Cardioverting/defibrillating Patents (Class 607/5)
  • Patent number: 9002473
    Abstract: Defibrillator electrodes are sealed to the inside of a rigid enclosure. The enclosure is hinged to open and expose the electrodes for deployment. The electrode gel is sealed against moisture loss between the moisture impervious electrode backing and the inner surface of the enclosure. The enclosure may further include an electrical circuit for electrode self-testing, the circuit being broken when the enclosure is opened.
    Type: Grant
    Filed: October 3, 2005
    Date of Patent: April 7, 2015
    Assignee: Koninklijke Philips N.V.
    Inventors: Daniel J. Powers, Shannon Fong, Eric Jonsen, Patrick Hauge
  • Patent number: 9002443
    Abstract: A medical device and associated method for detecting and treating tachyarrhythmias acquires a cardiac signal using electrodes coupled to a sensing module. Cardiac events are sensed from the cardiac signal and a processing module computes a first morphology metric for each sensed cardiac event occurring during a time segment of the cardiac signal. The first morphology metrics corresponding to an event originating in a ventricular chamber are counted. The first processing module computes a second morphology metric for the time segment of the cardiac signal in response to the count of the first morphology metrics meeting a threshold number of events. The time segment is classified as a shockable segment in response to the second morphology metric meeting a detection criterion.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: April 7, 2015
    Assignee: Medtronic, Inc.
    Inventors: Xusheng Zhang, Mark L. Brown, Paul J. DeGroot, Saul E. Greenhut, Troy E. Jackson
  • Publication number: 20150094783
    Abstract: A system and method for long-term monitoring of cardiac conditions such as arrhythmias is disclosed. The invention includes a pulse generator including means for sensing an arrhythmia. The pulse generator is coupled to at least one subcutaneous electrode or electrode array for providing electrical stimulation such as cardioversion/defibrillation shocks and/or pacing pulses. The electrical stimulation may be provided between multiple subcutaneous electrodes, or between one or more such electrodes and the housing of the pulse generator. In one embodiment, the pulse generator includes one or more electrodes that are isolated from the can. These electrodes may be used to sense cardiac signals.
    Type: Application
    Filed: September 18, 2014
    Publication date: April 2, 2015
    Inventors: Ward M. Brown, Stephen D. Heinrich
  • Publication number: 20150094782
    Abstract: Methods and systems of applying treatment to a subject experiencing cardiac distress. In one example, there is provided a defibrillation electrode. The defibrillation electrode includes a non-volatile memory element and a circuit configured to store an indication of a level of energy delivered to a subject during the application of a defibrillation shock to the subject in the non-volatile memory element.
    Type: Application
    Filed: September 23, 2014
    Publication date: April 2, 2015
    Inventors: Paul F. Prew, Deborah T. Jones, David N. Craige, III
  • Publication number: 20150094601
    Abstract: A medical device for use with a patient is described. The medical device includes a component for administering a treatment to the patient or receiving data of the patient. The component is configured to operate according to an internal setting. The medical device also includes a user interface through which a user can modify the internal setting, as well as a settings signature generator for generating a settings signature that represents a present state of the internal setting. A gateway is also provided for communicating a version of the settings signature out of the medical device.
    Type: Application
    Filed: December 10, 2014
    Publication date: April 2, 2015
    Inventors: Kevin C. Drew, James S. Neumiller
  • Patent number: 8996100
    Abstract: An electrode structure for use with a monitoring system. A thin flexible body of an electrode material comprising conductive rubber is provided with projections extending externally to a working surface. According to this construction of the working surface of the electrode only the projections make a contact to the recipient's skin. When the projections are provided with a small cross-section, the constant electrode-skin contact is ensured due to the resiliency of the electrode material.
    Type: Grant
    Filed: March 6, 2003
    Date of Patent: March 31, 2015
    Assignee: Koninklijke Philips N.V.
    Inventors: Johannes Johanna Van Herk, Markus Cornelis Jakobus Lazeroms
  • Publication number: 20150088213
    Abstract: A method and apparatus to detect anomalies in the conductors of leads attached to implantable medical devices based on the dynamical electrical changes these anomalies cause. In one embodiment, impedance is measured for weak input signals of different applied frequencies, and a conductor anomaly is detected based on differences in impedance measured at different frequencies. In another embodiment, a transient input signal is applied to the conductor, and an anomaly is identified based on parameters related to the time course of the voltage or current response, which is altered by anomaly-related changes in capacitance and inductance, even if resistance is unchanged. The method may be implemented in the implantable medical device or in a programmer used for testing leads.
    Type: Application
    Filed: August 28, 2014
    Publication date: March 26, 2015
    Inventor: Charles Swerdlow
  • Publication number: 20150088214
    Abstract: Methods, systems, and devices for signal analysis in an implanted cardiac monitoring and treatment device such as an implantable cardioverter defibrillator. In illustrative examples, captured data including detected events is analyzed to identify likely overdetection of cardiac events. In some illustrative examples, when overdetection is identified, data may be modified to correct for overdetection, to reduce the impact of overdetection, or to ignore overdetected data. New methods for organizing the use of morphology and rate analysis in an overall architecture for rhythm classification and cardiac signal analysis are also discussed.
    Type: Application
    Filed: November 24, 2014
    Publication date: March 26, 2015
    Inventors: Venugopal Allavatam, Surekha Palreddy, Rick Sanghera, Jay A. Warren
  • Patent number: 8989860
    Abstract: High frequency cardiac arrhythmias and fibrillations are terminated by electric field pacing pulses having an order of magnitude less energy than a conventional cardioversion or defibrillation energy. The frequency and number of the pulses are selected based on a frequency analysis of a present high frequency cardiac arrhythmia or fibrillation. The energy of the pulses is selected from 1/400 to ½ of the conventional defibrillation energy, and the amplitude of the electric field pacing pulses are selected such as to activate a multitude of effective pacing sites in the heart tissue per each pacing electrode. The number and locations of the effective pacing sites in the heart tissue are regulated by the amplitude of the electric field pacing pulses, and by an orientation of the electric field of the pulses.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: March 24, 2015
    Assignee: Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e.V.
    Inventors: Stefan Luther, Valentin Krinski, Eberhard Bodenschatz
  • Publication number: 20150080977
    Abstract: An implantable medical device may include a telemetry module, a sensing module, a therapy delivery module, and a processor. The processor may be configured to detect a patient event based on data generated by the sensing module, operate the IMD in a first mode in which the telemetry module is disabled and the therapy delivery module is at least partially disabled when the patient event is not detected, and operate the IMD in a second mode in which the telemetry module is enabled and the therapy delivery module is at least partially disabled when the patient event is detected. In some examples, the processor is configured to, in the second mode, generate a notification of the cardiac arrhythmia and transmit the notification to an external device via the telemetry module. The external device may reside inside an MRI room or outside the MRI room, and may communicate with other devices.
    Type: Application
    Filed: November 26, 2014
    Publication date: March 19, 2015
    Inventors: Christopher C. STANCER, Volkert A. ZEIJLEMAKER
  • Publication number: 20150080978
    Abstract: A system and method to deliver a therapeutic quantity of energy to a patient. The system includes a capacitor having a rated energy storage capacity substantially equal to the therapeutic quantity of energy, a boost converter coupled with the capacitor and constructed to release energy from the capacitor at a substantially constant current for a time interval, and an H-bridge circuit coupled with the boost converter and constructed to apply the substantially constant current in a biphasic voltage waveform to the patient. The method includes storing a quantity of energy substantially equal to the therapeutic quantity of energy in a capacitor, releasing the quantity of energy at a relatively constant current during a time interval using a boost converter coupled with the capacitor, and delivering a portion of the quantity energy in a direction to the patient using an H-bridge circuit coupled with the boost converter.
    Type: Application
    Filed: November 19, 2014
    Publication date: March 19, 2015
    Inventor: James G. Radzelovage
  • Patent number: 8983599
    Abstract: There is provided an energy delivery device comprising a storage device, a discharge circuit and a disarm circuit. The discharge circuit comprises a switch electrically connected to the storage device, and is selectively operable to deliver energy from the storage device to a load, e.g., a patient needing defibrillation, preferably in a multiphasic waveform. The disarm circuit comprises the switch. Preferably, the discharge circuit comprises an H-bridge circuit. There are also provided delivery devices: which comprise a shoot-through elimination circuit; which include housing elements which, when assembled, cause electrical connection between respective components; which include a housing having a small volume and an energy storage device having a large capacitance; which comprise a shunt circuit which, when activated, prevents switching of a switch. There are also provided methods of assembly and disassembly of an energy delivery unit and methods of delivering energy to a load.
    Type: Grant
    Filed: October 28, 2013
    Date of Patent: March 17, 2015
    Assignee: ZOLL Medical Corporation
    Inventors: Michael C. Garrett, Robert Larson, Jerry Bazata, Dean L. Milani, William J. Smirles
  • Patent number: 8983588
    Abstract: A method of analysis of medical signals is presented which provides useful clinical information concerning the state of the myocardium during cardiopulmonary resuscitation (CPR). The analysis during CPR can be used to (i) identify the underlying rhythm, (ii) provide a measure of the efficacy of CPR, and (iii) to predict the outcome from a defibrillation shock.
    Type: Grant
    Filed: February 10, 2006
    Date of Patent: March 17, 2015
    Assignee: Cardiodigital Limited
    Inventors: Paul Stanley Addison, James Nicholas Watson
  • Patent number: 8983598
    Abstract: According to an embodiment of a method, a predetermined cardiac activity indicated for an antitachycardia shock is detected. Neural stimulation is applied to lower a defibrillation threshold in preparation for the shock, and the shock is subcutaneously delivered. According to one embodiment, neural stimulation is applied as part of a prophylactic therapy. A predetermined cardiac activity indicated for an antitachycardia shock is detected, and the shock is subcutaneously delivered. Other aspects and embodiments are provided herein.
    Type: Grant
    Filed: October 4, 2006
    Date of Patent: March 17, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Imad Libbus, Joseph M. Pastore
  • Publication number: 20150073490
    Abstract: An external defibrillator system is disclosed that generates and applies a diagnostic signal to the patient in conjunction with defibrillation therapy. The diagnostic signal is designed to elicit a physiologic response from the patient's heart, namely, mechanical cardiac response and electrical cardiac response, electrical cardiac response only, or no cardiac response. Depending upon the type of cardiac response detected, the system selects an appropriate resuscitation protocol that considers the likely responsiveness of the patient to defibrillation therapy. In one practical embodiment, a stimulus signal is applied to patients that show mechanical and electrical capture in response to the diagnostic signal. The stimulus signal maintains the mechanical capture (and, therefore, perfusion) for a period of time prior to the delivery of a defibrillation pulse.
    Type: Application
    Filed: May 20, 2014
    Publication date: March 12, 2015
    Applicant: Physio-Control, Inc.
    Inventors: DAVID R. HAMPTON, ISABELLE BANVILLE
  • Publication number: 20150073247
    Abstract: The present invention provides an implantable medical device having at least two electrodes coupled to the device housing. The electrodes may be configured for sensing physiological signals such as cardiac signals and alternatively for providing an electrical stimulation therapy such as a pacing or defibrillation therapy. In accordance with aspects of the disclosure, the device housing provides a hermetic enclosure that includes a battery case hermetically coupled to a circuit assembly case. At least one of the at least two electrodes is coupled to an exterior surface of the battery case. The battery case is electrically insulated from the cathode and anode of the battery.
    Type: Application
    Filed: October 23, 2013
    Publication date: March 12, 2015
    Applicant: MEDTRONIC, INC.
    Inventors: Charles R. Gordon, Kevin P. Kuehn, James D. Reinke, Michael B. Terry
  • Patent number: 8965500
    Abstract: A wearable defibrillator and method of monitoring the condition of a patient. The wearable defibrillator includes at least one therapy pad, at least one sensor and at least one processing unit operatively connected to the one or more therapy pads and the one or more sensors. The wearable defibrillator also includes at least one audio device operatively connected to the one or more processing units. The one or more audio devices are configured to receive audio input from a patient.
    Type: Grant
    Filed: July 7, 2014
    Date of Patent: February 24, 2015
    Assignee: Zoll Medical Corporation
    Inventors: John D. Macho, Shane S. Volpe, Richard A. Rattanni, Philip C. Skalos, Thomas E. Kaib, Marshal W. Linder
  • Patent number: 8965505
    Abstract: A medical device and method for detecting and classifying cardiac rhythm episodes that includes a sensing module to sense cardiac events, a therapy delivery module, and a detection module configured to determine intervals between the sensed cardiac events, determine a predetermined cardiac episode is occurring in response to the determined intervals, determine whether a ventricular rate is greater than an atrial rate in response to the determined intervals, determine whether undersensing is occurring in response to the ventricular rate being greater than the atrial rate, perform a supraventricular tachycardia (SVT) discrimination analysis in response to undersensing occurring, and control the therapy delivery module to deliver therapy in response to the SVT discrimination analysis.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: February 24, 2015
    Assignee: Medtronic, Inc.
    Inventors: Sandra B. Charlton, Troy E. Jackson, Benjamin P. Rhodes
  • Publication number: 20150045847
    Abstract: Methods and apparatus for a three-stage atrial cardioversion therapy that treats atrial arrhythmias within pain tolerance thresholds of a patient. An implantable therapy generator adapted to generate and selectively deliver a three-stage atrial cardioversion therapy and at least two leads, each having at least one electrode adapted to be positioned proximate the atrium of the patient. The device is programmed for delivering a three-stage atrial cardioversion therapy via both a far-field configuration and a near-field configuration of the electrodes upon detection of an atrial arrhythmia. The three-stage atrial cardioversion therapy includes a first stage for unpinning of one or more singularities associated with an atrial arrhythmia, a second stage for anti-repinning of the one or more singularities, both of which are delivered via the far-field configuration of the electrodes, and a third stage for extinguishing of the one or more singularities delivered via the near-field configuration of the electrodes.
    Type: Application
    Filed: April 21, 2014
    Publication date: February 12, 2015
    Applicant: The Washington University
    Inventors: Igor R. EFIMOV, Wenwen LI, Ajit JANARDHAN
  • Patent number: 8954336
    Abstract: One aspect of the present invention is a server for communicating with a medical device. The server comprises a web browser process for communicating with a remote device and a pump interface process for communicating with a medical device. Another aspect of the present invention is a medical device. The medical device comprises memory configured to store data and a programmable circuit in electrical communication with the memory. The programmable circuit is programmed with a web server for communicating data with a remote device. Another aspect of the invention is a server for communicating with a medical device. The server comprises memory for storing data and a programmable circuit in electrical communication with the memory. The programmable circuit programmed with an interface for communicating with a medical device.
    Type: Grant
    Filed: February 22, 2005
    Date of Patent: February 10, 2015
    Assignee: Smiths Medical ASD, Inc.
    Inventor: Michael L. Blomquist
  • Patent number: 8951546
    Abstract: Described herein are implantable composites, kits comprising the composites, implant devices comprising the composites, and methods of making and using same, including point of use methods.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: February 10, 2015
    Assignee: SurModics Pharmaceuticals, Inc.
    Inventor: Thomas R. Tice
  • Publication number: 20150039039
    Abstract: A defibrillator includes: a housing; a discharge module disposed on a first portion of a printed circuit board and positioned within the housing; an energy storage module disposed on a second portion of the printed circuit board; and a controller module disposed on a third portion of the printed circuit board. The energy storage module is operatively connected to the discharge module by a first flexible member. The controller module is operatively connected to the energy storage module by a second flexible member. The first flexible member is folded such that the first portion of the printed circuit board is positioned substantially parallel to the second portion of the printed circuit board and the second flexible member is folded such that the third portion of the printed circuit board is positioned substantially perpendicular to the first and second portions of the printed circuit board.
    Type: Application
    Filed: July 31, 2014
    Publication date: February 5, 2015
    Inventors: John Macho, Phillip Amsler, Shane Volpe
  • Publication number: 20150039040
    Abstract: A wearable defibrillation system can establish a local comlink with a mobile communication device, such as a smartphone, tablet-type computer and the like. The mobile communication device can in turn establish a remote comlink with other devices in a network such as the internet. Accordingly, communication tasks relating to the wearable defibrillation system can be performed via the local and the remote comlinks, with or without the participation of the patient, who is wearing the system. The wearer can thus use the familiar interface of a mobile communication device for interacting with his defibrillator system. Moreover, he can do so while keeping on his regular clothes, which could conceal completely the wearable defibrillator system. The patient can thus preserve his dignity and privacy.
    Type: Application
    Filed: August 7, 2014
    Publication date: February 5, 2015
    Inventors: Kenneth Frederick Cowan, Isabelle Banville, Robert Reuben Buchanan, David Peter Finch, Joseph Leo Sullivan, Phillip D. Foshee, JR., Laura Marie Gustavson, Daniel Ralph Piha, Carmen Ann Chacon, Blaine Krusor, Gary Debardi, Richard C. Nova, Krystyna Szul, Gregory T. Kavounas
  • Patent number: 8948859
    Abstract: A system including a sensor interface coupled to a processor. The sensor interface is configured to receive and process an analog electrocardiogram signal of a subject and provide a digitized electrocardiogram signal sampled over a first time period and a second time period that is subsequent to the first time period. The processor is configured to receive the digitized electrocardiogram signal, to analyze a frequency domain transform of the digitized electrocardiogram signal sampled over the first and second time periods and determine first and second metrics indicative of metabolic state of a myocardium of the subject during the first and second time periods, respectively, to compare the first and second metrics to determine whether the metabolic state of the myocardium of the subject is improving, and to indicate administration of an intervention to the subject in response to a determination that the metabolic state is not improving.
    Type: Grant
    Filed: June 11, 2012
    Date of Patent: February 3, 2015
    Assignee: Zoll Medical Corporation
    Inventors: Gary A. Freeman, Ulrich Herken
  • Patent number: 8942802
    Abstract: The present invention is directed toward a detection architecture for use in implantable cardiac rhythm devices. The detection architecture of the present invention provides methods and devices for discriminating between arrhythmias. Moreover, by exploiting the enhanced specificity in the origin of the identified arrhythmia, the detection architecture can better discriminate between rhythms appropriate for device therapy and those that are not.
    Type: Grant
    Filed: February 11, 2008
    Date of Patent: January 27, 2015
    Assignee: Cameron Health, Inc.
    Inventors: Alan H. Ostroff, Jay A. Warren, Gust H. Bardy
  • Patent number: 8942803
    Abstract: A system and method for use during the administration of CPR chest compressions and defibrillating shock on a cardiac arrest victim. The system analyzes compression waveforms from a compression depth monitor to determine the source of chest compressions, and enables the delivery of defibrillating shock during a compression cycle if the compression waveforms are characteristic of an automated CPR chest compression device.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: January 27, 2015
    Assignee: ZOLL Medical Corporation
    Inventors: Ulrich R. Herken, Gary A. Freeman
  • Publication number: 20150025593
    Abstract: A heart therapy device having a right-ventricular electrode and a left-ventricular electrode connected to a tachycardia identification unit. The tachycardia identification unit identifies ventricular tachycardia and simultaneously evaluates the heart rate at the right-ventricular and left-ventricular electrodes. The ventricular electrodes each include an electrode line having a corresponding sensing electrode pole that senses electric potential courses in the myocardium of the respective ventricle. The heart therapy device includes a dislocation identification unit that detects a possible dislocation of one of the ventricular electrodes, simultaneously evaluates the heart rate at both ventricular electrodes, and signals a right-ventricular or left-ventricular dislocation when a sudden rise in heart rate is sensed at the right-ventricular or left-ventricular electrode, without detecting a considerable change in rhythm at the respective electrode.
    Type: Application
    Filed: July 3, 2014
    Publication date: January 22, 2015
    Applicant: BIOTRONIK SE & CO. KG
    Inventors: Andreas Kucher, Thomas Doerr
  • Publication number: 20150018756
    Abstract: A typical power switch in a Buck Regulator requires a pre-driver to ensure rapid transition from its ON to OFF states. In this invention, the shoot through current in the pre-driver and the power switch's gate-charge in a Buck regulator is itself recaptured in the capacitor of the buck regulator. The recapturing of this otherwise wasted shoot-through current and gate charge allows for increased efficiency of the regulator. The recapture may be selectively disabled to accommodate high power operations of the system, if such are used; the recapture may in an alternative mode be always performed. As a result, reduced power consumption can be achieved.
    Type: Application
    Filed: July 10, 2013
    Publication date: January 15, 2015
    Inventor: Ravi S. Ananth
  • Patent number: 8929980
    Abstract: An electrode for use with an external defibrillator for a patient includes a first combination circuit including a circuit node electrically coupled to an adapter for coupling to the defibrillator. The circuit node is further coupled to a monitoring node defined by a monitoring segment of a first pad of the electrode and to a therapy node defined by a therapy segment of the first pad of the electrode. The therapy segment is electrically insulated from the monitoring segment. The first combination circuit further includes a capacitor coupled between the circuit node and the therapy node. The electrode of this disclosure hence provides additional solutions for reducing ECG artifact during the operation of the electrode.
    Type: Grant
    Filed: November 27, 2012
    Date of Patent: January 6, 2015
    Assignee: Physio-Control, Inc.
    Inventors: Ronald Eugene Stickney, Joseph L Sullivan, Gary Debardi
  • Publication number: 20150005835
    Abstract: A system and method for correlating health related data for display. The system includes a medical device recording data and a display producing device which correlates the data and simultaneously displays different types of data or displays two sets of the same type of data along with the circumstances at which the two sets of data were recorded. Such displays aid a physician in prescribing and ascertaining the efficacy of cardiac therapies.
    Type: Application
    Filed: September 9, 2014
    Publication date: January 1, 2015
    Inventors: James Kalgren, Rene H. Wentkowski, Jeffrey E. Stahmann
  • Publication number: 20140379041
    Abstract: An intravascularly-deliverable electrode assembly can be used to provide electrostimulation. The electrode assembly can include an electrostimulation circuit located in a housing, two or more elongate members coupled to the housing and configured to anchor the housing to a heart, the two or more elongate members including two or more electrodes electrically coupled to the electrostimulation circuit and controllably addressable by the electrostimulation circuit for delivery of an electrostimulation to the heart. The two or more elongate members can be sized and shaped for intravascular delivery to the heart in a first configuration, and in response to a user actuation, the two or more elongate members can move to a second configuration that is expanded relative to the first configuration to securely anchor the intravascularly-deliverable electrode assembly to the heart. Circuitry within the electrode assembly can coordinate electrostimulation, such as for delivery to sites near each electrode.
    Type: Application
    Filed: June 11, 2014
    Publication date: December 25, 2014
    Inventor: Daniel J. Foster
  • Publication number: 20140378782
    Abstract: Disclosed herein are methods and systems of applying treatment to a subject experiencing cardiac distress. In one example, there is provided a resuscitation apparatus. The resuscitation apparatus comprises a displacement monitor, a blood perfusion monitor, and a processor coupled to the displacement monitor and to the blood perfusion monitor. The processor is configured to initiate a measurement of blood perfusion using the blood perfusion monitor responsive to a signal received from the displacement monitor.
    Type: Application
    Filed: June 24, 2014
    Publication date: December 25, 2014
    Inventors: Ulrich Herken, Gary A. Freeman
  • Patent number: 8916004
    Abstract: A component of an implantable medical device comprises a body comprising at least one external surface, the body comprising at least one of titanium, titanium-based alloys, and composites thereof, and a corrosion-resistant surface region at the at least one external surface, the corrosion-resistant surface region comprising at least one of titanium nitride, dititanium nitride, and a solid solution of nitrogen dissolved in the body, wherein the corrosion-resistant surface region is formed by thermal nitridation of the body.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: December 23, 2014
    Assignee: Medtronic, Inc.
    Inventors: Michael B. Hintz, Peter D. Yurek, Brad C. Tischendorf, William J. Taylor
  • Publication number: 20140371806
    Abstract: A wearable, multiphasic cardioverter defibrillator system and method are provided.
    Type: Application
    Filed: June 12, 2014
    Publication date: December 18, 2014
    Inventors: Douglas M. RAYMOND, Peter D. GRAY
  • Publication number: 20140371805
    Abstract: A dynamically adjustable multiphasic pulse system and method are provided. The dynamically adjustable multiphasic pulse system may be used as pulse system for a defibrillator or cardioverter.
    Type: Application
    Filed: June 12, 2014
    Publication date: December 18, 2014
    Inventors: Douglas M. RAYMOND, Peter D. GRAY
  • Patent number: 8914104
    Abstract: A medical device includes a device housing and a door mounted to the device housing. The device also includes a first magnet mounted to the door, wherein magnetic force applied to the door exerts a moment on the door, and a second magnet mounted in the housing and positioned to hold the door shut by magnetic interaction with the first magnet. In addition, the device includes a user-movable mode-changing mechanism attached to a third magnet, and arranged to hold the third magnet out of proximity with the first and second magnets when the device is in a first mode, and to move the third magnet into proximity with the first and second magnets when the device is in a second mode so as to expel the first magnet away from the housing and open the door to expose items positioned behind the door.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: December 16, 2014
    Assignee: ZOLL Medical Corporation
    Inventors: John Kubat, Fredrick Faller, Ziad F. Elghazzawi, Peter A. Lund
  • Patent number: 8914130
    Abstract: One example includes an implantable lead including an elongate lead body which includes a proximal portion and a distal portion. In the example, the lead includes a coupler configured to couple to an implantable medical device. The lead includes a first conductor, coupled to the coupler, and extending away from the coupler at least partially through the lead. The lead includes a first electrode, located on the lead away from the coupler and a first switch, located on the lead away from the coupler, the first switch configured to control conductivity between the conductor and the electrode. The lead also includes a first controller circuit, coupled to the conductor and including a first multiplexer circuit configured to multiplex over the conductor a first signal and a second signal, the first controller circuit configured to control the first switch based at least on the first signal.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: December 16, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventor: David R. Wulfman
  • Patent number: 8914106
    Abstract: A medical device and method for detecting and classifying cardiac rhythm episodes that includes a sensing module to sense cardiac events; a therapy delivery module, and a detection module configured to determine intervals between the sensed cardiac events, determine a predetermined cardiac episode is occurring in response to the determined intervals, determine whether a ventricular rate is greater than an atrial rate in response to the determined intervals, determine whether oversensing is occurring in response to the ventricular rate being greater than the atrial rate, adjust the determined intervals in response to oversensing occurring to generate an adjusted ventricular rate, determine whether the cardiac episode is occurring in response to the adjusted ventricular rate, perform a supraventricular tachycardia (SVT) discrimination analysis in response to the cardiac episode occurring in response to the adjusted ventricular rate, and control the therapy delivery module to deliver therapy in response to the S
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: December 16, 2014
    Assignee: Medtronic, Inc.
    Inventors: Sandra B. Charlton, Troy E. Jackson, Benjamin P. Rhodes
  • Patent number: 8909335
    Abstract: A system and method to deliver a therapeutic quantity of energy to a patient. The system includes a capacitor having a rated energy storage capacity substantially equal to the therapeutic quantity of energy, a boost converter coupled with the capacitor and constructed to release energy from the capacitor at a substantially constant current for a time interval, and an H-bridge circuit coupled with the boost converter and constructed to apply the substantially constant current in a biphasic voltage waveform to the patient. The method includes storing a quantity of energy substantially equal to the therapeutic quantity of energy in a capacitor, releasing the quantity of energy at a relatively constant current during a time interval using a boost converter coupled with the capacitor, and delivering a portion of the quantity energy in a direction to the patient using an H-bridge circuit coupled with the boost converter.
    Type: Grant
    Filed: August 15, 2013
    Date of Patent: December 9, 2014
    Assignee: Zoll Medical Corporation
    Inventor: James G. Radzelovage
  • Patent number: 8903490
    Abstract: In various method embodiments for classifying an arrhythmia, a characteristic of a ventricle is sensed before delivering a diagnostic neural stimulation. The diagnostic neural stimulation is delivered, and the characteristic of the ventricle is sensed while delivering the diagnostic neural stimulation. The sensed characteristic of the ventricle before and during the diagnostic neural stimulation is used to classify the arrhythmia as either a supraventricular tachyarrhythmia (SVT) or a ventricular tachycardia (VT). According to various embodiments, the characteristic of the ventricle is ventricular rate, similarity values of sensed ventricular morphology to a normal sinus rhythm (NSR), or ventricular hemodynamics. Various embodiments use ventricular rate regularity before and during the diagnostic neural stimulation to classify an SVT as atrial fibrillation (AF) or as another SVT.
    Type: Grant
    Filed: February 2, 2011
    Date of Patent: December 2, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventor: Dan Li
  • Patent number: 8900140
    Abstract: A differential or relative measurement between an orthogonal measurement vector and another measurement vector can be used to determine the location where fluid accumulation is occurring or the local change in such fluid accumulation. This can help diagnose or treat infection or hematoma or seroma at a pocket of an implanted cardiac rhythm management device, other implanted medical device, or prosthesis. It can also help diagnose or treat pulmonary edema, pneumonia, pulmonary congestion, pericardial effusion, pericarditis, pleural effusion, hemodilution, or another physiological condition.
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: December 2, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Pramodsingh Hirasingh Thakur, Abhilash Patangay, Kent Lee
  • Publication number: 20140350618
    Abstract: The implantable cardiac treatment system of the present invention is capable of choosing the most appropriate electrode vector to sense within a particular patient. In certain embodiments, the implantable cardiac treatment system determines the most appropriate electrode vector for continuous sensing based on which electrode vector results in the greatest signal amplitude, or some other useful metric such as signal-to-noise ratio (SNR). The electrode vector possessing the highest quality as measured using the metric is then set as the default electrode vector for sensing. Additionally, in certain embodiments of the present invention, a next alternative electrode vector is selected based on being generally orthogonal to the default electrode vector. In yet other embodiments of the present invention, the next alternative electrode vector is selected based on possessing the next highest quality metric after the default electrode vector.
    Type: Application
    Filed: August 6, 2014
    Publication date: November 27, 2014
    Inventors: Jay A. Warren, Gust H. Bardy
  • Publication number: 20140350619
    Abstract: A system and method of enabling detection enhancements selected from a plurality of detection enhancements. In a system having a plurality of clinical rhythms, including a first clinical rhythm, where each of the detection enhancements is associated with the clinical rhythms, the first clinical rhythm is selected. The first clinical rhythm is associated with first and second detection enhancements. When the first clinical rhythm is selected, parameters of the first and second detection enhancements are set automatically. A determination is made as to whether changes are to be made to the parameters. If so, one or more of the parameters are modified under user control.
    Type: Application
    Filed: August 11, 2014
    Publication date: November 27, 2014
    Inventors: James O. Gilkerson, Vickie L. Conley, Scott R. Stubbs, Douglas J. Lang
  • Publication number: 20140350621
    Abstract: An implantable medical device capable of sensing cardiac signals and delivering cardiac electrical stimulation therapies is enabled to detect a short circuit of a medical electrical lead. A physiological signal correlated to a motion of a patient is sensed via a physiological sensor. If a lead monitoring condition is met based on the physiological signal, a cardiac signal is acquired and analyzed to detect an abnormality. The short circuit of the medical electrical lead is detected in response to detecting the abnormality.
    Type: Application
    Filed: August 13, 2014
    Publication date: November 27, 2014
    Inventors: Bruce D. Gunderson, Marshall S. Stanton
  • Publication number: 20140350620
    Abstract: An implantable medical device capable of sensing cardiac signals and delivering cardiac electrical stimulation therapies is enabled to detect a short circuit event. A signal is sensed by a sensing module coupled to electrodes. A controller detects a short circuit event in response to a slope of the sensed signal exceeding a short circuit threshold.
    Type: Application
    Filed: August 13, 2014
    Publication date: November 27, 2014
    Inventors: Bruce D. Gunderson, Marshall S. Stanton
  • Publication number: 20140350616
    Abstract: A method of treating a patient in cardiac arrest (e.g., in fibrillation, electrochemical dissociation, or asystole), the method comprising delivering an agent for enhancement of cardiac function to the coronary arteries of the patient; and microperfusing the patient's cardiac tissue by electromagnetically stimulating the cardiac issue at an energy level below a threshold sufficient to defibrillate the heart.
    Type: Application
    Filed: August 11, 2014
    Publication date: November 27, 2014
    Inventor: Gary A. Freeman
  • Patent number: 8897872
    Abstract: Medical devices, software and methods are provided, for making a decision as to whether to administer electric shock therapy to a patient. The decision is made with respect to ECG data that is discounted at least partially, and sometimes even completely, if it occurs during a transition between chest compression group and a pause for ventilation.
    Type: Grant
    Filed: January 24, 2011
    Date of Patent: November 25, 2014
    Assignee: Physio-Control, Inc.
    Inventor: Joseph L. Sullivan
  • Patent number: 8892203
    Abstract: An apparatus, system, and method are disclosed for weighing an individual on a backboard. The backboard is configured to support a supine individual during transportation. An upper surface of the backboard is configured to receive the supine individual. A scale is embedded within the backboard beneath the upper surface. The embedded scale is configured to determine a weight of the supine individual in response to the upper surface receiving the supine individual.
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: November 18, 2014
    Inventors: John R. Heinrichs, Daniel Peter Lepley, Donovan Patrick Glade, Travis Wayne Stewart, Sheridan Heinrichs
  • Patent number: 8892202
    Abstract: The disclosure relates to a current stimulator, which comprises a high voltage output module, a voltage control module and a charge pump module. The high voltage output module includes a plurality of stacked transistors, and receives an input control signal able to turn on/off the current stimulator and a first voltage. A second voltage is generated by adding the voltages output by all the transistors to the first voltage and then output to the voltage control module. The voltage control module outputs a voltage control signal able to stabilize the stimulus current for the load according to the second voltage and the load impedance variation. The charge pump regulates the first voltage according to the voltage control signal, and outputs the regulated first voltage to the high voltage output module. Thereby, the current stimulator can adaptively stabilize the stimulus current, responding to load impedance variation.
    Type: Grant
    Filed: April 4, 2012
    Date of Patent: November 18, 2014
    Assignee: National Chiao Tung University
    Inventors: Chun-Yu Lin, Yi-Ju Li, Ming-Dou Ker
  • Patent number: 8890702
    Abstract: Defibrillators, software and methods are provided, for transmitting inaudible audio information to one or more external personal sound devices. The audio information may encode an audible indication, which can thus be played by an external personal sound device to a user such as a rescuer.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: November 18, 2014
    Assignee: Physio-Control, Inc.
    Inventors: Glen Caby, Richard C. Nova, John Daynes, Ryan F. Landon