Cardioverting/defibrillating Patents (Class 607/5)
  • Patent number: 8634910
    Abstract: An implantable cardiac rhythm/function management system integrates cardiac contractility modulation (CCM) and one or more other therapies, such as to preserve device safety, improve efficacy, enhance sensing and detection, or enhance therapy effectiveness and delivery. Examples of the one or more other therapies can include pacing, defibrillation/cardioversion, cardiac resynchronization therapy (CRT), or neurostimulation.
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: January 21, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventor: Jeffrey E. Stahmann
  • Publication number: 20140018637
    Abstract: A system includes a communications device integrally incorporated into a remotely deployed medical device to monitor the operative status and use of the device. A home-based medical device will communicate directly through an integrated communications device to provide informational data to a Cloud server or professional caregiver without requiring input or activity by the patient. A remotely deployed medical device, such as a defibrillator, will provide periodic reports regarding the operational status, including remaining battery life, of the deployed device, thus allowing a service technician to provide maintenance service only when service is needed.
    Type: Application
    Filed: June 21, 2013
    Publication date: January 16, 2014
    Inventors: John A. Bennett, Ian Geiser, John-Yuhan Bai
  • Patent number: 8630716
    Abstract: A method embodiment comprises generating a neural stimulation signal for a neural stimulation therapy. The signal is generated during a duty cycle of a stimulation period to provide the neural stimulation therapy with an intensity at a therapy level for a portion of the duty cycle. In various embodiments, a ramp up protocol is implemented to begin the duty cycle, a ramp down protocol is implemented to end the duty cycle, or both the ramp up protocol and the ramp down protocol are implemented. The ramp up protocol includes ramping up the intensity from a non-zero first subthreshold level for the neural stimulation therapy at the beginning of the duty cycle to the therapy level. The ramp down protocol includes ramping down the intensity from the therapy intensity level to a non-zero second subthreshold level for the neural stimulation therapy at the end of the duty cycle.
    Type: Grant
    Filed: August 16, 2012
    Date of Patent: January 14, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Marina V. Brockway, Paul A. Haefner, Anthony V. Caparso, Wondimeneh Tesfayesus
  • Patent number: 8626285
    Abstract: Implementations of various technologies described herein are directed toward a sensing architecture for use in cardiac rhythm management devices. The sensing architecture may provide a method and means for certifying detected events by the cardiac rhythm management device. Moreover, by exploiting the enhanced capability to accurately identifying only those sensed events that are desirable, and preventing the use of events marked as suspect, the sensing architecture can better discriminate between rhythms appropriate for device therapy and those that are not.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: January 7, 2014
    Assignee: Cameron Health, Inc.
    Inventors: Surekha Palreddy, Jay A. Warren, James W. Phillips
  • Patent number: 8626284
    Abstract: An intracardiac defibrillation catheter system equipped with a defibrillation catheter, a power source device and an electrocardiograph. The defibrillation catheter is equipped with a first DC electrode group and a second DC electrode group. The power source device is equipped with a DC power source unit, a catheter-connected connector, an electrocardiograph-connected connector, an arithmetic processing unit, which controls the DC power source unit and has an output circuit for outputting a direct current voltage from the DC power source unit, and a changeover unit, in which the catheter-connected connector is connected to a common contact. The electrocardiograph-connected connector is connected to a first contact, and the arithmetic processing unit is connected to a second contact. In the intracardiac defibrillation catheter system, electric energy necessary and sufficient for defibrillation can be surely supplied.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: January 7, 2014
    Assignee: Japan Lifeline Co., Ltd.
    Inventors: Yutaka Onodera, Yasuhiro Kojima, Kenji Mori, Yasuo Sakano
  • Publication number: 20140005734
    Abstract: Aspects of the invention are directed to advanced monitoring and control of medium voltage therapy (MVT) in implantable and external devices. Apparatus and methods are disclosed that facilitate dynamic adjustment of MVT parameter values in response to new and changing circumstances such as the patient's condition before, during, and after administration of MVT. Administration of MVT is automatically and dynamically adjusted to achieve specific treatment or life-support objectives, such as prolongation of the body's ability to endure and respond to MVT, specifically addressing the type of arrhythmia or other pathologic state of the patient with targeted treatment, a tiered-intensity MVT treatment strategy, and supporting patients in non life-critical conditions where the heart may nevertheless benefit from a certain level of assistance.
    Type: Application
    Filed: June 19, 2013
    Publication date: January 2, 2014
    Applicant: Galvani, Ltd.
    Inventors: Byron L. Gilman, Mark W. Kroll, James E. Brewer
  • Publication number: 20140005735
    Abstract: In general, the invention is directed to techniques for using an external defibrillator to detect a presence of an implantable medical device (IMD) implanted within a patient, and providing therapy to the patient through communication between the external defibrillator and the IMD. An external defibrillator provides prompts to a user of the external defibrillator to determine the presence of an IMD implanted within the patient. For example, the external defibrillator may prompt the user to visually inspect the patient's chest for signs that an IMD was implanted, such as a scar or raised portion of skin near the patient's clavicles. As another example, the external defibrillator may prompt the user to place a detection device on the patient's chest. The detection device may be coupled to the external defibrillator, and may employ a magnet to initiate telemetry by the IMD to detect the presence of the IMD.
    Type: Application
    Filed: August 30, 2013
    Publication date: January 2, 2014
    Applicant: Physio-Control, Inc.
    Inventor: David Jorgenson
  • Publication number: 20130345769
    Abstract: A user interface method and apparatus is described for use with a defibrillator (100) such as an automated external defibrillator (AED). The user interface comprises a plurality of layered user interface components which become available to the operator of the defibrillator (100) as they become necessary or appropriate during the operation of the defibrillator (100) and treatment of the patient. In one embodiment, the layered user interface components comprise an on/off actuator (108), a lid (104), an electrode package (120) containing defibrillation electrodes (142, 144), and a shock key (170), as well as accompanying visual and aural instructions for operating the defibrillator (100) and for treating the patient.
    Type: Application
    Filed: August 30, 2013
    Publication date: December 26, 2013
    Applicant: Physio-Control, Inc.
    Inventors: D. Craig Edwards, Kelly J. Locke, Mark B. Gausman, Alex Otman, Richard C. Nova, Shawn R. Bertagnole
  • Publication number: 20130345768
    Abstract: A method for administering a therapeutic shock wherein the therapeutic shock is delivered within a pre-determined pre-shock pause period. In an exemplary embodiment, the method is implement on an AED.
    Type: Application
    Filed: June 25, 2012
    Publication date: December 26, 2013
    Inventor: Gintaras Vaisnys
  • Patent number: 8615295
    Abstract: A variety of arrangements and methods relating to a defibrillator are described. In one aspect of the invention, a defibrillator includes two paddles that each include a defibrillator electrode covered in a protective housing. The two paddles are sealed together using a releasable seal to form a paddle module such that the housings of the paddles form the exterior of the paddle module. An electrical system including at least a battery and a capacitor is electrically coupled with the paddles. The battery is arranged to charge the capacitor. The capacitor is arranged to apply a voltage at the defibrillator electrodes, which generates an electrical shock for arresting a cardiac arrhythmia.
    Type: Grant
    Filed: March 15, 2010
    Date of Patent: December 24, 2013
    Assignee: Cardiothrive, Inc.
    Inventors: Walter T. Savage, Shelley J. Savage, Walter N. Maclay, Douglas C. Morrison, Thomas K. Geraty, Mark D. Brinkerhoff, Ronald S. Boeder, Tony M. Ton, Jeffrey S. Greger
  • Publication number: 20130338194
    Abstract: Disclosed herein are methods of and systems for predicting recurrence of atrial fibrillation comprising protease and protease inhibitor profiling.
    Type: Application
    Filed: November 11, 2011
    Publication date: December 19, 2013
    Applicant: MEDICAL UNIVERSITY OF SOUTH CAROLINA
    Inventors: Rupak Mukherjee, Michael R. Gold, Francis G. Spinale
  • Patent number: 8611997
    Abstract: A capacitor assembly is configured for use with an implantable medical device (IMD. The capacitor assembly may include a stack assembly having at least one anode stack between outer cathodes, and a housing having a case secured to a lid. The case and the lid define an internal chamber that retains the stack assembly. One of the case or the lid comprises a folded double wall connected to a drawn end. A recessed area is defined between the folded double wall and the drawn end. A linear edge of the other of the case and the lid is retained within the recessed area.
    Type: Grant
    Filed: August 24, 2012
    Date of Patent: December 17, 2013
    Assignee: Pacesetter, Inc.
    Inventor: Troy L. McCurry
  • Patent number: 8612017
    Abstract: An implantable device (10) is used to emit electrical stimulation signals to surrounding tissue by means of at least one stimulation electrode (17). The device (10) has a sensor unit (26), which generates a useful signal (D) in the form of analogue voltage pulses (73) from externally fed signals, and an output stage (28) which generates the stimulation signals (E) from the useful signal (D). The output stage (28) emits the stimulation signals (E) in, averaged over time, a substantially DC voltage free fashion to an external ground (29), which can be connected to the tissue (64).
    Type: Grant
    Filed: March 25, 2009
    Date of Patent: December 17, 2013
    Assignee: Retina Implant AG
    Inventor: Albrecht Rothermel
  • Patent number: 8608636
    Abstract: Provided is a ventricular assist device cannula, and more particularly, a ventricular assist device cannula with electrodes. An exemplary embodiment of the present invention provides a ventricular assist device cannula with electrodes, including: a connecting tube connecting an incision of a body tissue and a ventricular assist device so that blood can flow; and electrodes connected with the connecting tube and contacting the incision of the body tissue to transfer an electric signal to the body tissue.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: December 17, 2013
    Assignee: Libraheart, Inc.V
    Inventors: Sung Wook Choi, Byoung Goo Min
  • Publication number: 20130325080
    Abstract: Disclosed is a method for the diagnosis of conductor anomalies, such as an insulation failure resulting in a short circuit, in an implantable medical device, such as an implantable cardioverter defibrillator (ICD). Upon determining if a specific defibrillation pathway is shorted, the method excludes the one electrode from the defibrillation circuit, delivering defibrillation current only between functioning defibrillation electrodes. Protection can be provided against a short in the right-ventricular coil-CAN defibrillation pathway of a pectoral, transvenous ICD with a dual-coil defibrillation lead. If a short caused by an in-pocket abrasion is present, the CAN is excluded from the defibrillation circuit, delivering defibrillation current only between the right-ventricular and superior vena cava defibrillation coils. Determination that the defibrillation pathway is shorted may be made by conventional low current measurements or delivery of high current extremely short test pulses.
    Type: Application
    Filed: March 15, 2013
    Publication date: December 5, 2013
    Inventors: MARK WILLIAM KROLL, Charles Dennis Swerdlow
  • Publication number: 20130325079
    Abstract: The invention relates to a method and apparatus for diagnosis of conductor anomalies, such as insulation failures, in an implantable medical device, such as an implantable cardioverter defibrillator (ICD), a pacemaker, or a neurostimulator. Insulation failures are detected and localized by identifying changes in electrical fields via surface (skin) potentials. Small variations in potential are detected along the course of the electrode near the site of insulation failure.
    Type: Application
    Filed: March 15, 2013
    Publication date: December 5, 2013
    Inventors: Mark William Kroll, Charles Dennis Swerdlow
  • Patent number: 8600496
    Abstract: Disclosed is a method and computer program product for analyzing treatment of a sudden cardiac arrest victim. The method includes attaching the victim to an automatic external defibrillator, capturing treatment information about the CPR event, alerting a rescuer of treatment steps, and displaying a chest compression interface based on the treatment information. The chest compression interface may include an event log about various AED, rescuer, and background events and may be used to generate a graphical chest compression chart for simple analysis of the quality of a CPR treatment.
    Type: Grant
    Filed: November 20, 2006
    Date of Patent: December 3, 2013
    Assignee: Scientific Pathways International, LLC
    Inventor: Michael Kellum
  • Patent number: 8600491
    Abstract: A patient parameter monitoring pod in embodiments of the teachings may include one or more the following features: (a) portable housing containing a power supply, (b) a patient parameter module connectable to a patient via lead cables to collect patient data, the patient data including at least one vital sign, (c) a transceiver adapted to wirelessly transmit the patient data to a defibrillator, (d) a data port adapted to supply the patient data via a direct electrical connection to the defibrillator, and (e) a carrying handle extending from the housing proximate a patient lead cable port that permits connection of the lead cables to the pod, the carrying handle positioned to protect the patient lead cable port and the patient lead cables attached to the port from direct impact.
    Type: Grant
    Filed: December 17, 2004
    Date of Patent: December 3, 2013
    Assignee: Physio-Control, Inc.
    Inventors: Michael D. McMahon, Christopher Pearce, Peter Wung, John C. Daynes, Ken Peterson, Maren L. Nelson, James S. Neumiller
  • Patent number: 8594784
    Abstract: A notebook, laptop computer or tablet computer having an automated external defibrillator (AED) capability, and methods of utilizing the notebook, laptop computer or tablet computer defibrillator to treat victims of sudden cardiac arrest. Kits and methods for converting, adapting or retrofitting a common notebook, laptop computer and tablet computer to enable each to be used as an AED to treat victims of sudden cardiac arrest. A kit including an adjustable case for receiving, encompassing, adapting and converting a common notebook, laptop computer or tablet computer to enable each to be used as an AED. A kit including a slave automated external defibrillator (AED) that is joined to a common notebook, laptop computer or tablet computer to adapt, convert and enable each to be used as an AED.
    Type: Grant
    Filed: October 2, 2012
    Date of Patent: November 26, 2013
    Assignee: Babric Life Science Innovations, LLC.
    Inventors: Barry H. Schwibner, Brad Schwartz, Eric Judge
  • Patent number: 8594775
    Abstract: A method includes retrieving electrogram (EGM) data for N cardiac cycles from a memory of an implantable medical device. N is an integer greater than 1. The method further include categorizing each of the N cardiac cycles into one of a plurality of categories based on a morphology of the N cardiac cycles and performing comparisons between pairs of the N cardiac cycles. Each of the comparisons between two cardiac cycles includes detecting a mismatch between the two cardiac cycles when the two cardiac cycles are in different categories, and detecting a match between the two cardiac cycles when the two cardiac cycles are in the same category. Additionally, the method includes classifying the rhythm of the N cardiac cycles based on a number of detected matches and detected mismatches.
    Type: Grant
    Filed: May 10, 2011
    Date of Patent: November 26, 2013
    Assignee: Medtronic, Inc.
    Inventors: Subham Ghosh, Jeffrey M. Gillberg
  • Patent number: 8594812
    Abstract: An electrode pad packaging system including an electrode pouch, an electrode pad (e.g., a defibrillation electrode pad), a wire and a shell is disclosed. The electrode pad is disposed at least partially within the electrode pouch. The wire extends from the electrode pad and, in a disclosed embodiment, at least a portion of the wire is attached to the shell. The shell is disposed in mechanical cooperation with the electrode pouch (e.g., the shell is secured to a portion of the electrode pouch). The shell includes a valve thereon that is configured to allow air to exit the electrode pouch. The valve may be configured to prevent air from entering the electrode pouch. A method of packaging an electrode pad is also disclosed. The method includes providing an electrode pouch, an electrode pad, a wire and a shell. A valve on the shell allows air to exit the electrode pouch.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: November 26, 2013
    Assignee: Covidien LP
    Inventors: Peter F Meyer, Lee C Burns, Scott R Coggins, David M Selvitelli
  • Publication number: 20130310887
    Abstract: A system is provided for testing the electrical integrity of an implanted pacemaker or defibrillator lead. The system includes a container holding an electrically conductive solution, such as a saline solution. A voltage source and two electrodes are provided to pass an electrical current through the solution. To use the system, the proximal end of the electrical lead is disconnected from the implanted electronic device, passed through the saline solution and then electrically connected to a device/monitor. During testing, the device/monitor sends a test pulse through the lead and monitors electrical activity in the lead. To test sequential locations along the length of the proximal segment, the segment is drawn through the saline solution and between the electrodes while test pulses are sent and monitored. The monitor detects abnormal electrical activity in the lead indicative of a break in lead insulation.
    Type: Application
    Filed: September 7, 2012
    Publication date: November 21, 2013
    Inventor: Guy P. Curtis
  • Patent number: 8588903
    Abstract: An automated external defibrillator including: a reserve power source for providing power to defibrillate a patient, the reserve power source including: a reserve battery which requires activation to produce power; an activator for activating the reserve power upon one of an electrical or mechanical activation; a pair of terminals operatively connected to the reserve battery for outputting the produced power to electrode pads configured to supply the produced power to a surface of the patient; and a stop for preventing the activator from activating the reserve power source, the stop being selectively removable when activation is desired.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: November 19, 2013
    Assignee: Omnitek Partners LLC
    Inventor: Jahangir S. Rastegar
  • Patent number: 8588894
    Abstract: Techniques include determining a first vector of temporal changes in electrical data measured at multiple electrical sensors positioned at corresponding locations on a surface of a living body due to a natural electrical pulse. A different vector of temporal changes in electrical data measured at the same electrical sensors is determined due to each stimulated signal of multiple stimulated signals within the living body. Stimulated position data is received, which indicates a different corresponding position within the living body where each of the stimulated signals originates. The site of origin of the natural electrical pulse is determined based on the first vector and the multiple different vectors and the stimulated position data. Among other applications, these techniques allow the rapid, automatic determination of the site of origin of ventricular tachycardia arrhythmia (VT).
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: November 19, 2013
    Assignee: University of Maryland, Baltimore
    Inventors: Magdi M. Saba, Stephen R. Shorofsky
  • Publication number: 20130304145
    Abstract: A defibrillator system optimizes the timing and manner of applying a defibrillator charge to a patient based upon data provided to the defibrillator from a utility module or one or more external devices. A parameter module on the utility module provides the defibrillator with patient parameter information. Devices external to the utility module may provide the utility module with coaching data that the utility module may pass through to the defibrillator as a proxy to the external devices. The utility module may also provide external devices with patient data that the utility module may pass through to the external devices as a proxy to the defibrillator on a scheduled or other basis. The utility module may additionally provide a reserve of power to enable defibrillators to be used where power is unavailable and to enable defibrillators to deliver multiple charges more readily anywhere, anytime.
    Type: Application
    Filed: November 30, 2012
    Publication date: November 14, 2013
    Applicant: PHYSIO-CONTROL, INC.
    Inventors: David Dean Aoyama, Ryan William Apperson, Matthew Lawrence Bielstein, Barry D. Curtin, John Daynes, Kevin C. Drew, Karen Kraft Langman, Mina Lim, Neil G. McIlvaine, E. Thomas McKay, Randy L. Merry, Ken Peterson
  • Publication number: 20130304144
    Abstract: A processor-based method for use with an active implantable medical device for cardiac pacing, resynchronization, and/or defibrillation includes forming a plurality of first and second endocardial acceleration vectors using a plurality of endocardial acceleration signals acquired using stimulation to cause capture and a spontaneous rhythm of the patient in the absence of ventricular pacing, respectively. An at least two dimension space is created using the first and second endocardial acceleration vectors, including two subspaces corresponding to the presence and absence of capture, respectively. Ventricular capture is tested for after acquiring a new endocardial acceleration signal. The testing includes forming a new endocardial acceleration signal based on the new vector. Presence or absence of capture is determined for the new signal based on the position of the new vector relative to the two subspaces.
    Type: Application
    Filed: July 15, 2013
    Publication date: November 14, 2013
    Inventors: Lionel Giorgis, Amel Amblard
  • Publication number: 20130304146
    Abstract: A defibrillator system optimizes the timing and manner of applying a defibrillator charge to a patient based upon data provided to the defibrillator from a utility module or one or more external devices. A parameter module on the utility module provides the defibrillator with patient parameter information. Devices external to the utility module may provide the utility module with coaching data that the utility module may pass through to the defibrillator as a proxy to the external devices. The utility module may also provide external devices with patient data that the utility module may pass through to the external devices as a proxy to the defibrillator on a scheduled or other basis. The utility module may additionally provide a reserve of power to enable defibrillators to be used where power is unavailable and to enable defibrillators to deliver multiple charges more readily anywhere, anytime.
    Type: Application
    Filed: November 30, 2012
    Publication date: November 14, 2013
    Applicant: PHYSIO-CONTROL, INC.
    Inventors: David Dean Aoyama, Ryan William Apperson, Matthew Lawrence Bielstein, Barry D. Curtin, Mina Lim, Neil G. McIlvaine, E. Thomas McKay, Randy L. Merry, Ken Peterson, Mitchell Allen Smith
  • Publication number: 20130304147
    Abstract: A defibrillator system optimizes the timing and manner of applying a defibrillator charge to a patient based upon data provided to the defibrillator from a utility module or one or more external devices. A parameter module on the utility module provides the defibrillator with patient parameter information. Devices external to the utility module may provide the utility module with coaching data that the utility module may pass through to the defibrillator as a proxy to the external devices. The utility module may also provide external devices with patient data that the utility module may pass through to the external devices as a proxy to the defibrillator on a scheduled or other basis. The utility module may additionally provide a reserve of power to enable defibrillators to be used where power is unavailable and to enable defibrillators to deliver multiple charges more readily anywhere, anytime.
    Type: Application
    Filed: November 30, 2012
    Publication date: November 14, 2013
    Applicant: PHYSIO-CONTROL, INC.
    Inventors: David Dean Aoyama, Matthew Lawrence Bielstein, Barry D. Curtin, Kevin C. Drew, Mina Lim, E. Thomas McKay, Randy L. Merry, Ken Peterson
  • Publication number: 20130304142
    Abstract: A defibrillator system optimizes the timing and manner of applying a defibrillator charge to a patient based upon data provided to the defibrillator from a utility module or one or more external devices. A parameter module on the utility module provides the defibrillator with patient parameter information. Devices external to the utility module may provide the utility module with coaching data that the utility module may pass through to the defibrillator as a proxy to the external devices. The utility module may also provide external devices with patient data that the utility module may pass through to the external devices as a proxy to the defibrillator on a scheduled or other basis. The utility module may additionally provide a reserve of power to enable defibrillators to be used where power is unavailable and to enable defibrillators to deliver multiple charges more readily anywhere, anytime.
    Type: Application
    Filed: November 30, 2012
    Publication date: November 14, 2013
    Applicant: Physio-Control, Inc.
    Inventors: Barry D. Curtin, John Daynes, Karen Kraft Langman, Mina Lim, Neil G. McIlvaine, E. Thomas McKay, Randy L. Merry, Ken Peterson, Mitchell Allen Smith
  • Publication number: 20130304143
    Abstract: An external medical device can include a medical data collection port for collecting medical data corresponding to a person using the external medical device, a radio frequency identification (RFID) communication module, and a processor configured to cause the RFID communication module to provide the medical data to an RFID device that is external to the external medical device.
    Type: Application
    Filed: May 8, 2013
    Publication date: November 14, 2013
    Applicant: PHYSIO-CONTROL, INC.
    Inventor: Isabelle Banville
  • Patent number: 8577454
    Abstract: A subcutaneous implantable cardioverter-defibrillator is disclosed which has an electrically active canister which houses a source of electrical energy, a capacitor, and operational circuitry that senses the presence of potentially fatal heart rhythms. At least one subcutaneous electrode that serves as the opposite electrode from the canister is attached to the canister via a lead system. Cardioversion-defibrillation energy is delivered when the operational circuitry senses a potentially fatal heart rhythm. There are no transvenous, intracardiac, or epicardial electrodes. A method of subcutaneously implanting the cardioverter-defibrillator is also disclosed as well as a kit for conducting the method.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: November 5, 2013
    Assignee: Cameron Health, Inc.
    Inventors: Gust H. Bardy, Riccardo Cappato
  • Patent number: 8577455
    Abstract: A method and device for detecting arrhythmias in a patient that includes electrodes positioned subcutaneously within the patient, a microprocessor, coupled to the electrodes, determining one of a sequence of the sensing of cardiac signals by the electrodes and a duration between the sensing of cardiac signals by the electrodes, and control circuitry delivering a therapy in response to one of the determined sequence and the determined duration.
    Type: Grant
    Filed: January 18, 2005
    Date of Patent: November 5, 2013
    Assignee: Medtronic, Inc.
    Inventors: Raul D. Mitrani, Peter P. Tarjan, Jeffrey M. Gillberg
  • Patent number: 8577475
    Abstract: A Wireless Monitoring Apparatus is used in conjunction with an automated external defibrillator (AED) system for patient rescue in mass-casualty incidents. The rescuer applies the device on each patient. The wireless monitoring apparatus automatically analyzes the patient's heart rhythm and communicates with the AED system. The AED system is therefore is able to display information with regard to each patient, notifies the rescuer on actions to take and can deliver defibrillation therapy if needed.
    Type: Grant
    Filed: March 11, 2010
    Date of Patent: November 5, 2013
    Inventor: Kyle R. Bowers
  • Publication number: 20130289637
    Abstract: The implantable medical device includes high-voltage components (such as defibrillation shock generation components) operative to generate high-voltage pulses for delivery to tissues of the patient while using the case or housing of the device as a stimulation electrode. The device also includes low-voltage Medical Implant Communication Service (MICS) or Medical Device Radiocommunications Service (MedRadio) components operative to generate low-power signals for communicating with an external device via radio frequencies while using the case as part of an antenna. A conductive noise shield is mounted within the case of the device and interposed between the high-voltage components and the case, with the shield configured to attenuate electrical interference between the high-voltage components and the case to facilitate radio-frequency communication between the low-voltage MICS/MedRadio components and the external device, which use the case as part of the antenna.
    Type: Application
    Filed: April 27, 2012
    Publication date: October 31, 2013
    Applicant: PACESETTER, INC.
    Inventors: Jorge Amely-Velez, Kavous Sahabi, Anthony Li, Katerina Serafimova, Ana Maria Gonzalez Nieto, Ting Jun Lo, Daniel Thomas, Jeffrey Alves
  • Patent number: 8570755
    Abstract: A device has been designed that allows for modular rearrangement of groups of controls such that a user can shift control “pods” from left to right on the face of the device without changing the functionality of the device in any manner. The pods are electrically and mechanically movable from one port to another and thus pods can be designed having different control types for controlling the same function. Thus, an operator can select the operator's preferred control types for a particular set of functions and can then adapt the control panel with the operator's preference of both control type and control function location. This then allows the same device to be used by different operators one after the other with each operator being able to customize the control panel according to that operator's preferences. In one embodiment operators can rearrange the control panel in the hot mode so that the device need not be turned off.
    Type: Grant
    Filed: September 3, 2009
    Date of Patent: October 29, 2013
    Inventors: Joshua M. Hansen, Bradley J. Sliger
  • Patent number: 8565901
    Abstract: An electrode package for use with a defibrillator, the electrode package comprising an outer shell providing a vapor barrier between an interior space inside the outer shell and an exterior environment, a breakaway connection element positioned at the perimeter of the outer shell, one or more defibrillation electrodes positioned in the interior space inside the outer shell, a further electrical element positioned in the interior space inside the outer shell, electrical paths extending from the further electrical element through the breakaway element to the exterior environment, wherein the breakaway element and electrical paths are configured so that, when the outer shell is opened and the defibrillation electrodes are removed, the electrical paths are disconnected within the breakaway element.
    Type: Grant
    Filed: July 5, 2006
    Date of Patent: October 22, 2013
    Assignee: ZOLL Medical Corporation
    Inventors: Michael R. Dupelle, Michael Parascandola, Marc Cordaro, George Reilly, David N. Craige, III
  • Patent number: 8565871
    Abstract: An automatic external defibrillator (AED) includes an integral wireless modem configured so that, upon activation, the AED automatically connects to a wireless network and reports the event to an emergency services center or remote server to call for an ambulance. The activation report may be accomplished by calling an emergency services center and playing a prerecorded voice message that includes AED location information. Alternatively, the activation report may be transmitted via a wireless data network to a remote server which routes the information to appropriate authorities. After the activation report is transmitted, the AED may transmit patient and treatment data to the server. The AED may include a speaker phone capability so a caregiver can talk with a dispatcher or medical team. The AED may also automatically report activation data and periodic self-diagnostic testing results to a manufacturer or service provider via a wireless data call to a remote server.
    Type: Grant
    Filed: September 7, 2009
    Date of Patent: October 22, 2013
    Assignee: QUALCOMM Incorporated
    Inventor: Bijan B. Tuysserkani
  • Patent number: 8565882
    Abstract: An electronic medical monitoring and treatment apparatus allows a person access to a medical professional (MP) who can monitor, diagnose and treat the person from a remote site. The apparatus includes a medical monitoring and treatment device (MMTD) coupled to an electronic adapter designed to communicate with a local, first transmitting/receiving (T/R) device which, in turn, is adapted to electronically communicate with a remote, second transmitting/receiving (T/R) device used by the MP. The MMTD may comprise a cardiac treatment circuit for effecting cardiac pacing and/or defibrillation and a cardiac signal circuit for receiving cardiac signals. The cardiac signals are (1) transmitted from the signal circuit to the second T/R device for evaluation by the MP, (2) the MP may transmit a control signal to the treatment circuit, and (3), in response thereto, the treatment circuit may generate one or more electrical pulses for treatment of the person.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: October 22, 2013
    Inventor: Jeffrey A. Matos
  • Patent number: 8565865
    Abstract: Methods for determination of timing for electrical shocks to the heart to determine shock strength necessary to defibrillate a fibrillating heart. The timing corresponds the window of most vulnerability in the heart, which occurs during the T-wave of a heartbeat. Using a derivatized T-wave representation, the timing of most vulnerability is determined by a center of the area method, peak amplitude method, width method, or other similar methods. Devices are similarly disclosed embodying the methods of the present disclosure.
    Type: Grant
    Filed: July 24, 2008
    Date of Patent: October 22, 2013
    Assignees: Medtronic, Inc., Imperception, Inc.
    Inventors: Paul A. Belk, Jian Cao, Jeffrey M. Gillberg, Charles D. Swerdlow
  • Patent number: 8560065
    Abstract: A system for providing improved feedback on administration of CPR is disclosed. A compression sensor (14) is incorporated into a pad (12) adapted to be positioned between a rescuer's hands and a victim's chest. The compression sensor provides an output to a feedback control module (16) that records the output and segments the output into individual compression cycles that are analyzed with respect to evaluation criteria, such as those related to guidelines for effective CPR. The results of the analysis are formatted into a matrix having elements that represent the results of the analysis for an individual compression cycle with respect to an evaluation criterion. An example of the matrix elements is a graph plotting a property of compressions within one of the individual compression cycles over time. Portions of the graphs failing to satisfy one of the evaluation criteria may be highlighted.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: October 15, 2013
    Assignee: Koninklijke Philips N.V.
    Inventor: Jacco Eerden
  • Patent number: 8560067
    Abstract: A cardiac electro-stimulatory device and method for operating same in which stimulation pulses are distributed among a plurality of electrodes fixed at different sites of the myocardium in order to reduce myocardial hypertrophy brought about by repeated pacing at a single site and/or increase myocardial contractility. In order to spatially and temporally distribute the stimulation, the pulses are delivered through a switchable pulse output configuration during a single cardiac cycle, with each configuration comprising one or more electrodes fixed to different sites in the myocardium.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: October 15, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Rodney W. Salo, Julio C. Spinelli, Bruce H. KenKnight
  • Patent number: 8560066
    Abstract: Methods and apparatus for a three-stage atrial cardioversion therapy that treats atrial arrhythmias within pain tolerance thresholds of a patient. An implantable therapy generator adapted to generate and selectively deliver a three-stage atrial cardioversion therapy and at least two leads operably each having at least one electrode adapted to be positioned proximate the atrium of the patient. The device is programmed with a set of therapy parameters for delivering a three-stage atrial cardioversion therapy to the patient via both a far-field configuration and a near-field configuration of the electrodes upon detection of an atrial arrhythmia.
    Type: Grant
    Filed: May 7, 2010
    Date of Patent: October 15, 2013
    Assignee: Washington University
    Inventors: Igor Efimov, Wenwen Li, Ajit Janardhan
  • Patent number: 8560064
    Abstract: A cardiac arrhythmia may be induced by delivering a sequence of pulses to a patient via one or more extravascular electrodes. In one example, one or more pacing pulses may be delivered to a patient via an extravascular electrode and a shock pulse may be delivered to the patient the extravascular electrode. In some examples, the pacing pulses and the shock pulse may be generated with energy from a common energy storage module and without interim charging of the module. For example, the pacing and shock pulses may be generated as the energy storage module dissipates. In another example, a cardiac arrhythmia may be induced in a patient by delivering a burst of pulses to a patient via an extravascular electrode. In some cases, the burst of pulses may be generated with energy from a common energy storage module and without interim charging of the energy storage module.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: October 15, 2013
    Assignee: Medtronic, Inc.
    Inventors: Matthew David Bonner, Kevin Patrick Kuehn, Vladimir Pavlovich Nikolski, Joseph L. Sullivan, William John Havel
  • Publication number: 20130261685
    Abstract: A cardiac arrhythmia can be identified, such as a tachycardia or fibrillation episode (atrial or ventricular). In responses to the detected arrhythmia, a coordinated electrostimulation therapy can be provided using at least one of a defibrillation shock therapy, a pre-shock conditioning therapy, or a post-shock conditioning therapy. The pre-shock or post-shock conditioning therapies can include electrostimulation therapies provided to the natural electrical conduction system of the heart between the atrioventricular node and the Purkinje fibers, inclusive, such as at or near a His bundle of a heart. In an example, a defibrillation threshold can be reduced by providing a pre-shock conditioning electrostimulation therapy to the natural electrical conduction system of the heart between the atrioventricular node and the Purkinje fibers, inclusive, such as at or near a His bundle.
    Type: Application
    Filed: March 28, 2013
    Publication date: October 3, 2013
    Inventors: Allan C. Shuros, Jiang Ding, Dan Li, Yinghong Yu
  • Patent number: 8548584
    Abstract: In general, the invention is directed to techniques for using an external defibrillator to detect a presence of an implantable medical device (IMD) implanted within a patient, and providing therapy to the patient through communication between the external defibrillator and the IMD. An external defibrillator provides prompts to a user of the external defibrillator to determine the presence of an IMD implanted within the patient. For example, the external defibrillator may prompt the user to visually inspect the patient's chest for signs that an IMD was implanted, such as a scar or raised portion of skin near the patient's clavicles. As another example, the external defibrillator may prompt the user to place a detection device on the patient's chest. The detection device may be coupled to the external defibrillator, and may employ a magnet to initiate telemetry by the IMD to detect the presence of the IMD.
    Type: Grant
    Filed: October 27, 2008
    Date of Patent: October 1, 2013
    Assignee: Physio-Control, Inc.
    Inventor: David J. Jorgenson
  • Publication number: 20130253600
    Abstract: A computer can include a first communication port for establishing a first connection with a medical device, a second communication port for establishing a second connection with a network, and an agent configured to query a collection of device records within the network to determine whether a device record specific to the medical device exists. The computer can also include a processor configured to receive over the second connection a message from the network responsive to the query, the message including an upgrade link specific to a device type corresponding to the device. The processor can also be configured to send to the medical device over the first connection an upgrade of a software application on the medical device responsive to a user selecting the upgrade link, where the software application is structured to cause the device to operate.
    Type: Application
    Filed: September 27, 2012
    Publication date: September 26, 2013
    Applicant: PHYSIO-CONTROL, INC.
    Inventors: Kevin C. Drew, Dana S. Lewis
  • Patent number: 8543201
    Abstract: A method of joining a connection member to a capacitor foil using a staking tool having a tip of less than 0.030? (0.762 mm) in diameter. Another embodiment couples multiple connection members of a capacitor together by edge-connecting each connection member to its substantially flush neighboring connection members. In one aspect, a capacitor includes a multi-anode stack connected at a first weld by a weld joint less than 0.060? (1.524 mm) in diameter and a tab attached to one of the anodes of the multi-anode stack at a second weld. In one aspect, an exemplary method joining one or more foils using a staking tool having a tip of less than approximately 0.060? (1.524 mm) in diameter. In another aspect, a capacitor including a capacitor case having an electrolyte therein and a high formation voltage anode foil having a porous structure and located within the capacitor case.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: September 24, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Michael J. O'Phelan, James M. Poplett, Robert R. Tong, Rajesh Iyer, Alexander Gordon Barr
  • Patent number: 8532764
    Abstract: The disclosure describes techniques for protecting patient data stored in a medical device, such as an external defibrillator. The patient data may be transferred, or downloaded, from the medical device to another device, such as to a computing device for storage or analysis. In response to the download, the medical device may protect the patient data so that at least subset of users can no longer access the patient data. Patient data may be protected by modifying the data form, encrypting the data, moving the data to another memory module, password protecting the patient data, or modifying an access control list associated with the patient data. While the patient data may also be deleted as a technique for protecting the data, not deleting the data may allow the data to be recovered at a later time by an authorized user, i.e., a user not part of the subset.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: September 10, 2013
    Assignee: Physio-Control, Inc.
    Inventor: Steven B. Duke
  • Publication number: 20130231711
    Abstract: A system including an ambulatory medical treatment device is provided. The ambulatory medical treatment device includes a memory, a treatment component configured to treat a patient, at least one processor coupled to the memory and the treatment component, a user interface component, and a system interface component. The user interface component is configured to receive an update session request and to generate the update session identifier responsive to receiving the request. The system interface component is configured to receive an encoded request including an identifier of an update session and device update information, to decode the encoded request to generate a decoded request including the device update information and the identifier of the update session, to validate the decoded request by determining that the update session identifier matches the identifier of the update session, and to apply the device update information to the ambulatory medical treatment device.
    Type: Application
    Filed: March 1, 2013
    Publication date: September 5, 2013
    Inventor: Thomas E. Kaib
  • Patent number: 8527044
    Abstract: A user interface method and apparatus is described for use with a defibrillator (100) such as an automated external defibrillator (AED). The user interface comprises a plurality of layered user interface components which become available to the operator of the defibrillator (100) as they become necessary or appropriate during the operation of the defibrillator (100) and treatment of the patient. In one embodiment, the layered user interface components comprise an on/off actuator (108), a lid (104), an electrode package (120) containing defibrillation electrodes (142, 144), and a shock key (170), as well as accompanying visual and aural instructions for operating the defibrillator (100) and for treating the patient.
    Type: Grant
    Filed: May 15, 2002
    Date of Patent: September 3, 2013
    Assignee: Physio-Control, Inc.
    Inventors: D. Craig Edwards, Kelly J. Locke, Mark Gausman, Alex Otman, Richard C. Nova, Shawn R. Bertagnole