acceleration. These variables and occurrences can be used to optimize the first and/or subsequent ATP attempts. Furthermore, other exemplary embodiments describe methods to integrate electrical restitution properties into the design of ATP pacing algorithms to facilitate tachycardia termination.
    Type: Grant
    Filed: October 23, 2017
    Date of Patent: July 16, 2019
    Assignee: CARDIOFLOW TECHNOLOGIES, LLC
    Inventor: Daniel Walter Kaiser
  • Patent number: 10311533
    Abstract: This document discusses, among other things, systems and methods to enable physician labels on a remote server and use labels to verify and improve algorithm results. A method comprises using patient data in an automated analysis to obtain a result; receiving a message from the user, wherein the message is related to the result; and using at least a portion of the message to automatically modify the analysis.
    Type: Grant
    Filed: December 27, 2006
    Date of Patent: June 4, 2019
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Haresh G. Sachanandani, Shelley Cazares, Jon Peterson, Robert J. Sweeney, Kevin J. Stalsberg, Krzysztof Z. Siejko, Gerrard M. Carlson
  • Patent number: 10299691
    Abstract: The present disclosure relates to a wearable monitor device and methods and systems for using such a device. In certain embodiments, the wearable monitor records cardiac data from a mammal and extracts particular features of interest. These features are then transmitted and used to provide health-related information about the mammal.
    Type: Grant
    Filed: October 15, 2018
    Date of Patent: May 28, 2019
    Assignee: iRhythm Technologies, Inc.
    Inventors: Nicholas Hughes, Mark Day, Yuriko Tamura
  • Patent number: 10252067
    Abstract: A method and medical device for adjusting a blanking period that includes sensing cardiac signals from a plurality of electrodes, the plurality of electrodes forming a plurality of sensing vectors, determining whether to adjust a blanking period during a first operating state, advancing from the first operating state to a second operating state in response to the sensed cardiac signals, determining, while in the second operating state, whether the blanking period was adjusted while in the first operating state, and adjusting the blanking period while in the second operating state in response to the blanking period being adjusted while in the first operating state.
    Type: Grant
    Filed: September 16, 2014
    Date of Patent: April 9, 2019
    Assignee: Medtronic, Inc.
    Inventors: Saul E Greenhut, Robert W Stadler, Xusheng Zhang
  • Patent number: 10179243
    Abstract: The present disclosure provides systems and methods for providing temporary induced dyssynchrony (TID) therapy to patients with atrial tachycardia. An implantable cardiac device includes a pulse generator coupled to a plurality of electrodes, and a controller communicatively coupled to the pulse generator and configured to cause the pulse generator to apply TID therapy to a patient's heart via the plurality of electrodes, determine that the patient's heart is experiencing atrial tachycardia, and adjust at least one parameter of the TID therapy based on the determination.
    Type: Grant
    Filed: June 20, 2017
    Date of Patent: January 15, 2019
    Assignee: Pacesetter, Inc.
    Inventors: Yelena Nabutovsky, Jennifer Rhude, Edward Karst, Taraneh G. Farazi