Resilient Frame Patents (Class 623/2.18)
  • Patent number: 8845722
    Abstract: A heart valve prosthesis has a supported valve including a biological valve portion mounted within a support structure. The supported valve has inflow and outflow ends spaced axially apart from each other. A fixation support member includes an inflow portion that extends from a radially inner contact surface of the fixation support member radially outwardly and axially in a direction of the inflow end of the supported valve. An outflow portion of the fixation support member extends from the radially inner contact surface radially outwardly and axially in a direction away from the inflow portion of the fixation support member. The radially inner contact surface is attached to a radially outer surface of the supported valve adjacent the inflow end of the supported valve.
    Type: Grant
    Filed: August 3, 2009
    Date of Patent: September 30, 2014
    Inventor: Shlomo Gabbay
  • Patent number: 8845720
    Abstract: A prosthetic heart valve can include a valve frame having a wireform portion and a stent portion. The wireform and stent portions can be undetachably coupled together via a plurality of upright struts so as to form a one-piece prosthetic heart valve frame. Alternatively, a self-expanding wireform portion and a balloon-expandable stent portion can be coupled together via one or more leaflets and a subassembly having a flexible leaflet support stent and a sealing ring. The wireform portion can include cusps and commissures configured to support a plurality of leaflets. The prosthetic valve can be radially collapsible for minimally invasive and/or transcatheter delivery techniques. Disclosed embodiments can also provide flexion of the wireform portion (e.g., of the commissures) in response to physiologic pulsatile loading when the valve is implanted in a patient's native valve annulus. Methods of making and using prosthetic heart valves are also disclosed.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: September 30, 2014
    Assignee: Edwards Lifesciences Corporation
    Inventor: Brian S. Conklin
  • Publication number: 20140277419
    Abstract: A transcatheter valve prosthesis includes an expandable tubular stent, a prosthetic valve within the stent, and an anti-paravalvular leakage component coupled to and encircling the stent which includes a plurality of self-expanding struts and an annular sealing membrane. Each strut has a first end coupled to a distal end of the stent and a second end not coupled to the stent. Each anti-paravalvular leakage component is moveable between a compressed configuration and a deployed configuration. In the compressed configuration, each strut extends distally away from the distal end of the stent. In the deployed configuration, each strut extends proximally away from the distal end of the stent. In an embodiment hereof, the deployed strut has a C-shape and is twisted such that the C-shape lies in a plane substantially along or tangential with the outer surface of the stent. In another embodiment hereof, the deployed strut is rolled-up and extends radially away from the outer surface of the stent.
    Type: Application
    Filed: March 12, 2013
    Publication date: September 18, 2014
    Applicant: MEDTRONIC, INC.
    Inventors: Kshitija Garde, Philip Haarstad, Igor Kovalsky, Stephen Nash, Michael Krivoruchko, Gianfranco Pellegrini, Finn Rinne, Matthew Rust, Jeffrey Sandstrom, Padraig Savage, Adam Shipley, William Steinberg
  • Patent number: 8834561
    Abstract: A device for the transvascular implantation and fixation of prosthetic heart valves having a self-expanding heart valve stent (10) with a prosthetic heart valve (11) at its proximal end is introducible into a patient's main artery. With the objective of optimizing such a device to the extent that the prosthetic heart valve (11) can be implanted into a patient in a minimally-invasive procedure, to ensure optimal positioning accuracy of the prosthesis (11) in the patient's ventricle, the device includes a self-expanding positioning stent (20) introducible into an aortic valve positioned within a patient. The positioning stunt is configured separately from the heart valve stent (10) so that the two stents respectively interact in their expanded states such that the heart valve stent (10) is held by the positioning stent (20) in a position in the patient's aorta relative the heart valve predefinable by the positioning stent (20).
    Type: Grant
    Filed: November 22, 2013
    Date of Patent: September 16, 2014
    Assignee: JenaValve Technology GmbH
    Inventors: Hans-Reiner Figulla, Markus Ferrari, Christoph Damm
  • Patent number: 8834563
    Abstract: A heart valve prosthesis includes an expandable prosthetic valve including three valve leaflets coupled to an anchoring structure. The anchoring structure includes an annular member and a plurality of arms movably coupled to the annular member at one end. The free ends of the arms extend radially away from the prosthesis toward a valve annulus. The arms are configured to fit in a space defined between an open native valve leaflet and a wall of a valve sinus. The arms are sufficiently resilient such that they resist downward movement in response to pressure exerted on the prosthesis, facilitating anchorage and stabilization of the prosthesis at the implantation site.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: September 16, 2014
    Assignee: Sorin Group Italia S.r.l.
    Inventor: Giovanni Righini
  • Patent number: 8834564
    Abstract: A prosthesis is provided for implantation at a native semilunar valve of a native valve complex, the native valve complex having three semilunar sinuses and three native commissures. The prosthesis includes a valve prosthesis support, which comprises a support structure comprising exactly three engagement arms that meet one another at three respective junctures. The engagement arms are shaped so as define three peak complexes at the three respective junctures, and three trough complexes, each of which is between two of the peak complexes. Upon implantation of the prosthesis, each of the engagement arms is at least partially disposed within a respective one of the semilunar sinuses, such that each of the peak complexes is disposed distal to and in rotational alignment with a respective one of the native commissures, and each of the trough complexes is disposed at least partially within the respective one of the semilunar sinuses.
    Type: Grant
    Filed: March 11, 2010
    Date of Patent: September 16, 2014
    Assignee: Medtronic, Inc.
    Inventors: Yossi Tuval, Raphael Benary, Ido Kilemnik
  • Publication number: 20140257466
    Abstract: A prosthetic heart valve having an inflow end and an outflow end includes a collapsible and expandable stent. A collapsible and expandable valve assembly is disposed within the stent and includes a plurality of leaflets. A collapsible and expandable frame formed of braided wires has a body portion and a lumen extending through the body portion for receiving the stent and the valve assembly. The frame may include features for holding the prosthetic heart valve in place in a patient.
    Type: Application
    Filed: March 11, 2013
    Publication date: September 11, 2014
    Applicant: ST. JUDE MEDICAL, CARDIOLOGY DIVISION, INC.
    Inventor: ST. JUDE MEDICAL, CARDIOLOGY DIVISION, INC.
  • Publication number: 20140257467
    Abstract: A prosthetic valve for implanting in a patient's native valve has a self-expanding frame that comprises a first end, a second end opposite the first end, an anterior portion, and a posterior portion. The self-expanding frame has an expanded configuration adapted to engage tissue at a treatment site, and a collapsed configuration adapted to be delivered to the treatment site. The expandable frame also comprises a self-expanding atrial skirt near the second end, a self-expanding ventricular skirt near the first end, a self-expanding annular region disposed between first and second ends, a first self-expanding anterior tab disposed on the anterior portion, and a self-expanding foot coupled to the posterior portion and extending radially outward. The foot has an outer surface for engaging the tissue thereby facilitating anchoring of the prosthetic valve and minimizing or preventing rotation of the prosthetic valve.
    Type: Application
    Filed: March 3, 2014
    Publication date: September 11, 2014
    Applicant: Neovasc Tiara Inc.
    Inventors: Randy Matthew Lane, Colin A. Nyuli, Alexei J. Marko, Krista L. Neale
  • Publication number: 20140243966
    Abstract: A transcatheter valve prosthesis includes an expandable tubular stent, a prosthetic valve within the stent, and an anti-paravalvular leakage component coupled to and encircling the tubular stent. The anti-paravalvular leakage component includes a radially-compressible annular scaffold, which is a sinusoidal patterned ring of self-expanding material, and an impermeable membrane extending over the annular scaffold. The anti-paravalvular leakage component has an expanded configuration in which at least segments of the annular scaffold curve radially away from the tubular stent. Alternatively, the anti-paravalvular leakage component includes a plurality of self-expanding segments and an annular sealing element coupled to inner surfaces of the segments. The anti-paravalvular leakage component has an expanded configuration in which the segments curve radially away from the tubular stent and the annular sealing element is positioned between an outer surface of the tubular stent and inner surfaces of the segments.
    Type: Application
    Filed: April 1, 2014
    Publication date: August 28, 2014
    Applicant: MEDTRONIC, INC.
    Inventors: Kshitija Garde, Joel Racchini, Paul Rothstein, Jeffrey Sandstrom
  • Publication number: 20140243965
    Abstract: A collapsible prosthetic heart valve includes a stent and a valve assembly. The stent includes an annulus section and at least one foldable section. The stent is movable between an unfolded condition in which the foldable section is longitudinally spaced from the annulus section, and a folded condition in which the foldable section is at least partially positioned radially adjacent the annulus section. The valve assembly is positioned within the annulus section of the stent in the folded condition of the stent.
    Type: Application
    Filed: June 12, 2012
    Publication date: August 28, 2014
    Applicant: ST. JUDE MEDICAL, INC
    Inventors: Thomas M. Benson, Ott Khouengboua, Peter Nicholas Braido
  • Publication number: 20140236287
    Abstract: A method of preventing paravalvular leakage includes concurrent delivery of a heart valve prosthesis and an annular sealing component. During delivery, the sealing component is moved from a first position to a second position of the heart valve prosthesis which is longitudinally spaced apart from the first position of the heart valve prosthesis. The sealing component is secured around the heart valve prosthesis at the second position by a contoured outer surface of the heart valve prosthesis. The sealing component may be a flexible ring or may be a cylindrical flexible sleeve having a plurality of ribs longitudinally extending over the cylindrical sleeve. The ribs operate to deploy the sealing component such that at least a portion of the cylindrical sleeve buckles outwardly away from the outer surface of the heart valve prosthesis.
    Type: Application
    Filed: February 21, 2013
    Publication date: August 21, 2014
    Applicant: Medtronic, Inc.
    Inventors: Cynthia Clague, Scott Mosher, Marian Creaven, Declan Costello, Gavin Kenny, Michael Krivoruchko, Adam Shipley, Mark Torrianni, Kshitija Garde, Eric Richardson
  • Publication number: 20140236289
    Abstract: A prosthetic aortic valve includes an annular, annulus inflow portion that is designed to reside in or near the patient's native aortic valve annulus, and an annular, aortic outflow portion that is designed to reside in the patient's aorta downstream from at least a portion of the valsalva sinus. The annulus inflow portion and the aortic outflow portion are connected to one another by a plurality of connecting struts that are confined to regions near the commissures of the patient's native aortic valve. The connecting struts are designed to bulge out into the valsalva sinus to help anchor the prosthetic valve in place. The valve is circumferentially collapsible to a relatively small diameter for less-invasive delivery into the patient. The valve circumferentially expands to a larger operational diameter when deployed at the implant site.
    Type: Application
    Filed: April 25, 2014
    Publication date: August 21, 2014
    Applicant: St. Jude Medical, Inc.
    Inventor: Yousef F. Alkhatib
  • Patent number: 8808366
    Abstract: A prosthetic heart valve includes a stent having an expanded condition and a collapsed condition. The stent includes a plurality of distal cells, a plurality of proximal cells, a plurality of support struts coupling the proximal cells to the distal cells, and at least one support post connected to a plurality of proximal cells. The proximal cells are longitudinally spaced apart from the distal cells. Various strut configurations and connections of the struts to the proximal cells and of the proximal cells to the support post improve stent flexibility and reduce stress in the valve leaflets.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: August 19, 2014
    Assignee: St. Jude Medical, Inc.
    Inventors: Peter N. Braido, Yousef F. Alkhatib, Thomas M. Benson, Aaron J. Chalekian, Ott Khouengboua, Julia A. Neuman
  • Publication number: 20140228945
    Abstract: Implantable prosthetic valves are disclosed, methods of their use, and related fabrication techniques are disclosed. In some cases, the prosthetic valves disclosed herein can include frame, skirt, and valve components. The frame component can have an overall, generally scalloped shape comprising fewer struts and fabricated from less raw material than known frames. In some cases, the prosthetic valves disclosed herein can be crimped to a smaller diameter than can other known valves.
    Type: Application
    Filed: February 3, 2014
    Publication date: August 14, 2014
    Applicant: Edwards Lifesciences Corporation
    Inventors: Michael G. Valdez, Tram Ngoc Nguyen
  • Publication number: 20140222140
    Abstract: Expandable prosthetic heart valves for minimally invasive valve replacement are disclosed. In one preferred embodiment, an expandable prosthetic heart valve includes a support stent comprising an expandable tubular base along an inflow end and three upstanding commissure posts along an outflow end. The three commissure posts are spaced at 120 degree intervals with gaps therebetween. The prosthetic heart valve further includes a tubular flexible member having a prosthetic section and a fabric section. The prosthetic section is connected to the three commissure posts and defines three leaflets, preferably formed of pericardial tissue. The fabric section is sutured to the expandable tubular base. The tubular base may be formed with a shape memory material and is sized for deployment with an annulus of a native aortic valve. After deployment, the three commissure posts support the leaflets above the tubular base for replacing the function of the native aortic valve.
    Type: Application
    Filed: April 3, 2014
    Publication date: August 7, 2014
    Applicant: EDWARDS LIFESCIENCES CORPORATION
    Inventor: Stefan Schreck
  • Patent number: 8790398
    Abstract: A method of making a replacement heart valve device whereby a fragment of biocompatible tissue material is treated and soaked in one or more alcohol solutions and a solution of glutaraldehyde. The dried biocompatible tissue material is folded and rehydrated in such a way that forms a two- or three-leaflet/cusp valve without affixing of separate cusps or leaflets or cutting slits into the biocompatible tissue material to form the cusps or leaflets. After the biocompatible tissue material is folded, it is affixed at one or more points on the outer surface to the inner cavity or a stent.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: July 29, 2014
    Assignee: Colibri Heart Valve LLC
    Inventors: David Paniagua, R. David Fish
  • Patent number: 8790395
    Abstract: The present invention relates to a stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient. Specifically, the present invention relates to an expandable stent for an endoprosthesis used in the treatment of a narrowing of a cardiac valve and/or a cardiac valve insufficiency. So as to ensure that no longitudinal displacement of a valvular prosthesis fastened to a stent will occur relative the stent in the implanted state of the stent, even given the peristaltic motion of the heart, the stent according to the invention comprises at least one fastening portion via which the valvular prosthesis is connectable to the stent. The stent further comprises positioning arches and retaining arches, whereby at least one positioning arch is connected to at least one retaining arch.
    Type: Grant
    Filed: May 17, 2013
    Date of Patent: July 29, 2014
    Assignee: JenaValve Technology GmbH
    Inventors: Helmut Straubinger, Johannes Jung, Michael J. Girard, Arnulf Mayer
  • Patent number: 8784481
    Abstract: A prosthetic heart valve is circumferentially collapsible for less invasive delivery into a patient. The valve re-expands to operating size at the implant site in the patient. A frame structure of the valve includes restraining structure that can help to push one or more of the patient's native heart valve leaflets radially outwardly so that this native leaflet tissue does not interfere with the operation or service life of the prosthetic valve.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: July 22, 2014
    Assignee: St. Jude Medical, Inc.
    Inventors: Yousef F. Alkhatib, Michael J. Girard
  • Publication number: 20140200661
    Abstract: A quick-connect heart valve prosthesis that can be quickly and easily implanted during a surgical procedure is provided. The heart valve includes a substantially non-expandable, non-compressible prosthetic valve and a plastically-expandable frame, thereby enabling attachment to the annulus without sutures. A small number of guide sutures may be provided for aortic valve orientation. The prosthetic valve may be a commercially available valve with a sewing ring with the frame attached thereto. The frame may expand from a conical deployment shape to a conical expanded shape, and may include web-like struts connected between axially-extending posts. A system and method for deployment includes an integrated handle shaft and balloon catheter. A valve holder is stored with the heart valve and the handle shaft easily attaches thereto to improve valve preparation steps.
    Type: Application
    Filed: January 27, 2014
    Publication date: July 17, 2014
    Applicant: EDWARDS LIFESCIENCES CORPORATION
    Inventors: Rafael Pintor, Michael J. Scott, Thomas Chien, Harvey H. Chen, August R. Yambao, Lawrence J. Farhat, Andrew Phung, William C. Brunnett, Carey L. Cristea, Sara M. Walls, Kevin W. Zheng, Faisal Kalam, Qinggang Zeng
  • Publication number: 20140194980
    Abstract: A device and method for controlling commissural tip deflection of a prosthetic valve, thereby both preventing failure due to repeated movement and/or uneven loading of the commissural points and also improving coaptation of the valve leaflets, including connecting reinforcing material between the commissural points so a spring-like span is created across the points. The spanning material may be in the form of a ring that is lashed, sewn or otherwise connected to the commissural points. The reinforcing material may form curved segments between the commissural points that extend outwardly to form sinuses behind the leaflets of the prosthetic valve. The reinforcing material may also extend in an upstream direction to avoid interfering with blood flowing out of the prosthetic valve.
    Type: Application
    Filed: March 10, 2014
    Publication date: July 10, 2014
    Applicant: HLT, Inc.
    Inventor: John Gainor
  • Patent number: 8771345
    Abstract: A prosthesis including a distal fixation member that defines two or more engagement arms that are configured to apply a first axial force to tissue of the subject on a downstream side of the native valve complex. The prosthesis also includes a proximal fixation member configured to apply a second axial force to tissue of the subject on an upstream side of the native valve complex such that application of the first and second axial forces couples the prosthesis to the native valve complex. The proximal fixation member and the distal fixation member are fabricated as one integrated structure. The engagement arms and the proximal fixation member are configured to capture leaflets of the native valve complex therebetween without folding over of leaflets of the native valve complex, upon implantation of the prosthesis.
    Type: Grant
    Filed: October 31, 2011
    Date of Patent: July 8, 2014
    Assignee: Medtronic Ventor Technologies Ltd.
    Inventors: Yosi Tuval, Ido Kilemnik, Raphael Benary
  • Publication number: 20140188221
    Abstract: A prosthetic heart valve configured to replace a native heart valve and having a support frame configured to be reshaped into an expanded form in order to receive and/or support an expandable prosthetic heart valve therein is disclosed, together with methods of using same. The prosthetic heart valve may be configured to have a generally rigid and/or expansion-resistant configuration when initially implanted to replace a native valve (or other prosthetic heart valve), but to assume a generally expanded form when subjected to an outward force such as that provided by a dilation balloon or other mechanical expander.
    Type: Application
    Filed: December 20, 2013
    Publication date: July 3, 2014
    Inventors: Visith Chung, Da-Yu Chang, Brian S. Conklin, Grace M. Kim, Louis A. Campbell, Donald E. Bobo, Jr., Myron Howanec, David S. Lin, Peng Norasing, Francis M. Tran, Mark Van Nest, Thomas Y. Chien, Harvey H. Chen, Isidro L. Guerrero, Derrick Johnson, Paul A. Schmidt
  • Patent number: 8764818
    Abstract: A prosthetic heart valve includes a radially expandable stent and a plurality of leaflets. Each leaflet includes a coaptation portion, an arcuate edge, and a belly. The coaptation portion is movable relative to respective coaptation portions of the other leaflets. The arcuate edge has a first end and a second end and is coupled to the stent. The belly extends from the arcuate edge to an axis defined by the first and second ends of the arcuate edge, wherein the ratio of the surface area of the belly to the outer cross-sectional area of the expanded stent is about 0.09 to about 0.16.
    Type: Grant
    Filed: July 19, 2012
    Date of Patent: July 1, 2014
    Assignee: Boston Scientific Scimed, Inc.
    Inventor: Peter W. Gregg
  • Publication number: 20140180402
    Abstract: A leaflet for a prosthetic valve formed of at least one layer that includes a composite material containing at least one expanded fluoropolymer membrane having serpentine fibrils and an elastomer is provided. The fluoropolymer may be polytetrafluoroethylene. In at least one embodiment, the elastic properties are present in an axial direction the leaflet. The leaflets may be single layered or multi-layered. The leaflets may be coupled to a support structure and movable between open and closed configurations relative to the support structure to form a heart valve. The elasticity within the leaflets permits, among other things, the leaflets to bend with a reduced occurrence of wrinkles as the valve opens and closes. The elastic properties of the leaflet also, among other things, improve bending properties and reduce closure stresses, thereby extending the life of the leaflet.
    Type: Application
    Filed: February 17, 2014
    Publication date: June 26, 2014
    Applicant: W. L. GORE & ASSOCIATES, INC.
    Inventors: William C. Bruchman, Charles F. White
  • Publication number: 20140163669
    Abstract: A valve device is provided for implantation at the location of a natural heart valve, for replacing the functioning of the natural heart valve. The valve device includes a holding structure and a plurality of leaflets that open and close as the heart beats and pressure changes. The valve device holding structure may comprise a substantially ring-shaped first section, or ventricular ring, and a substantially ring-shaped second section, or atrial ring, connected together by a connector. The valve device holding structure, which may include all parts besides the leaflets themselves, may be formed from a wire or tube made of a suitable flexible material that allows the valve device to be substantially straightened to a low profile in a constrained delivery condition and that allows the valve device to self-expand to its ring-shaped expanded profile when unconstrained during implantation.
    Type: Application
    Filed: November 26, 2013
    Publication date: June 12, 2014
    Applicant: MITRALIX LTD.
    Inventors: Yonatan BEN-ZVI, Ira YARON
  • Patent number: 8747460
    Abstract: A method for implanting a valve prosthesis at a native cardiac valve complex of a subject comprises implanting a distal fixation member of the valve prosthesis downstream of a native valve of the native valve complex such that two or more engagement arms of the distal fixation member apply, to a downstream side of the native valve, a first axial force directed upstream. The method also comprises implanting a proximal fixation member of the valve prosthesis at least partially upstream of the native valve, such that the proximal fixation member applies, to an upstream side of the native valve, a second axial force directed downstream, such that application of the first and second forces couples the valve prosthesis to the native valve complex. The engagement arms and the proximal fixation member capture leaflets of the native valve therebetween without folding over leaflets of the native valve.
    Type: Grant
    Filed: December 23, 2011
    Date of Patent: June 10, 2014
    Assignee: Medtronic Ventor Technologies Ltd.
    Inventors: Yosi Tuval, Ido Kilemnik, Raphael Benary
  • Publication number: 20140155996
    Abstract: An intravascular cuff acts as a lining between a native vessel and an intravascular prosthetic device. During deployment, the ends of the cuff curl back upon themselves and are capable of trapping native tissue, such as valve leaflet tissue, between the ends. The cuff creates a seal between the vessel and the prosthetic, thereby preventing leakage around the prosthetic. The cuff also traps any embolic material dislodged from the vessel during expansion of the prosthetic.
    Type: Application
    Filed: February 6, 2014
    Publication date: June 5, 2014
    Applicant: HLT, Inc.
    Inventors: Robert Foster Wilson, John P. Gainor
  • Publication number: 20140155995
    Abstract: A prosthetic heart valve having a stent, a plurality of leaflets positioned within the stent, and a suspension assembly coupled to the leaflets and the stent. The suspension assembly includes a central support structure that is spaced from the plurality of leaflets in the direction of blood flow. A plurality of elongate suspension members are secured to the central support structure, and at least one elongate suspension member is secured to each leaflet of the valve, thereby providing mechanical reinforcement for the leaflets.
    Type: Application
    Filed: February 24, 2012
    Publication date: June 5, 2014
    Applicant: University of Connecticut
    Inventors: Wei Sun, Eric Sirois, Thuy Minh Pham, Kewei Li
  • Patent number: 8740974
    Abstract: A method of treating a diseased cardiac valve can include implanting a valve prosthesis by compressing the valve prosthesis to a compressed state for delivery and expanding the valve prosthesis to an expanded state for deployment. The valve prosthesis can include a valve fixation device having a plurality of struts, a first circumferential row of cells coupled to the struts, and a second circumferential row of cells coupled to the struts. The struts are substantially rigid such that the struts do not change dimensions between the compressed state and the expanded state. The valve prosthesis can also include a plurality of leaflets and a plurality of commissures. The valve is coupled to the valve fixation device such that the commissures are radially aligned with respective struts of the plurality of struts.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: June 3, 2014
    Assignee: Medtronic, Inc.
    Inventors: Gregory H. Lambrecht, John Liddicoat, Robert Kevin Moore
  • Publication number: 20140142694
    Abstract: A stented valve prosthesis for implantation within a native mitral valve having a generally tubular expandable stent structure having a first end, a second end, a central body portion having one or more openings, and a longitudinal axis. A wing portion extends outwardly from the stent structure and away from the longitudinal axis of the stent structure in an expanded deployed configuration. A radius of the wing portion is greater than a radius of the central body portion in the expanded deployed configuration, and the wing portion fits within one of the openings in the central body portion of the stent structure in a crimped delivery configuration. A valve structure having a plurality of leaflets is attached to an interior of the stent structure.
    Type: Application
    Filed: January 24, 2014
    Publication date: May 22, 2014
    Applicant: Medtronic, Inc.
    Inventors: Charles TABOR, Carol E. Eberhardt, Timothy G. Laske, Timothy R. Ryan, Joseph C. Morrow, Tammy Y. Tam, Brian A. Glynn, Anne L. Brody Rubin, J. Michael Tuchek
  • Publication number: 20140142693
    Abstract: A prosthesis can include a collapsible, reexpandable frame comprising first, second, and third sets of struts that define first and second rows of expandable cells. In some embodiments, the struts of the first, second, and third set of struts can be tapered. In some embodiments, the frame can include an intermediate section and an inflow section that is proximal to the intermediate section. The inflow section can include a concave saddle portion that is adjacent the intermediate section, and an outwardly flared portion.
    Type: Application
    Filed: November 20, 2012
    Publication date: May 22, 2014
    Applicant: Medtronic, Inc
    Inventors: Michael Krivoruchko, Karan Punga, Finn Rinne
  • Patent number: 8728155
    Abstract: The present invention comprises a novel and safer mechanism of deployment using a self-positioning, self-centering, and self-anchoring method. To embody the present invention, a disk-based valve apparatus allowing the repositioning and retrieval of the implantable valve while working on a dysfunctional valve structure is disclosed. The disk-based valve apparatus may comprise one or more disks, either proximal or distal, a valve-housing component and a valve component. The one or more disks may be either proximal or distal, may be either connected to each other or disconnected from each other and may either be symmetrical or have different shapes and dimensions. The disk-based valve apparatus may be self anchoring, such as anchored by pressure from the one or more disk, or may be anchored using any anchoring.
    Type: Grant
    Filed: September 20, 2013
    Date of Patent: May 20, 2014
    Assignee: Cephea Valve Technologies, Inc.
    Inventors: Matteo Montorfano, Alaide Chieffo, Juan F. Granada
  • Publication number: 20140135912
    Abstract: The present invention relates to apparatus and methods for performing valvuloplasty. In some embodiments, the apparatus includes an expandable braid valvuloplasty device. In some embodiments, the methods and apparatus may be used as an adjunct to percutaneous heart valve replacement. In some embodiments, the apparatus and methods may provide a medical practitioner with feedback, monitoring or measurement information, e.g., information relevant to percutaneous transcatheter heart valve replacement.
    Type: Application
    Filed: November 11, 2013
    Publication date: May 15, 2014
    Applicant: Sadra Medical, Inc.
    Inventors: Amr Salahieh, Dwight P. Morejohn, Daniel K. Hildebrand, Tom Saul
  • Publication number: 20140135913
    Abstract: An artificial mitral valve is anchored in the left atrium by placing the valve between the annulus of the natural mitral valve and an artificial annulus. The artificial annulus is formed by inserting a tool into the coronary sinus, and adjusting the tool to force the wall of the left atrium to form an annulus above the artificial valve, this locking it in place and forming a hemostatic seal.
    Type: Application
    Filed: January 23, 2014
    Publication date: May 15, 2014
    Applicant: Kardium Inc.
    Inventors: Samuel Victor Lichtenstein, Daniel Gelbart
  • Publication number: 20140128964
    Abstract: Embodiments of the present disclosure are related to devices and techniques for para-valve sealing of an expandable stent-valve implanted using a catheter. In some embodiments, a stent-valve is provided which comprises a seal cuff containing material that swells when contacted by blood. A piercing tool may be included and used to permit a user to puncture the cuff prior to introduction into a patient's body. In some embodiments, the cuff has an integral tubular structure configured to withstand balloon expansion of the stent-valve during or after implantation.
    Type: Application
    Filed: November 7, 2013
    Publication date: May 8, 2014
    Inventor: Stephane Delaloye
  • Patent number: 8709077
    Abstract: Expandable prosthetic heart valves for minimally invasive valve replacement are disclosed. In one preferred embodiment, an expandable prosthetic heart valve includes a support stent comprising an expandable tubular base along an inflow end and three upstanding commissure posts along an outflow end. The three commissure posts are spaced at 120 degree intervals with gaps therebetween. The prosthetic heart valve further includes a tubular flexible member having a prosthetic section and a fabric section. The prosthetic section is connected to the three commissure posts and defines three leaflets, preferably formed of pericardial tissue. The fabric section is sutured to the expandable tubular base. The tubular base may be formed with a shape memory material and is sized for deployment with an annulus of a native aortic valve. After deployment, the three commissure posts support the leaflets above the tubular base for replacing the function of the native aortic valve.
    Type: Grant
    Filed: January 4, 2013
    Date of Patent: April 29, 2014
    Assignee: Edwards Lifesciences Corporation
    Inventor: Stefan Schreck
  • Publication number: 20140114407
    Abstract: The present invention relates to methods for inhibiting stenosis, obstruction, or calcification of a valve following implantation of a valve prosthesis which may involve disposing a coating composition on an elastical stent and securing the valve prosthesis which may have a collapsible elastical valve mounted on the elastical stent such that the elastical stent may be in contact with the valve.
    Type: Application
    Filed: October 22, 2012
    Publication date: April 24, 2014
    Applicant: ConcieValve LLC
    Inventor: Nalini Marie Rajamannan
  • Publication number: 20140114408
    Abstract: A heart valve prosthesis and delivery systems are provided for replacing a cardiac valve. The heart valve prosthesis includes a self-expanding frame includes a portion having a crimp that provides additional flexibility to the self-expanding frame in the collapsed configuration.
    Type: Application
    Filed: October 23, 2012
    Publication date: April 24, 2014
    Applicant: MEDTRONIC, INC.
    Inventor: Joshua Dwork
  • Publication number: 20140107773
    Abstract: Methods and systems for endovascular, endocardiac, or endoluminal approaches to a patient's heart to perform surgical procedures that may be performed or used without requiring extracorporeal cardiopulmonary bypass. Furthermore, these procedures can be performed through a relatively small number of small incisions. These procedures may illustratively include heart valve implantation, heart valve repair, resection of a diseased heart valve, replacement of a heart valve, repair of a ventricular aneurysm, repair of an arrhythmia, repair of an aortic dissection, etc. Such minimally invasive procedures are preferably performed transapically (i.e., through the heart muscle at its left or right ventricular apex).
    Type: Application
    Filed: April 23, 2013
    Publication date: April 17, 2014
    Applicant: Endoheart AG
    Inventor: Endoheart AG
  • Publication number: 20140094905
    Abstract: A heart valve that can be expanded following its implantation in a patient, such as to accommodate the growth of a patient and the corresponding growth of the area where the valve is implanted, and to minimize paravalvular leakage. In one aspect, the invention may maximize the orifice size of the surgical valve. The invention includes expandable implantable conduits and expandable bioprosthetic stented valves. In one aspect of the invention, the valve may be adapted to accommodate growth of a patient to address limitation on bioprosthetic valve lifespans.
    Type: Application
    Filed: December 5, 2013
    Publication date: April 3, 2014
    Applicant: Medtronic, Inc.
    Inventors: Philipp Bonhoeffer, Timothy R. Ryan
  • Patent number: 8685086
    Abstract: An apparatus for replacing a diseased cardiac valve is movable from a radially collapsed configuration to a radially expanded configuration. The apparatus comprises an expandable support member and a prosthetic valve secured therein. The main body portion extends between first and second end portions and includes an outer circumferential surface, a circumferential axis extending about the circumferential surface, and a plurality of wing members spaced apart from one another by an expandable region. Each of the wing members includes first and second end portions and a flexible middle portion extending between the end portions. The second end portion is integrally formed with the main body portion. The first end portion is adjacent the circumferential axis and substantially flush with the outer circumferential surface in the radially collapsed configuration. The first end portion extends substantially radial to the outer circumferential surface in the radially expanded configuration.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: April 1, 2014
    Assignee: The Cleveland Clinic Foundation
    Inventors: Jose L. Navia, Ji-Feng Chen, Shengqiang Gao, Brian L. Davis, Samantha Stucke
  • Publication number: 20140088692
    Abstract: A medical device includes an expandable conduit, a prosthetic heart valve and a delivery device, including a balloon catheter. The expandable conduit may include one or more inner or outer sleeves supported by a frame or stent. The sleeve(s) may be a bioprosthetic tissue wrapped, molded or sewn about the frame or stent. Coupled to an end of the expandable conduit is the prosthetic heart valve. The conduit and heart valve may be crimped on the balloon catheter for percutaneous deployment. The frame may be constructed of a balloon-expandable material for the conduit portion and a self-expandable material for the prosthetic heart valve portion. The prosthetic heart valve is anchored at the native heart valve and then the conduit to be expanded into place to protect the aorta. The self-expanding prosthetic heart valve avoids the need for balloon mounting. This provides for a smaller diameter and easier delivery.
    Type: Application
    Filed: September 20, 2013
    Publication date: March 27, 2014
    Applicant: EDWARDS LIFESCIENCES CORPORATION
    Inventor: Gregory A. Wright
  • Publication number: 20140088697
    Abstract: A heart valve assembly comprises a first prosthesis configured to expand from an unexpanded state to an expanded state at which the first annular prosthesis contacts native tissue of a body lumen. The heart valve assembly also comprises a second prosthesis comprising a valve, and a connection adapter that secures the second prosthesis to the first prosthesis, the connection adapter having a multi-lobed circumference.
    Type: Application
    Filed: November 22, 2013
    Publication date: March 27, 2014
    Applicant: Medtronic, Inc.
    Inventors: Thomas J. FOGARTY, Michael J. DREWS, Neil HOLMGREN, D. Bruce MODESITT
  • Publication number: 20140081392
    Abstract: A prosthetic valve is provided for implantation in a stenosed aortic valve. The prosthetic valve includes a radially collapsible frame configured for advancement through a patient's vasculature using a catheterization technique. A collapsible valvular structure is sewn to the frame for permitting blood to flow in only one direction. An internal cover extends along an internal surface of the frame. The internal cover forms a tubular sleeve positioned between a lower extremity of the frame and the valvular structure. The internal cover prevents the passage of blood through spaces between bars of the frame. An upper end of the internal cover is sutured to the valvular structure. The internal cover is preferably made of pericardium.
    Type: Application
    Filed: November 25, 2013
    Publication date: March 20, 2014
    Applicant: Edwards Lifesciences PVT, Inc.
    Inventors: Brice Letac, Alain Cribier
  • Patent number: 8668733
    Abstract: The present invention provides methods and apparatus for endovascularly replacing a patient's heart valve. The apparatus includes a replacement valve and an expandable anchor configured for endovascular delivery to a vicinity of the patient's heart valve. In some embodiments, the replacement valve is adapted to wrap about the anchor, for example, by everting during endovascular deployment. In some embodiments, the replacement valve is not connected to expandable portions of the anchor. In some embodiments, the anchor is configured for active foreshortening during endovascular deployment. In some embodiments, the anchor includes expandable lip and skirt regions for engaging the patient's heart valve during deployment. In some embodiments, the anchor comprises a braid fabricated from a single strand of wire. In some embodiments, the apparatus includes a lock configured to maintain anchor expansion. The invention also includes methods for endovascularly replacing a patient's heart valve.
    Type: Grant
    Filed: November 12, 2008
    Date of Patent: March 11, 2014
    Assignee: Sadra Medical, Inc.
    Inventors: Ulrich R. Haug, Hans F. Valencia, Robert A. Geshlider, Tom Saul, Amr Salahieh, Dwight P. Morejohn, Kenneth J. Michlitsch
  • Publication number: 20140052237
    Abstract: A prosthetic valve comprises a self-expanding frame which includes a self-expanding atrial skirt that forms a flanged region, a self-expanding ventricular skirt, and a first self-expanding tab coupled with the ventricular skirt. A receptacle for receiving a valve leaflet is formed by the area bounded by an outer surface of the atrial skirt, an outer surface of the ventricular skirt, and an inner surface of the first tab. The receptacle has a window for receiving the valve leaflet that is defined by a gap between an edge of the flange and a tip of the first tab. The gap is maximized when the tip of the first tab is unconstrained and a base of the first tab is at least partially constrained. The gap is minimized when the tip of the first tab and its base are unconstrained.
    Type: Application
    Filed: February 8, 2013
    Publication date: February 20, 2014
    Applicant: NEOVASC, INC.
    Inventors: Randy Matthew Lane, Colin A. Nyuli, Alexei J. Marko
  • Patent number: 8652201
    Abstract: A method is provided for treating a cardiovascular disease, such as pulmonary arterial hypertension, an arrhythmia, or heart failure. One step of the method includes providing an apparatus. The apparatus includes an expandable support member having oppositely disposed proximal and distal end portions and a main body portion extending between the end portions. The proximal end portion includes a plurality of wing members extending from the main body portion. At least a portion of the expandable support member is treated with at least one therapeutic agent for eluting into a blood vessel. The expandable support member is inserted into the pulmonary vasculature and then advanced to a bifurcation in the pulmonary vasculature. The bifurcation includes the intersection of a first pulmonary vessel, a second pulmonary vessel, and a third pulmonary vessel. The expandable support member is secured at the bifurcation to treat pulmonary arterial hypertension, for example.
    Type: Grant
    Filed: January 22, 2009
    Date of Patent: February 18, 2014
    Assignee: The Cleveland Clinic Foundation
    Inventors: Carlos Oberti, Jose L. Navia, Richard Krasuski
  • Publication number: 20140046434
    Abstract: Described is a valve prosthesis comprising: an annular structure, and a plurality of valve leaflets, and a plurality of anchoring members attached around the annular structure, the anchoring members including: a web portion coupled to the annular structure and extending axially thereto, and two end portions at axially opposed sides of the web portion, the end portions having: an insertion condition for insertion of the prosthesis, wherein the end portions are aligned to the web portion and extend axially with respect to the annular structure; and an anchoring condition for anchoring the prosthesis, wherein the end portions extend at an angle to the web portion radially outwardly of the annular structure to provide anchoring of the prosthesis proximally and distally, respectively, of the annulus, and wherein one end portion forms an obtuse angle with the web portion.
    Type: Application
    Filed: August 8, 2013
    Publication date: February 13, 2014
    Applicant: Sorin Group Italia S.r.l.
    Inventors: Giovanni Rolando, Paolo Gaschino, Laura Ghione, Andrea Marchisio, Monica Achiluzzi
  • Publication number: 20140046436
    Abstract: A prosthetic valve including an annulus, a pair of leaflets, and a pair of support elements is described. The annulus has a generally saddle-type shape and is connected to the support elements. The pair of leaflets extends from the annulus and are separated from each other by the support elements. In use, the valve is open when the support elements are angled or separated outward, and sealed or closed when the support elements are angled or moved inward.
    Type: Application
    Filed: July 25, 2013
    Publication date: February 13, 2014
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventor: Arash Kheradvar
  • Patent number: RE45130
    Abstract: This invention relates to a device for fastening and anchoring heart valve prostheses which is essentially formed of wire-shaped interconnected elements. The aim of the invention is to be able to be implant, in a minimally invasive manner, a device of this type via the aorta by compressing the device to make it smaller, and by extending the same at the site of implantation, whereby ensuring a secure retention and a secure sealing with regard to the aorta wall. To this end, the invention provides that for fastening and supporting a cardiac valve prosthesis, three identical pairs of arched elements are interconnected, with a configuration that is offset by 120°, by means of solid body articulations. These solid body articulations carry out the function of pivot bearings.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: September 9, 2014
    Assignee: JenaValve Technology GmbH
    Inventors: Hans-Reiner Figulla, Markus Ferrari, Carsten Weber, Thomas Peschel, Christoph Damm