Stimulating Respiration Function Patents (Class 607/42)
  • Patent number: 11752342
    Abstract: Systems and methods for a neuromodulation system are provided. In one example, the neuromodulation system includes a stimulation element, a stimulation controller, and a stimulation feedback acquisition system that includes a reference trigger input module configured such that the temporal relationship between a provided stimulation via the stimulation element and the stimulation controller, and a stimulation response received by the stimulation feedback acquisition system can be characterized.
    Type: Grant
    Filed: February 11, 2020
    Date of Patent: September 12, 2023
    Assignee: Onward Medical N.V.
    Inventors: Jurriaan Bakker, Hans Pflug, Robin Brouns, Vincent Delattre
  • Patent number: 11752327
    Abstract: The present disclosure is in the field of sleep and respiratory care. In particular, the present disclosure provides means and methods for decreasing the respiratory effort of a sleeping subject. The present disclosure also provides means and methods for treating the snoring of a sleeping subject.
    Type: Grant
    Filed: August 22, 2022
    Date of Patent: September 12, 2023
    Assignee: Sunrise SA
    Inventor: Pierre Martinot
  • Patent number: 11744968
    Abstract: A positive airway pressure apparatus is automatically adjusting. Pressure increases in response to apnea events when the apparatus is in one or more responsive states. Pressure does not increase in response to apnea events when the apparatus is in a non-responsive state. The apparatus switches between responsive and nonresponsive states depending upon any of a number of different criteria that help differentiate between open airway apnea events and closed airway apnea events.
    Type: Grant
    Filed: July 1, 2021
    Date of Patent: September 5, 2023
    Assignee: Fisher & Paykel Healthcare Limited
    Inventors: David Robin Whiting, Andrew Gordon Gerred, Fiona Elizabeth Cresswell
  • Patent number: 11707618
    Abstract: A trans mucosal neuromuscular electrical stimulation device including a mouthpiece, electrodes associated with the mouthpiece. The device and/or mouthpiece incorporates electrical circuitry operatively connecting to the electrodes to a power source and is configured to provide, in use, electrical stimulation to one or more palate and/or tongue muscles via the electrodes through the oral mucosa. The treatment regime, including the location of stimulation and the parameters used, is designed to increase resting muscle tone and/or muscle tone during sleep.
    Type: Grant
    Filed: January 30, 2020
    Date of Patent: July 25, 2023
    Assignee: Signifier Medical Technologies Limited
    Inventor: Anshul Sama
  • Patent number: 11684271
    Abstract: A wearable device for sensing vital signs includes a housing defining an interior cavity. An optical unit is positioned inside the interior cavity. The optical unit includes one or more light emitters that emit optical signals, at least one polarizer orientated to block optical signals having a predetermined polarity direction, and one or more light sensors that receive optical signals that pass through the at least one polarizer. An acoustic unit is positioned inside the interior cavity, and has a microphone to receive acoustic signals that enter into the interior cavity. The acoustic signals are used to non-invasively estimate blood pressure.
    Type: Grant
    Filed: February 23, 2021
    Date of Patent: June 27, 2023
    Assignee: Welch Allyn, Inc.
    Inventors: Lei Guo, Thaddeus J. Wawro
  • Patent number: 11678838
    Abstract: Approaches to determining a sleep fitness score for a user are provided, such as may be based upon monitored breathing disturbances of a user. The system receives user state data generated over a time period by a combination of sensors provided via a wearable tracker associated with the user. A system can use this information to calculate a sleep fitness score, breathing disturbance score, or other such value. The system can classify every minute within the time period as either normal or atypical, for example, and may provide such information for presentation to the user.
    Type: Grant
    Filed: December 29, 2020
    Date of Patent: June 20, 2023
    Assignee: FITBIT, INC.
    Inventors: Suraj Gowda, Conor Joseph Heneghan, Shelten Gee Jao Yuen, Anjian Wu, Daniel Joel Freschl, Peter W. Richards, Chris H. Sarantos, Jonathan Wonwook Kim
  • Patent number: 11666271
    Abstract: A method of detecting sleep apnea includes generating a cardiac signal indicating activity of a heart of a patient. The method further includes determining a short-term average heart rate and a long-term average heart rate. The method further includes determining a start and end of a heart rate cycle based on the short-term average heart rate and the long-term average heart rate. The method further includes determining physiological parameter values occurring during the heart rate cycle. The method further includes determining whether patient has or has not experienced a sleep apnea event based on whether one or more conditions are satisfied by one or more parameter values for one or more heart rate cycles and responsively generating an indication that patient has or has not experienced a sleep apnea event.
    Type: Grant
    Filed: December 9, 2020
    Date of Patent: June 6, 2023
    Assignee: Medtronic, Inc.
    Inventors: Yong K. Cho, Eduardo N. Warman, Gautham Rajagopal
  • Patent number: 11666757
    Abstract: Hemodynamic performance of a heart may be improved by determining, from a location associated with a diaphragm, an occurrence of a valid cardiac event; and then delivering asymptomatic electrical stimulation therapy directly to the diaphragm at termination of a diaphragmatic stimulation delay period that is timed relative to the occurrence of the valid cardiac event. The diaphragmatic stimulation delay period may be automatically established by sensing a plurality of cardiac events directly from a diaphragm; and for each of the sensed cardia events, determining whether the sensed cardiac event represents a valid cardiac event or a non-valid cardiac event. The diaphragmatic stimulation delay period is then calculated based on a plurality of sensed cardia events that are determined to be valid.
    Type: Grant
    Filed: September 16, 2021
    Date of Patent: June 6, 2023
    Assignee: VisCardia, Inc.
    Inventors: Peter T. Bauer, Edward Chinchoy, Jay Snell
  • Patent number: 11666477
    Abstract: Lingual repositioning devices have a mandibular piece having a teeth covering and a first housing proximate either a left molar portion or a right molar portion of the teeth covering. The first housing includes a stimulator protrusion extending therefrom at a position to extend toward a tongue of a user and to contact a lingual muscle of the tongue or includes a sensor portion extending therefrom at a position to extend toward a tongue of a user and to be positioned under the tongue. The stimulator protrusion encloses a stimulator and the first housing encloses a power source electrically connected to a circuit board and electrically connected to an electrode of a stimulator. A second housing at the other of the left or right molar portions has a stimulator protrusion or a sensor portion. The first and second housings may be removably attachable to the teeth covering.
    Type: Grant
    Filed: February 7, 2020
    Date of Patent: June 6, 2023
    Assignee: SLEEP SOLUTIONS OF TEXAS, LLC
    Inventor: Raghavendra Vitthalrao Ghuge
  • Patent number: 11666478
    Abstract: Maxillary devices and Mandibular devices each have a first housing connectable to a tooth of a user or connectable or integral with a teeth covering, wherein the housing encloses an on-board circuit board and a power source. The first housing of the maxillary devices has a tooth connecting portion, a palate housing portion and/or a buccal housing portion. The first housing of the mandibular devices has a tooth connecting portion and a sublingual portion. Each of the palate housing portion and the buccal housing portion enclose a stimulator having an electrode electrically connected to the on-board circuit board and the power source, and can enclose a sensor and/or a medicament dispenser. The sublingual portion encloses a sensor and a medicament dispenser each of which are in electrical communication with the microprocessor of the on-board circuit board.
    Type: Grant
    Filed: March 18, 2020
    Date of Patent: June 6, 2023
    Assignee: SLEEP SOLUTIONS OF TEXAS, LLC
    Inventor: Raghavendra Vitthalrao Ghuge
  • Patent number: 11666270
    Abstract: A sleep apnea and obesity comorbidity treatment system includes a transceiver and a control module. The control module is configured to: receive sensor data, where the sensor data is indicative of a glucose level of a patient and a ketones level of the patient, transmit the sensor data to a remote feedback device, receive feedback information from the remote feedback device based on the sensor data, and where the feedback information provides indications to the patient to maintain or alter a behavior of the patient based on the glucose level and the ketones level, and based on the feedback information, performing an operation to maintain or alter at least one of a diet or physical activity of the patient.
    Type: Grant
    Filed: April 30, 2020
    Date of Patent: June 6, 2023
    Assignee: Medtronic Xomed, Inc.
    Inventors: Osvaldo Andres Barrera, Avram Scheiner, Randal C. Schulhauser, Joe Sartor, Patrick W. Kinzie, Jason C. Lee
  • Patent number: 11654283
    Abstract: An implantable neurostimulator system including an electrical lead having formed thereon a pair of bipolar electrodes, the electrical lead is configured for placement of the pair of bipolar electrodes proximate protrusor muscles of a patient. The system also includes a pulse generator electrically connected to the electrical lead and configured to deliver electrical energy to the pair of bipolar electrodes, the pulse generator having mounted therein a sensor configured to detect one or more physiological parameters, a memory, a control circuit, and a telemetry circuit.
    Type: Grant
    Filed: January 24, 2020
    Date of Patent: May 23, 2023
    Assignee: MEDTRONIC XOMED, INC.
    Inventors: Wondimeneh Tesfayesus, Randal Schulhauser, Avram Scheiner
  • Patent number: 11642175
    Abstract: In an example, a system is disclosed for registering an anatomical model to an anatomical structure of a patient. The system includes an anatomical measurement wire (“AMW”) configured to be navigated within the anatomical structure, the AMW comprising at least one sensor. A tracking system is configured to provide tracking data representing multiple positions of the sensor in a spatial coordinate system. A computing device is configured to generate a tracking point cloud based on the tracking data. The computing device is configured to register the predetermined anatomical model with the anatomical structure of the patient by matching the tracking point cloud with the model point cloud with respect to the predetermined anatomical model based on a quality metric.
    Type: Grant
    Filed: November 14, 2019
    Date of Patent: May 9, 2023
    Assignee: CENTERLINE BIOMEDICAL, INC.
    Inventors: Karl J. West, Vikash R. Goel
  • Patent number: 11633599
    Abstract: A system for electrical ventilation stimulation of a patient including an implantable nerve stimulator including a stimulation circuit and a pulse generator that produces biphasic charge-balanced pulses to stimulate a phrenic nerve, an external digital programming device having near field communication transmission and a digital interface, and wherein the external digital programming device is used to control settings of the implantable nerve stimulator.
    Type: Grant
    Filed: October 10, 2018
    Date of Patent: April 25, 2023
    Assignees: NORTHWESTERN UNIVERSITY, ANN AND ROBERT H. LURIE CHILDREN'S HOSPITAL OF CHICAGO
    Inventors: Alexey Revinski, Kirby D. Gong, Emma S. Cripe, Michelle Wang, Matthew R. Glucksberg, Debra E. Weese-Mayer, Anthony Chin
  • Patent number: 11623086
    Abstract: Disclosed is a system for stimulation of a subject. The stimulation may be to provide therapy to treat the subject. Stimulation may be of selected muscle groups and/or portions.
    Type: Grant
    Filed: January 24, 2020
    Date of Patent: April 11, 2023
    Assignee: MEDTRONIC XOMED, INC.
    Inventors: Avram Scheiner, James Britton Hissong, Rebecca J. Haag, Randal C. Schulhauser
  • Patent number: 11612708
    Abstract: Devices, systems and methods are provided for controlling the operation of a breathing assistance device for a user. The controller may include an input for receiving sensor data to measure at least one airflow parameter of the user's airflow; a memory unit that stores at least one machine learning model and at least one classifier or predictor; and a processor that is configured to perform measurements and to generate a control signal for adjusting the operation of the breathing assistance device for a current monitoring time period by: obtaining measured air pressure and/or airflow data and measured FOT data during a current monitoring time period; performing feature extraction on the measured data to obtain feature values that are used by the machine learning model employed by the at least one classifier or predictor to determine a property of the user; and adjusting the control signal based on the determined property.
    Type: Grant
    Filed: April 22, 2022
    Date of Patent: March 28, 2023
    Assignee: NovaResp Technologies Inc.
    Inventors: Hamed Hanafialamdari, Scott Lowe, Stephen Driscoll, Luke Hacquebard, David Cecil Roach, Klaus Michael Schmidt
  • Patent number: 11607548
    Abstract: An apparatus, system and technique selectively eliminates the noxious signal components in a neuronal signal by creating an interfering electrical signal that is tuned to a given frequency corresponding to the oscillatory pattern of the noxious signal, resulting in a modified neuronal signal that substantially reproduces a normal, no-pain neuronal signal. The disclosed system and technique of pain relief is based on the hypothesis that the temporal profile of pain signals encodes particular components that oscillate at unique and quantifiable frequencies, which are responsible for pain processing in the brain.
    Type: Grant
    Filed: August 8, 2018
    Date of Patent: March 21, 2023
    Assignee: Lumbrera LLC
    Inventors: Ricardo Vallejo, David Leonardo Cedeno, William J. Smith
  • Patent number: 11565112
    Abstract: The present disclose generally relates to systems and methods for active titration of one or more cranial or peripheral nerve stimulators to treat obstructive sleep apnea. The active titration can be accomplished in an automated fashion by a closed-loop process. The closed-loop process can be executed by a computing device that includes a non-transitory memory storing instructions and a processor to execute the instructions to perform operations. The operations can include defining initial parameters for the one or more cranial or peripheral nerve stimulators for a patient; receiving sensor data from sensors associated with the patient based on a stimulation with the one or more cranial or peripheral stimulators programmed according to the initial parameters; and adjusting the initial parameters based on the sensor data.
    Type: Grant
    Filed: August 1, 2019
    Date of Patent: January 31, 2023
    Assignee: VANDERBILT UNIVERSITY
    Inventor: David T. Kent
  • Patent number: 11554261
    Abstract: The present disclosure relates to a system for generating a predefined electrical signal in an MR scanner for use in electrical stimulation of a subject during MRI or functional MRI of said subject, wherein said MR scanner is located inside a shielded MRI room. The system comprises a control unit to be located outside the MRI room for generating an electrical signal and an electrical to optical converter to be located outside the MRI room for converting said electrical signal to a corresponding optical signal. An optical transmitting element, such as an optical fiber, is used for transmitting the optical signal into the MRI room, and an optical to electrical converter is used for converting the optical signal to said predefined electrical signal for electrical stimulation of the subject during magnetic resonance imaging. The optical to electrical converter is configured for being located inside the MRI room and for operation during magnetic resonance imaging.
    Type: Grant
    Filed: October 5, 2018
    Date of Patent: January 17, 2023
    Assignees: Roskilde/Køge Hospital, Rigshospitalet, University Of Copenhagen
    Inventors: Anders Ohlhues Baandrup, Louise Møller Jørgensen, Carsten Thomsen
  • Patent number: 11547307
    Abstract: A method for detecting or monitoring respiratory or cardiac health of a patient includes measuring any intravascular or intracardiac pressure (IVP) of a patient over a period of time, said IVP including a measured respiratory wave, defining respiratory effort of the patient as a peak-to-peak amplitude of said respiratory wave, and using the respiratory effort to detect or monitor respiratory and cardiac health of the patient by comparing the respiratory effort with a known value of respiratory effort or by monitoring changes in the respiratory effort of the patient over another period of time.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: January 10, 2023
    Assignee: TECHNION RESEARCH AND DEVELOPMENT FOUNDATION LTD.
    Inventors: Amir Landesberg, Anna Faingersh-Klebanov
  • Patent number: 11529514
    Abstract: Devices, systems and methods of neurostimulation for treating obstructive sleep apnea. The system is adapted to send an electrical signal from an implanted neurostimulator through a stimulation lead to a patient's nerve at an appropriate phase of the respiratory cycle based on input from a respiration sensing lead. External components are adapted for wireless communication with the neurostimulator. The neurostimulator is adapted to deliver therapeutic stimulation based on inputs.
    Type: Grant
    Filed: March 12, 2018
    Date of Patent: December 20, 2022
    Assignee: LivaNova USA, Inc.
    Inventors: Stephen L. Bolea, Thomas B. Hoegh, Brian D. Kuhnley, Dale G. Suilmann, Bruce J. Persson, John P. Beck, Sidney F. Hauschild, Wondimeneh Tesfayesus, Jason J. Skubitz, Mark R. Bosshard, Daniel A. Parrish, Robert E. Atkinson
  • Patent number: 11497915
    Abstract: Devices and methods are provided to treat acute and chronic heart failure by using one or more implantable or non-implantable sensors along with phrenic nerve stimulation to reduce intrathoracic pressure and thereby reduce pulmonary artery, atrial, and ventricular pressures leading to reduced complications and hospitalization.
    Type: Grant
    Filed: November 9, 2020
    Date of Patent: November 15, 2022
    Assignee: RMX, LLC
    Inventor: Amir J. Tehrani
  • Patent number: 11491333
    Abstract: One aspect of the present disclosure relates to a system for treating obstructive sleep apnea in a subject. The system can include a power source and a neuromuscular stimulator in electrical communications with the power source. The neuromuscular stimulator can include a controller and at least one electrode. The controller can be configured to receive certain power and stimulation parameters associated with a therapy signal from the power source. The at least one electrode can be configured to deliver the therapy signal to a target tissue associated with control of a posterior base of the tongue of the subject.
    Type: Grant
    Filed: January 13, 2021
    Date of Patent: November 8, 2022
    Assignee: The Cleveland Clinic Foundation
    Inventor: Francis A. Papay
  • Patent number: 11491324
    Abstract: Intraoral electrical stimulation devices are disclosed. A representative device, which can be used to treat sleep apnea, includes an intraoral attachment body, a guide element carried by the attachment body and having a constrained guide path, and an electrode movably supported relative to the guide element and movable along the constrained guide path to a plurality of positions. A positioning member is coupleable to the electrode to move the electrode along the constrained guide path, and a signal generator is coupleable to the electrode to direct a stimulation signal to the electrode.
    Type: Grant
    Filed: October 14, 2020
    Date of Patent: November 8, 2022
    Assignee: Invicta Medical, Inc.
    Inventors: David Herron, Ling-Kang Tong, Hoa D. Nguyen, Chang Yeul Lee
  • Patent number: 11478635
    Abstract: The invention has a contact assembly including a spatial longitudinal extension which is orientated parallel to the winding axis. The contact assembly is fixedly joined to the carrier substrate along a joining region which has a joining region length orientated in parallel to the winding axis. The orthogonal projection relative to the winding axis overlaps with a first region of the carrier substrate which is wound into a tube.
    Type: Grant
    Filed: February 26, 2019
    Date of Patent: October 25, 2022
    Assignee: NEUROLOOP GMBH
    Inventors: Tim Boretius, Dennis Plachta, Fabian Kimmig
  • Patent number: 11478630
    Abstract: Devices, systems and methods are described for providing muscle contraction stimulation therapy to treat myriad diseases, including heart failure, Type 2 diabetes, and peripheral vascular disease using a skin patch or implantable stimulator that includes a multiplicity of electrodes, a processor, a stimulation circuit, one or more sensors and programming for a patient interface unit, wherein the processor is programmed to control selection of a subset of the multiplicity of electrodes and of operation of the stimulation circuit responsive to an indication of an adverse physiologic response. The indication of patient discomfort may be determined by monitoring a physiologic parameter of the subject using the one or more sensors, by direct input from the subject via the patient interface unit programming, or a combination thereof.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: October 25, 2022
    Inventors: Dan Sachs, Orhan Soykan
  • Patent number: 11471685
    Abstract: A method of treating a patient, comprising: sensing a biological parameter indicative of respiration; analyzing the biological parameter to identify a respiratory cycle; identifying an inspiratory phase of the respiratory cycle; and delivering stimulation to a hypoglossal nerve of the patient, wherein stimulation is delivered if a duration of the inspiratory phase of the respiratory cycle is greater than a predetermined portion of a duration of the entire respiratory cycle.
    Type: Grant
    Filed: October 15, 2015
    Date of Patent: October 18, 2022
    Assignee: LivaNova USA, Inc.
    Inventor: Stephen L. Bolea
  • Patent number: 11471683
    Abstract: Methods and systems for treating sleep apnea using electrical stimulation to a patient's upper and/or lower respiratory nerve or muscle are described. A stimulation regimen can be used to achieve upper airway patency and/or rhythmic air flow in a coordinated fashion during sleep. In some cases, diaphragm activity is monitored to determine whether sufficient upper airway patency and/or rhythmic air flow is achieved and maintained. The stimulation regimen may be adjusted based on the diaphragm activity. In some cases, the system includes modularized components so that the components can be customized to an individual's needs.
    Type: Grant
    Filed: January 29, 2020
    Date of Patent: October 18, 2022
    Assignee: Synapse Biomedical, Inc.
    Inventor: Anthony R. Ignagni
  • Patent number: 11464976
    Abstract: Modulation of neural activity of a ganglion, by applying a signal to a sympathetic nerve adjacent to the ganglion, results in preferential reduction of sympathetic signals to an effector, thereby providing ways of treating and preventing conditions associated with exacerbated sympatho-excitation.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: October 11, 2022
    Assignee: Galvani Bioelectronics Limited
    Inventors: Gerald Edwin Hunsberger, Arun Sridhar
  • Patent number: 11464971
    Abstract: A system for selectively blocking nerve fiber activity in a target nerve is provided. The system includes one or more electrodes. The system further includes an electronic control system electrically attached to each electrode to deliver electrical stimulation to a target nerve to block nerve signal transmission of C-fibers in the target nerve such that the nerve signal transmission of A-fibers in the target nerve providing motor function and/or low-threshold sensory function is not blocked. A method of delivering electrical stimulation to selectively block nerve fiber activity in a target nerve and a kit for performing a procedure to selectively block nerve fiber activity are disclosed.
    Type: Grant
    Filed: August 24, 2015
    Date of Patent: October 11, 2022
    Assignee: Avent, Inc.
    Inventors: Eric A. Schepis, Phillip A. Schorr, Jeremy D. Ollerenshaw, Roger D. Massengale, Joshua D. White
  • Patent number: 11400286
    Abstract: A controller delivers electrical stimulation therapy to a diaphragm through the one or more electrodes, and obtains a signal indicative of a pressure within an intrathoracic cavity from a pressure measurement source. The electrical stimulation therapy is defined by stimulation parameters. The controller obtains at least one additional signal indicative of a pressure within an intrathoracic cavity by changing at least one of the stimulation parameters, and delivering an electrical stimulation therapy to the diaphragm in accordance with the changed one of the plurality of stimulation parameters. The controller repeats the process of obtaining additional signals indicative of pressure based on a changing stimulation parameter by scanning through a range of values for the changing stimulation parameter.
    Type: Grant
    Filed: October 17, 2019
    Date of Patent: August 2, 2022
    Assignee: VisCardia, Inc.
    Inventors: Peter T. Bauer, Edward Chinchoy, Jay Snell, Patricia A. Arand
  • Patent number: 11363984
    Abstract: An automated method and system for diagnosing sleep disorders and predicting treatment effectiveness using data collected on the user using an automated application including questionnaire, facial recognition technology, and historical user and patient data. The data can be used by a diagnostic and treatment prediction algorithm to diagnose sleep disorders, for example sleep apnea, and predict treatment effectiveness. The system is an automated, self-learning algorithm capable of assessing the risk for sleep disorders and predicting treatment effectiveness.
    Type: Grant
    Filed: September 12, 2018
    Date of Patent: June 21, 2022
    Assignee: SNOOZE, INC.
    Inventor: Jordan C. Stern
  • Patent number: 11357979
    Abstract: A system for stimulating body tissue may include a stimulation lead, sensors, and a control unit. The stimulation lead may include one or more energy sources. The control unit may include a processor and non-transitory computer readable medium, and an interface (e.g., touch screen interface) for receiving user inputs and communicating information to the user. The sensors may be configured to provide impedance measurements to the control unit. The control unit may calculate lung gas distributions and/or generate an image modeling lung gas distributions. Stimulation delivered by the stimulation may be adjusted based on the impedance measurements.
    Type: Grant
    Filed: May 15, 2020
    Date of Patent: June 14, 2022
    Assignee: Lungpacer Medical Inc.
    Inventors: Douglas G. Evans, Viral S. Thakkar
  • Patent number: 11324954
    Abstract: A system for stimulating phrenic nerves to provide smooth breathing patterns is provided. More specifically, by identifying contraction threshold voltages for muscles associated with each of the left and right portions of a patient's diaphragm, a phrenic nerve pacing signal customized for each phrenic nerve may be provided to a patient. More specifically, a voltage of a pacing voltage provided to a first phrenic nerve may be less than the contraction threshold while a voltage of a pacing voltage provided to a second phrenic nerve may be greater than the contraction threshold.
    Type: Grant
    Filed: June 1, 2020
    Date of Patent: May 10, 2022
    Assignee: Covidien LP
    Inventors: Abhijit Bhattacharya, Berthold Stegemann
  • Patent number: 11324658
    Abstract: A device is provided for controlling the nitric oxide levels within the lungs of a subject. The device comprises a detector for detecting the respiration cycle of the subject and a stimulator for applying an acoustic or vibratory stimulus to the subject. The stimulator is controlled in dependence on the detected respiration cycle. In particular, acoustic stimulation may be provided at the onset of inspiration. In this way, the nitric oxide flow can be controlled in a way to ensure that the paranasal nitric oxide is nearly fully inspired. This provides a higher nitric oxide concentration in the lung/alveoli.
    Type: Grant
    Filed: November 23, 2016
    Date of Patent: May 10, 2022
    Assignee: Koninklijke Philips N.V.
    Inventors: Joachim Kahlert, Maria Estrella Mena Benito
  • Patent number: 11266838
    Abstract: A device and method for treating a variety of conditions, disorders or diseases with diaphragm/phrenic nerve stimulation is provided.
    Type: Grant
    Filed: June 19, 2020
    Date of Patent: March 8, 2022
    Assignee: RMX, LLC
    Inventor: Amir J. Tehrani
  • Patent number: 11266837
    Abstract: An implantable neurostimulator (INS) and method of use, the INS including an electrical lead having formed thereon at least a pair of bi-polar electrodes, wherein the electrical lead is configured for placement of the pair of bi-polar electrodes proximate protrusor muscles of a patient, a pulse generator electrically connected to the electrical lead and configured to deliver electrical energy to the pair of bi-polar electrodes, the pulse generator having mounted therein a sensor and a control circuit, and the sensor is configured to generate signals representative of an orientation of the pulse generator and communicate the signals to the control circuit and the control circuit is configured to determine the orientation of the pulse generator and deliver electrical energy to the bi-polar electrodes when the determined orientation correlates to a pre-determined orientation.
    Type: Grant
    Filed: January 24, 2020
    Date of Patent: March 8, 2022
    Assignee: MEDTRONIC XOMED, INC.
    Inventors: Avram Scheiner, James Hissong
  • Patent number: 11259801
    Abstract: A surgical instrument including a housing, an endoscopic portion, a shaft portion and an end effector is disclosed. The endoscopic portion extends distally from the housing and defines a longitudinal axis. The shaft portion is selectively connectable to a distal end of the endoscopic portion. The end effector is selectively connectable to a distal end of the shaft portion.
    Type: Grant
    Filed: May 12, 2021
    Date of Patent: March 1, 2022
    Assignee: Covidien LP
    Inventors: Michael Zemlok, David Racenet
  • Patent number: 11246622
    Abstract: An apparatus includes a body, a shaft assembly, an end effector, and a control module. The shaft assembly extends distally from the body and includes an acoustic waveguide. The waveguide is configured to acoustically couple with an ultrasonic transducer. The end effector includes an ultrasonic blade, a clamp arm, an electrode, and a sensor. The ultrasonic blade is in acoustic communication with the waveguide. The clamp arm is operable to compress tissue against the ultrasonic blade. The electrode is operable to apply radiofrequency (RF) electrosurgical energy to tissue. The sensor is operable to sense a condition of tissue contacted by the end effector. The control module is operable to control delivery of ultrasonic power and RF electrosurgical energy through the end effector based on data from the sensor.
    Type: Grant
    Filed: August 23, 2019
    Date of Patent: February 15, 2022
    Assignee: Cilag GmbH International
    Inventor: Kevin L. Houser
  • Patent number: 11191970
    Abstract: A device for conveying power from a location external to a subject to a location within the subject may include a flexible carrier and an adhesive on a first side of the carrier. A coil of electrically conductive material may be associated with the flexible carrier. A mechanical connector may be associated with the carrier opposite the adhesive, wherein the mechanical connector is configured to retain a housing and permit the housing to rotate relative to the flexible carrier. At least one electrical portion may be associated with the carrier in a manner permitting electrical connection to be maintained between the flexible carrier and the housing as the housing is rotated.
    Type: Grant
    Filed: May 24, 2018
    Date of Patent: December 7, 2021
    Assignee: Nyxoah SA
    Inventors: Adi Mashiach, Tim Ruytjens
  • Patent number: 11123557
    Abstract: An electric stimulator that effectively improves the brain function of patients suffering from brain disorders by applying electric stimulation to the brain of the patient effectively. The electric stimulator can include main electrodes H to be stuck to particular sites of the patient's body extending from the neck part to the head tip part. The particular site may be the temple part, the forehead part above the eyes, the cheek part and the rear neck part. The electric signal to be applied to the main electrodes H is set so as for weak electric current of 100 ?A or less to flow through the patient's body and stimulate the brain. In addition to the application of electric stimulation by the main electrodes H, auxiliary electrodes S may be stuck to the back of the patient.
    Type: Grant
    Filed: February 1, 2018
    Date of Patent: September 21, 2021
    Assignees: NIHON MEDIX Co., Ltd.
    Inventors: Kensuke Yamakawa, Norikazu Yoshioka, Hitoshi Aoki
  • Patent number: 11116397
    Abstract: Aspects of the subject disclosure may include, for example, a system adapted for determining from sensor data collected for a patient over a period of time a normative condition of a biological function of the patient, generating provisioning information according to the normative condition, detecting a first sensor coupled to the patient, and providing the provisioning information to the first sensor to enable the first sensor to detect an abnormal state of the biological function of the patient. Other embodiments are disclosed.
    Type: Grant
    Filed: July 14, 2015
    Date of Patent: September 14, 2021
    Assignee: Welch Allyn, Inc.
    Inventors: David E. Quinn, Craig M. Meyerson, John A. Lane, Kenzi L. Mudge
  • Patent number: 11090489
    Abstract: A method for positioning an intravascular catheter may include inserting the intravascular catheter into a venous system of a patient, wherein the catheter includes a plurality of electrodes, and multiple electrodes of the plurality of electrodes are configured to emit electrical signals; positioning a distal portion of the catheter in a first position; using one or more electrodes of the plurality of electrodes to acquire an ECG signal; based on the acquired ECG signal, adjusting the distal portion of the catheter to a second position different from the first position; identifying at least one first electrode of the plurality of electrodes to stimulate a first nerve; identifying at least one second electrode of the plurality of electrodes to stimulate a second nerve; and stimulating at least one of the first and second nerves to cause a contraction of a respiratory muscle.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: August 17, 2021
    Assignee: Lungpacer Medical, Inc.
    Inventors: Viral S. Thakkar, Douglas G. Evans, Matthew J. Gani
  • Patent number: 11065444
    Abstract: Devices and methods are disclosed that allow a patient to self-treat a medical condition, such as migraine headache and trigeminal neuralgia and the like, by noninvasive electrical stimulation of nerves of the head, particularly supraorbital, supratrochlear, infraorbital, and mental nerves in the vicinity of their foramen or notch. The system comprises a handheld mobile device, such as a smartphone, that is applied to the surface of the patient's head. One or more electrodes on the mobile device apply electrical impulses transcutaneously through the patient's skin to the targeted nerve to treat the medical condition. The system is designed to address problems that arise particularly during self-treatment, when a medical professional is not present.
    Type: Grant
    Filed: August 8, 2019
    Date of Patent: July 20, 2021
    Assignee: ElectroCore, Inc.
    Inventors: Joseph P. Errico, Steven Mendez, Bruce J. Simon
  • Patent number: 11065443
    Abstract: A means for treating breathing disorders by stimulating respiratory muscles or nerves to entrain respiratory systems while leaving respiratory drive intact. Embodiments of the invention employ frequency analysis to determine if appropriate stimulation energy is being applied.
    Type: Grant
    Filed: June 7, 2018
    Date of Patent: July 20, 2021
    Assignee: Zoll Respicardia, Inc.
    Inventors: Mark Gelfand, Kristofer J. James, Randy W. Westlund, Antonis Panteleon, Todd P. Goblish, Mark C. Lynn
  • Patent number: 11027130
    Abstract: Electrode structures for transvascular nerve stimulation combine electrodes with an electrically-insulating backing layer. The backing layer increases the electrical impedance of electrical paths through blood in a lumen of a blood vessel and consequently increases the flow of electrical current through surrounding tissues. The electrode structures may be applied to stimulate nerves such as the phrenic, vagus, trigeminal, obturator or other nerves.
    Type: Grant
    Filed: March 24, 2020
    Date of Patent: June 8, 2021
    Assignee: Lungpacer Medical Inc.
    Inventor: Joaquin Andres Hoffer
  • Patent number: 11020596
    Abstract: An implantable system, and methodology, for improving a heart's hemodynamic performance featuring (a) bimodal electrodes placeable on the diaphragm, out of contact with the heart, possessing one mode for sensing cardiac electrical activity, and another for applying cardiac-cycle-synchronized, asymptomatic electrical stimulation to the diaphragm to trigger biphasic, diaphragmatic motion, (b) an accelerometer adjacent the electrodes for sensing both heart sounds, and stimulation-induced diaphragmatic motion, and (c) circuit structure, connected both to the electrodes and the accelerometer, operable, in predetermined timed relationships to the presences of valid V-events noted in one of sensed electrical and sensed mechanical, cardiac activity, to deliver diaphragmatic stimulation.
    Type: Grant
    Filed: April 26, 2019
    Date of Patent: June 1, 2021
    Assignee: VisCardia, Inc.
    Inventor: Peter T. Bauer
  • Patent number: 11007001
    Abstract: Some embodiments relate to a method of reducing excess mucosa production and/or secretion in the respiratory tract, comprising: introducing into the lumen of the trachea or the lumen of the bronchi a device configured for damaging nerve tissue or blocking neural conduction in the surroundings of the lumen; and activating the device to damage the nerve tissue enough to suppress parasympathetic nerve activity which causes the excess mucosa production and/or secretion.
    Type: Grant
    Filed: July 23, 2020
    Date of Patent: May 18, 2021
    Assignee: Sonivie Ltd.
    Inventors: Charles S. Carignan, Or Shabtay, Maya Rosenstein, Dalit Shav, Talia Cohen Keizman, Daniel Naor, Ofek Admon
  • Patent number: 10994142
    Abstract: A system is disclosed in one example which allows for modelling the wellness of a given Implantable Pulse Generator (IPG) patient. The modelling, embodied in an algorithm, uses one or more qualitative measurements and one or more quantitative measurements taken from the patient. The algorithm correlates the qualitative measurements to the various quantitative measurements to eventually, over time, learn which quantitative measurements best correlate to the qualitative measurements provided by the patient. The algorithm can then using current quantitative measurements predict a wellness factor or score for the patient, which is preferably weighted to favor the quantitative measurements that best correlate to that patient's qualitative assessment of therapy effectiveness. Additionally, the wellness factor may be used to adjust the stimulation program that the IPG device provides to the patient.
    Type: Grant
    Filed: April 24, 2019
    Date of Patent: May 4, 2021
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Michael A. Moffitt
  • Patent number: 10967178
    Abstract: An electrode lead comprises a lead body, connector contacts affixed to the proximal end of the lead body, and a cuff body affixed to the distal end of the lead body. The cuff body is pre-shaped to transition from an unfurled state to a furled state, wherein the cuff body, when in the furled state has an inner surface for contacting a nerve and an overlapping inner cuff region and an outer cuff region. The electrode lead further comprise electrode contacts circumferentially disposed along the cuff body when in the furled state, such that at least one of the electrode contacts is located on the inner surface of the cuff body, and at least another of the electrode contacts is located between the overlapping inner and outer cuff regions. The electrode lead further comprises electrical conductors extending through the lead body respectively between the connector contacts and the electrode contacts.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: April 6, 2021
    Assignee: THE ALFRED E. MANN FOUNDATION FOR SCIENTIFIC RESEARCH
    Inventors: Boon Khai Ng, Joseph L. Calderon