Supported By Frame Patents (Class 623/2.17)
  • Patent number: 7354455
    Abstract: Medical stents having valves and their methods of manufacture are disclosed. The valve may be basket-shaped and formed integral to a medical stent to prevent undesirable backflow across the valve. The valve can be formed by converting the braided wires of the stent, by providing elastomeric material onto a mold or fixture to form an elastomeric valve, or by attaching a gasket valve. The valve is normally closed but configured to allow easy opening in response to a predetermined condition.
    Type: Grant
    Filed: August 5, 2004
    Date of Patent: April 8, 2008
    Assignee: Boston Scientific Scimed, Inc.
    Inventor: Jonathan S. Stinson
  • Publication number: 20080071368
    Abstract: A prosthesis is provided for implantation at a native semilunar valve of a native valve complex, the native valve complex having three semilunar sinuses and three native commissures. The prosthesis includes a valve prosthesis support, which comprises a support structure comprising exactly three engagement arms that meet one another at three respective junctures. The engagement arms are shaped so as define three peak complexes at the three respective junctures, and three trough complexes, each of which is between two of the peak complexes. Upon implantation of the prosthesis, each of the engagement arms is at least partially disposed within a respective one of the semilunar sinuses, such that each of the peak complexes is disposed distal to and in rotational alignment with a respective one of the native commissures, and each of the trough complexes is disposed at least partially within the respective one of the semilunar sinuses.
    Type: Application
    Filed: March 23, 2007
    Publication date: March 20, 2008
    Inventors: Yosi Tuval, Ido Kilemnik, Raphael Benary
  • Patent number: 7311730
    Abstract: An apparatus is disclosed for supporting a heart valve at an annulus of an implantation site. The apparatus includes a base portion operative to maintain a circumferential dimension thereof. A plurality of fingers extend axially and radially outwardly from the first end of the support element. A heart valve can be located within the apparatus to provide a prosthesis that can be suturelessly implanted at an annulus of a patient.
    Type: Grant
    Filed: February 13, 2004
    Date of Patent: December 25, 2007
    Inventor: Shlomo Gabbay
  • Patent number: 7252682
    Abstract: The present invention is an assembly comprising a prosthetic valve to be implanted; a radially expandable stent comprising at least one zone intended to be expanded to allow the stent, in the expanded state, to bear against the wall of the body duct to be fitted with the valve, this bearing making it possible to immobilize this stent with respect to this wall; and means for mounting the valve with respect to the stent, making it possible to connect the valve to the stent in such a way that the placement of the stent allows the valve to be mounted in the body duct, and expansion means such as a balloon catheter being provided to trigger expansion of the stent at the implantation site. According to the invention, the valve and the stent are designed in such a way that, at the moment when the stent is expanded, the valve is situated outside the zone or zones of the stent that are subjected to said expansion means.
    Type: Grant
    Filed: July 4, 2002
    Date of Patent: August 7, 2007
    Assignee: CoreValve, S.A.
    Inventor: Jacques Seguin
  • Patent number: 7179290
    Abstract: A flexible prosthetic tissue-type heart valve having commissures that are substantially decoupled from a cusp support structure. The valve includes three leaflets having arcuate cusp edges and opposed concave shaped free edges, with outwardly-directed attachment tabs therebetween. A cusp support structure in either one or more pieces attaches to the leaflet cusp edges. Three commissures are each formed partly with an axially-extending insert member to which two adjacent leaflet tabs attach. An inverted V-shaped clip maintains close contact between the adjacent leaflet tabs and provides a stress-relieving clamping action in conjunction with the insert member. The insert member attaches about its lower end to base sections of the cusp support structure, or to an intermediate sewing ring, so that the commissures may pivot about the cusp support structure.
    Type: Grant
    Filed: October 28, 2004
    Date of Patent: February 20, 2007
    Assignee: Edwards Lifesciences
    Inventor: Dongbu Cao
  • Patent number: 7175656
    Abstract: The present invention provides improved devices and methods for replacing or repairing a malfunctioning heart valve. In particular, improved minimally invasive methods and devices are provided for percutaneous transcatheter implantation of expansible prosthetic heart valves within or adjacent a valved anatomic site within the heart. In one embodiment, an expansible prosthetic heart valve comprises an implantable structure, a flexible membrane, and a membrane support. The implantable structure is expansible from a first reduced diameter to a second enlarged diameter and has a flow path therethrough. The flexible membrane is positionable in the flow path for permitting flow in a first direction and substantially resisting flow in a second direction. The membrane support is positionable in the flow path and affixed to the implantable structure.
    Type: Grant
    Filed: April 18, 2003
    Date of Patent: February 13, 2007
    Inventor: Alexander Khairkhahan
  • Patent number: 7044966
    Abstract: Methods and systems for minimally invasive replacement of a valve. The system includes a collapsible valve and anchoring structure, devices and methods for expanding the valve anchoring structure, adhesive means to seal the valve to the surrounding tissue, a catheter-based valve sizing and delivery system, native valve removal means, and a temporary valve and filter assembly to facilitate removal of debris material. The valve assembly comprises a valve and anchoring structure for the valve, dimensioned to fit substantially within the valve sinus.
    Type: Grant
    Filed: October 6, 2003
    Date of Patent: May 16, 2006
    Assignee: 3F Therapeutics, Inc.
    Inventors: Oleg Svanidze, Keith E. Myers
  • Patent number: 7041132
    Abstract: This invention discloses a percutaneous delivered heart valve and delivery means thereof, wherein the percutaneous delivered heart valve is a twistedly foldable heart valve prosthesis comprising a generally cylindrical support element with a diameter, wherein the support element is twistedly foldable to a smaller diameter, a flexible heart valve with a plurality of valvular leaflets releasably attached to said support element, and a receptacle having a plurality of connecting members secured to the cylindrical support element, wherein the receptacle is releasably matched to an expanding element capable of untwisting the receptacle adapted for un-twisting and unfolding said heart valve.
    Type: Grant
    Filed: August 16, 2002
    Date of Patent: May 9, 2006
    Assignee: 3F Therapeutics, Inc,
    Inventors: Rodolfo C. Quijano, Hosheng Tu
  • Patent number: 7025780
    Abstract: A valvular prosthesis and method of using the prosthesis are disclosed. A valve apparatus is located within a stent apparatus, such that the prosthesis is deformable between a first condition and a second condition, in which the prosthesis has a reduced cross-sectional dimension relative to the first condition, whereby implantation of the prosthesis is facilitated when in the second condition.
    Type: Grant
    Filed: February 24, 2003
    Date of Patent: April 11, 2006
    Inventor: Shlomo Gabbay
  • Patent number: 6979350
    Abstract: A valve prosthesis is disclosed which is implantable within a vein or other blood vessel of a patient using a minimally-invasive surgical procedure. The prosthesis includes a tubular wire frame which presses radially outward against the inner walls of the blood vessel following implantation to hold the prosthesis in position. Multiple flow-resistive pockets that open and close in response to changes in blood flow direction are attached to the frame to impede the flow of blood in the reverse direction. The prosthesis is implanted using an introducer catheter which holds the prosthesis in a radially-compressed state as the prosthesis is inserted into and positioned within the blood vessel.
    Type: Grant
    Filed: July 15, 2003
    Date of Patent: December 27, 2005
    Assignee: 3F Therapeutics, Inc.
    Inventors: Franciscus Laurens Moll, Menno Kalmann
  • Patent number: 6945997
    Abstract: Improved, adaptable tissue-type heart valves and methods for their manufacture are disclosed wherein a dimensionally stable, pre-aligned tissue leaflet subassembly is formed and its peripheral edge clamped between and attached to an upper shaped wireform and a lower support stent. A variety of adaptable structural interfaces including suture rings, flanges, and conduits may be attached to the support stent with or without an outlet conduit disposed about the wireform to provide a tissue-type heart valve adaptable for use in either a natural heart or in mechanical pumping devices. The methods include forming individual leaflets with a template and using the template to attach the leaflets together to form a tissue leaflet subassembly. The template and leaflets include a straight edge terminating in oppositely directed tabs, and a curvilinear cusp edge extending opposite the straight edge.
    Type: Grant
    Filed: April 11, 2003
    Date of Patent: September 20, 2005
    Assignee: Edwards Lifesciences Corporation
    Inventors: Van Le Huynh, Than Nguyen, Hung Ly Lam, Xiaoming G. Guo, Ralph Kafesjian
  • Patent number: 6875231
    Abstract: A percutaneously deliverable heart valve prosthesis and method of delivery, wherein the prosthesis is anchored to a valvular annulus of a patient and used to replace the patient's diseased valve. The prosthesis is supported by a rigid frame that is generally fixed, but capable of being modified between a first collapsed position and a second expanded position. In its first collapsed position, the prosthesis has sufficient flexibility and is of such a low profile that it allows for easy percutaneously delivery. Upon proper delivery, the prosthesis is anchored and modifiable to a generally permanent expanded position sufficiently rigid to resist the strong recoil force exerted by a distorted stenosed valve orifice displaced by the prosthesis.
    Type: Grant
    Filed: September 11, 2002
    Date of Patent: April 5, 2005
    Assignee: 3F Therapeutics, Inc.
    Inventors: James Peter Anduiza, Rodolfo C. Quijano, Hosheng Tu
  • Publication number: 20040210306
    Abstract: A method of protecting an upper and a lower body of a patient from high venous pressures comprising: providing an elongate valve stent, wherein the stent comprises a first stent member with a first tissue valve secured to a first support structure being disposed at a first end of the stent and a second stent member with a second tissue valve secured to a second support structure being disposed at an opposite second end of the stent, wherein both support structures are collapsibly expandable, the second end being connected to the first end with at least one elongate connecting member; passing the elongate valve stent through a blood vessel with the first and second support structures in a collapsed position; and securing the first support structure to an inferior vena cava and the second support structure to a superior vena cava with both support structures in an expanded shape.
    Type: Application
    Filed: April 17, 2003
    Publication date: October 21, 2004
    Inventors: Rodolfo C. Quijano, Patrick M. McCarthy
  • Patent number: 6790237
    Abstract: Medical stents having valves and their methods of manufacture are disclosed. The valve may be basket-shaped and formed integral to a medical stent to prevent undesirable backflow across the valve. The valve can be formed by converting the braided wires of the stent, by providing elastomeric material onto a mold or fixture to form an elastomeric valve, or by attaching a gasket valve. The valve is normally closed but configured to allow easy opening in response to a predetermined condition.
    Type: Grant
    Filed: October 9, 2001
    Date of Patent: September 14, 2004
    Assignee: SciMed Life Systems, Inc.
    Inventor: Jonathan S. Stinson
  • Patent number: 6780200
    Abstract: The invention relates to a prosthetic mitral heart valve consisting of a support housing (10) comprising a base ring (15) supporting two posts which point essentially in the direction of the ring axis and which are connected by arc-shaped walls (13, 14), these walls being used to fix two flexible leaflets. The free ends of said posts form an inner support for the leaflet. The base ring, as seen from above, has a closed, noncircular shape with a common longitudinal axis but two different-sized semi lateral axes. The posts lie on the longitudinal axis and form the transitional point from one half of the shape to the other.
    Type: Grant
    Filed: February 27, 2003
    Date of Patent: August 24, 2004
    Assignee: Adiam Life Science AG
    Inventor: Josef Jansen
  • Patent number: 6755857
    Abstract: A prosthetic heart valve having an elastomeric stent with an annular base and a plurality of apertures or holes circumferentially spaced around the base for receiving a suture. Flexible polymeric leaflets are molded over the stent. Polymeric material surrounds the apertures, leaving a central opening in each aperture. The base may be a frustro-conical ring. A sewing ring is mounted on the heart valve by suturing the ring through the apertures. Apertures or holes may also be provided by extending an area covered by woven material around all or part of the circumference of the base.
    Type: Grant
    Filed: December 12, 2001
    Date of Patent: June 29, 2004
    Assignee: Sulzer Carbomedics Inc.
    Inventors: Paul C. Peterson, Riyad Moe, Joseph A. Chinn
  • Patent number: 6733525
    Abstract: Expandable heart valves for minimally invasive valve replacement surgeries are disclosed. The valves are rolled into a first, contracted configuration for minimally invasive delivery and then unrolled or unfurled at the implantation site. One- and two-piece stents may be used in conjunction with a plurality of flexible leaflet-forming membranes. The one-piece stents may include an annulus anchoring section, a sinus section with the membranes attached over sinus apertures, and a rigid outflow section. The two-piece stent may include a primary stent to provide a tubular base at the annulus, and a secondary stent having the membranes that couples within the primary stent. Lockout tabs to secure the stents in their expanded shapes are provided. Also, alignment structure may be provided to ensure concentric unfurling. Anchoring barbs at the stent edges or in the stent body secure the valve within the annulus. Methods of implantation are also provided.
    Type: Grant
    Filed: March 23, 2001
    Date of Patent: May 11, 2004
    Assignee: Edwards Lifesciences Corporation
    Inventors: Jibin Yang, Matthew L. Pease, Brandon G. Walsh
  • Patent number: 6730121
    Abstract: Devices for repairing and replacing a heart valve in various embodiments, the devices include at least first and second support rings connected together in a coiled configuration to abut opposite sides of a valve annulus. A replacement valve may be secured to the coil-shaped device. Various alternative fastening systems include suture fastening systems, mechanical fastening systems, shape memory alloy fastening systems and other fastening systems relying only on the resilience between adjacent coils. A method generally includes inserting a first end of the coil-shaped member through a valve annulus, rotating a first ring of the coil-shaped member into position on one side of the valve annulus and positioning at least a second ring of the coil-shaped member on an opposite side of the valve annulus.
    Type: Grant
    Filed: May 14, 2002
    Date of Patent: May 4, 2004
    Assignee: Medtentia
    Inventors: Mark Ortiz, Randy Whedon, Paul A. Spence
  • Patent number: 6635085
    Abstract: A stent includes a stent member having a plurality of post members formed therein. Each post member is connected to an adjacent post member by an interconnecting portion. A plurality of leg members extend from the stent member. The stent may be molded within a flexible polymer valve. The legs stabilize and locate the stent in the mold. Upon completion of the molding process, the legs can be separated from the stent.
    Type: Grant
    Filed: August 17, 2000
    Date of Patent: October 21, 2003
    Assignee: Carbomedics Inc.
    Inventors: James Charles Caffey, Riyad Moe, Matthew Allen Freund, James Hutton
  • Publication number: 20030191525
    Abstract: Method and apparatus implementing and using techniques for controlling flow in a body lumen, including use of an implantable medical device. The device includes a membrane implantable in a body lumen and invertably deformable between a first position and a second position. The membrane is invertible in response to the direction of fluid flow through the lumen and can be deformable by fluid flow in the body lumen.
    Type: Application
    Filed: April 3, 2002
    Publication date: October 9, 2003
    Inventor: Sally C. Thornton
  • Patent number: 6605112
    Abstract: A valve prosthesis is disclosed which is implantable within a vein or other blood vessel of a patient using a minimally-invasive surgical procedure. The prosthesis includes a tubular wire frame which presses radially outward against the inner walls of the blood vessel following implantation to hold the prosthesis in position. Multiple flow-resistive pockets that open and close in response to changes in blood flow direction are attached to the frame to impede the flow of blood in the reverse direction. The prosthesis is implanted using an introducer catheter which holds the prosthesis in a radially-compressed state as the prosthesis is inserted into and positioned within the blood vessel.
    Type: Grant
    Filed: August 1, 2000
    Date of Patent: August 12, 2003
    Assignee: Venpro Corporation
    Inventors: Franciscus Laurens Moll, Menno Kalmann
  • Patent number: 6596024
    Abstract: Biocompatible prostheses, specifically, biocompatible heart valves, are described which comprise a blend of a polyurethane (PU) and a polysiliconeurethane (PSU). Preferably, the polyurethane is a polyetherurethane (PEU). More preferably, it is a polyetherurethane urea (PEUU). Such prostheses typically exhibit reduced mineralization or thrombosis and/or reduced biological degradation.
    Type: Grant
    Filed: December 21, 2000
    Date of Patent: July 22, 2003
    Assignee: Carbomedics Inc.
    Inventor: Joseph Andrew Chinn
  • Patent number: 6589279
    Abstract: Tools can be used to assist with the implantation of heart valve prostheses, especially stentless aortic heart valve prostheses. In some embodiments, a heart valve prosthesis includes a plurality of flexible leaflets; a commissure support and a plurality of fasteners inserted into the inner surface of the commissure support and protruding from the outer surface of the commissure support. The fasteners comprise an elongated portion and a tip at an end of the elongated portion. In other embodiments, a heart valve prosthesis includes a plurality of flexible leaflets and a reinforcement secured to an inner surface of a valve commissure support. The reinforcement has an aperture. The heart valve prosthesis and fastener components can be placed into kits. The fasteners can be used to perform improved implantation procedures.
    Type: Grant
    Filed: April 28, 2000
    Date of Patent: July 8, 2003
    Assignee: St. Jude Medical, Inc.
    Inventors: Kimberly A. Anderson, Danney J. Langanki
  • Publication number: 20030109922
    Abstract: A prosthetic heart valve having an elastomeric stent with an annular base and a plurality of apertures or holes circumferentially spaced around the base for receiving a suture. Flexible polymeric leaflets are molded over the stent. Polymeric material surrounds the apertures, leaving a central opening in each aperture. The base may be a frustro-conical ring. A sewing ring is mounted on the heart valve by suturing the ring through the apertures. Apertures or holes may also be provided by extending an area covered by woven material around all or part of the circumference of the base.
    Type: Application
    Filed: December 12, 2001
    Publication date: June 12, 2003
    Inventors: Paul C. Peterson, Riyad Moe, Joseph A. Chinn
  • Publication number: 20030109923
    Abstract: A prosthetic heart valve having an elastomeric valve body with an annular base for receiving a suture. A sewing cuff is coupled to the valve body and/or a stent member by a piercing suture or other connector member, such as a staple or pin. Apertures may be provided in the stent member.
    Type: Application
    Filed: April 27, 2002
    Publication date: June 12, 2003
    Inventors: Joseph A. Chinn, Riyad Moe, James Charles Caffey
  • Publication number: 20030097175
    Abstract: A cardiac valve prosthesis having a frame and two or more leaflets (preferably three) attached to the frame. The leaflets are attached to the frame between posts, with a free edge which can seal the leaflets together when the valve is closed under back pressure. The leaflets are created in a mathematically defined shape allowing good wash-out of the whole leaflet orifice, including the area close to the frame posts, thereby relieving the problem of thrombus deposition under clinical implant conditions.
    Type: Application
    Filed: June 6, 2002
    Publication date: May 22, 2003
    Inventors: Bernard O'Connor, David John Wheatley, Gillian Maureen Bernacca, William Stafford Haworth
  • Patent number: 6562069
    Abstract: Valved prostheses include a support structure and a plurality of flexible polymer leaflets connected to the support structure, in which the leaflets have an improved structural design. The support structure has a plurality of commissure supports and scallops between the commissure supports. Generally, the flexible polymer leaflets project away from the support structure at an attachment edge where the leaflets connect to the support structure. In particular embodiments, the leaflets at the attachment edge are at an angle from about 5 degrees to about 85 degrees relative to a plane normal to the valve axis. In some embodiments, the flexible polymer leaflets having a coaptation depth from about 0.3 times the valve radius to about 0.8 times the valve radius. In further embodiments, the flexible polymer leaflets form a valve with a valve height from about one times the valve radius to about 2 times the valve radius and have leaflet lengths at least about 1 millimeter greater than the valve radius.
    Type: Grant
    Filed: September 19, 2001
    Date of Patent: May 13, 2003
    Assignee: St. Jude Medical, Inc.
    Inventors: Chad Q. Cai, Steven D. Kruse, James L. Kurk, Yi-Ren Woo
  • Patent number: 6508833
    Abstract: A multiple-sided medical device comprises a closed frame of a single piece of wire or other resilient material and having a series of bends and interconnecting sides. The device has both a flat configuration and a second, folded configuration that comprises a self-expanding stent. The stent is pushed from a delivery catheter into the lumen of a duct or vessel. One or more barbs are attached to the frame of the device for anchoring or to connect additional frames. A covering of fabric or other flexible material such as DACRON, PTFE, or collagen, is sutured or attached to the frame to form an occlusion device, a stent graft, or an artificial valve such as for correcting incompetent veins in the lower legs and feet. A partial, triangular-shaped covering over the lumen of the device allows the valve to open with normal blood flow and close to retrograde flow.
    Type: Grant
    Filed: March 12, 2001
    Date of Patent: January 21, 2003
    Assignee: Cook Incorporated
    Inventors: Dusan Pavcnik, Frederick S. Keller, Josef Rosch, Thomas A. Osborne
  • Patent number: 6482228
    Abstract: An aortic heart valve which is adapted to be placed percutaneously without the need for open-heart surgery is placed by a catheter and held in place with a stent system. The stent system is expanded in the ascending aorta to anchor the valve in the aortic channel above the native aortic valve.
    Type: Grant
    Filed: November 14, 2000
    Date of Patent: November 19, 2002
    Inventor: Troy R. Norred
  • Publication number: 20020151971
    Abstract: A method is disclosed for using tubular material to replace a semilunar heart valve (i.e., an aortic or pulmonary valve). To create such a replacement valve, the native valve cusps are removed from inside an aorta or pulmonary artery, and the inlet end of a tubular segment is sutured to the valve annulus. The outlet (distal) end of the tube is either “tacked” at three points distally, or sutured longitudinally along three lines; either method will allow the flaps of tissue between the suture lines to function as movable cusps. This approach generates flow patterns that reduce turbulence and closely duplicate the flow patterns of native semilunar valves. An article of manufacture is also disclosed, comprising a sterile biocompatible synthetic material which has been manufactured in tubular form, by methods such as extrusion or coating a cylindrical molding device, to avoid a need for a suture line or other seam to convert a flat sheet of material into a tubular shape.
    Type: Application
    Filed: April 11, 2002
    Publication date: October 17, 2002
    Inventor: James L. Cox
  • Patent number: 6461382
    Abstract: A flexible prosthetic tissue-type heart valve having commissures that are substantially decoupled from a cusp support structure. The valve includes three leaflets having arcuate cusp edges and opposed free edges, with outwardly-directed attachment tabs therebetween. A cusp support structure in either one or more pieces attaches to the leaflet cusp edges. Three commissures are each formed partly with an axially-extending insert member to which two adjacent leaflet tabs attach. An inverted V-shaped clip maintains close contact between the adjacent leaflet tabs and provides a stress-relieving clamping action in conjunction with the insert member. The insert member attaches about its lower end to base sections of the cusp support structure, or to an intermediate sewing ring, so that the commissures may pivot about the cusp support structure. The sewing band is scalloped and enables attachment of the valve along the scalloped aortic root so as to couple the valve to the natural motion of the aorta.
    Type: Grant
    Filed: September 22, 2000
    Date of Patent: October 8, 2002
    Assignee: Edwards Lifesciences Corporation
    Inventor: Dongbu Cao
  • Patent number: 6454799
    Abstract: Expandable heart valves for minimally invasive valve replacement surgeries are disclosed. In a first embodiment, an expandable pre-assembled heart valve includes a plastically-expandable annular base having plurality of upstanding commissure posts. A tubular flexible member including a prosthetic section and a fabric section is provided, with the prosthetic section being connected to the commissure posts and defining leaflets therebetween, and the fabric section being attached to the annular base. In a second embodiment, an expandable heart valve includes an annular tissue-engaging base and a subassembly having an elastic wireform and a plurality of leaflets connected thereto. The annular base and subassembly are separately stored and connected just prior to delivery to the host annulus. Preferably, the leaflet subassembly is stored in its relaxed configuration to avoid deformation of the leaflets. The expandable heart valves may be implanted using a balloon catheter.
    Type: Grant
    Filed: April 6, 2000
    Date of Patent: September 24, 2002
    Assignee: Edwards Lifesciences Corporation
    Inventor: Stefan Schreck
  • Publication number: 20020082689
    Abstract: Biocompatible prostheses, specifically, biocompatible heart valves, are described which comprise a blend of a polyurethane (PU) and a polysiliconeurethane (PSU). Preferably, the polyurethane is a polyetherurethane (PEU). More preferably, it is a polyetherurethane urea (PEUU). Such prostheses typically exhibit reduced mineralization or thrombosis and/or reduced biological degradation.
    Type: Application
    Filed: December 21, 2000
    Publication date: June 27, 2002
    Inventor: Joseph Andrew Chinn
  • Publication number: 20020055775
    Abstract: A highly flexible tissue-type heart valve is disclosed having a structural stent in a generally cylindrical configuration with cusps and commissures that are permitted to move radially. The stent commissures are constructed so that the cusps are pivotably or flexibly coupled together at the commissures to permit relative movement therebetween. The stent may be cloth-covered and may be a single element or may be made in three separate elements for a three cusp valve, each element having a cusp portion and two commissure portions; adjacent commissure portions for each pair of adjacent stent element combining to form the stent commissures. If the stent has separate elements their commissure portions may be pivotably or flexible coupled, or may be designed to completely separate into independent leaflets at bioresorbable couples. The cloth covering may have an outwardly projecting flap that mates with valve leaflets (e.g., pericardial leaflets) along the cusps and commissures.
    Type: Application
    Filed: June 14, 1999
    Publication date: May 9, 2002
    Inventors: ALAIN F. CARPENTIER, STEFAN G. SCHRECK, RICHARD S. RHEE, DIANA NGUYEN-THIEN-NHON, HUNG LY LAM, WILLIAM RECKTENWALD
  • Publication number: 20020045936
    Abstract: A heart valve is disclosed which includes a valve body and a plurality of flexible leaflets coupled to the valve body. The plurality of leaflets can have an open position and a closed position. Each of the plurality of leaflets can comprise a belly when the plurality of leaflets are in their respective closed positions. The belly of one or more of the plurality of leaflets preferably has a continuous curvature except for two or more features.
    Type: Application
    Filed: August 27, 2001
    Publication date: April 18, 2002
    Inventor: Riyad Moe
  • Patent number: 6368348
    Abstract: An annuloplasty prosthesis for supporting an annulus of a heart valve includes a substrate material over which a covering of a biocompatible and biological tissue material is applied. The substrate may be formed of a generally rigid material (e.g., a plastic or metal) in which the substrate has a predetermined shape corresponding to an annulus of the heart valve. Alternatively, the substrate may be formed of flexible material (e.g., a soft cloth or natural tissue), which may be adjusted at implantation to accommodate the size and configuration of annulus.
    Type: Grant
    Filed: May 15, 2000
    Date of Patent: April 9, 2002
    Inventor: Shlomo Gabbay
  • Publication number: 20010025196
    Abstract: Biocompatible prostheses, specifically, biocompatible heart valves, are described having incorporated therein an effective amount of coating applied thereto to render the valve resistant to in vivo pathologic thrombus formation and in vivo pathologic mineralization.
    Type: Application
    Filed: December 21, 2000
    Publication date: September 27, 2001
    Inventors: Joseph Andrew Chinn, Jack R. Frautschi, Richard E. Phillips
  • Publication number: 20010012963
    Abstract: Pre-trimmed, cryopreserved homografts and other stentless bioprosthetic heart valves having natural tissue sewing rings formed thereon. The sewing ring may be formed of strip of pericardium or other suitable tissue. Material may be captured between the natural tissue sewing ring and a sub-valvular lip formed on the valve to impart a desired size or shape to the sewing ring. In the case of cryopreserved embodiments of the invention (e.g., cryopreserved human homografts) the sewing ring is attached to the valve by way of a natural tissue suture, biological glue or other attachment component that is capable of undergoing cryopreservation without breaking, excessive weakening, or other changes that prevent it from performing its attachment function.
    Type: Application
    Filed: December 14, 2000
    Publication date: August 9, 2001
    Applicant: The Brigham & Women's Hospital, Inc.
    Inventor: David H. Adams
  • Patent number: 6171335
    Abstract: The invention provides a prosthetic valve having a generally annular frame with three post and three scallops. The frame is tri-symmetric with an axis of symmetry defined by the axis of blood flow through the valve. The external surface of the frame is generally cylindrical with diameter D. Each leaflet has a truncated spherical surface adjacent to its free edge. The spherical surface is joined tangentially to a truncated conical surface. The half angle of the truncated cone is approximately 37.5°. The radius of the sphere is approximately D/2−0.5 (mm). The leaflet surface is axi-symmetrical with the axis of symmetry being perpendicular to the axis of the valve frame and blood flow.
    Type: Grant
    Filed: November 10, 1999
    Date of Patent: January 9, 2001
    Assignee: Aortech Europe Limited
    Inventors: David John Wheatley, John Fisher, David Williams