Resilient Frame Patents (Class 623/2.18)
  • Patent number: 9918833
    Abstract: The present invention is directed to prostheses including a support structure having a proximal end and a distal end, and a motion limiting member attached to the distal end of the support structure, wherein the motion limiting member is configured to restrict radial expansion of the distal end of the support structure. Methods for delivering the prosthesis are also provided.
    Type: Grant
    Filed: August 24, 2011
    Date of Patent: March 20, 2018
    Assignee: Medtronic Vascular Galway
    Inventors: Igor Kovalsky, Yossi Tuval
  • Patent number: 9913715
    Abstract: A collapsible and expandable stent body includes a generally tubular annulus section, one or more prosthetic valve elements mounted to the stent body, and a cuff attached to the stent body. The prosthetic valve is operative to allow flow in an antegrade direction but to substantially block flow in a retrograde direction. The prosthetic heart valve may include paravalvular leak mitigation features in the form of first and second sealing members. The sealing members are attached to the cuff and extend circumferentially around an abluminal surface of the stent body. The sealing members each have an open side facing in a first axial direction and a closed side facing in an opposite second axial direction. Flow of blood in the second axial direction will tend to force blood into the sealing members and cause the sealing members to billow outwardly relative to the stent body, helping to mitigate paravalvular leak.
    Type: Grant
    Filed: May 6, 2016
    Date of Patent: March 13, 2018
    Assignee: St. Jude Medical, Cardiology Division, Inc.
    Inventors: Peter N. Braido, Mina S. Fahim
  • Patent number: 9895220
    Abstract: A heart valve assembly has a leaflet support structure and a leaflet assembly. The leaflet support structure has a wire frame that supports the leaflet assembly. The leaflet assembly has first and second separate leaflets, each of which is comprised of a skirt section and a sinus leaflet section. Each skirt section has a flange portion and a body portion that has a smaller diameter than the flange portion, with the body portion having opposing side edges, and a curved opening defined by a first stitching edge at about the central portion of the body portion. Each sinus leaflet section has an outflow edge, and a curved second stitching edge, with the sinus leaflet section stitched to the skirt section along the first and second stitching edges. The opposing side edges of the body portion of the first leaflet are stitched to the corresponding side edges of the body portion of the second leaflet.
    Type: Grant
    Filed: February 7, 2017
    Date of Patent: February 20, 2018
    Assignee: Venus Medtech (Hangzhou) Inc.
    Inventors: Min Frank Zeng, Pham Lo
  • Patent number: 9895222
    Abstract: A heart valve assembly has a frame comprising an inflow section, an outflow section, and a connecting section that is located between the inflow section and the outflow section. The inflow section has a plurality of legs that extend radially outwardly, and the connecting section has a greater flexibility than the inner section. The assembly also includes a plurality of leaflets coupled to the connecting section, a valve skirt extending from the leaflets towards the inflow section of the frame, and a cuff section, with the legs and the cuff section together defining a cuff for engagement with a native annulus.
    Type: Grant
    Filed: August 17, 2015
    Date of Patent: February 20, 2018
    Assignee: Venus Medtech (Hangzhou) Inc.
    Inventors: Min Frank Zeng, Pham Lo
  • Patent number: 9883941
    Abstract: A replacement heart valve assembly has a stent frame and a replacement valve. The replacement valve has a plurality of leaflets and a valve frame. The leaflets are attached to the valve frame. Further, the assembly has a plurality of suspension struts attached to the stent frame and the valve frame. The valve frame is suspended within the stent frame via the suspension struts. In some embodiments, the assembly further has a sealing member attached to the stent frame to prevent leakage around the replacement heart valve assembly.
    Type: Grant
    Filed: June 18, 2013
    Date of Patent: February 6, 2018
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Roger N. Hastings, Mark L. Jenson
  • Patent number: 9872765
    Abstract: A heart valve assembly has a frame having an anchoring section defined by a plurality of rows of cells, with each cell defined by a plurality of struts that encircle each cell, and a pair of legs extending from the anchoring section. The assembly also includes a leaflet assembly that has a plurality of leaflets that are stitched to the legs. The heart valve assembly is delivered to the location of a native mitral annulus, and the anchoring section is deployed inside the left atrium such that the anchoring section is completely retained in the left atrium, and the legs and leaflets extend through the native mitral annulus.
    Type: Grant
    Filed: October 12, 2015
    Date of Patent: January 23, 2018
    Assignee: Venus Medtech (Hangzhou) Inc
    Inventors: Min Frank Zeng, Pham Lo
  • Patent number: 9861475
    Abstract: Devices, systems, and methods employ an implant that is sized and configured to attach to the annulus of a dysfunctional heart valve annulus. In use, the implant extends across the major axis of the annulus above and/or along the valve annulus. The implant reshapes the major axis dimension and/or other surrounding anatomic structures. The implant restores to the heart valve annulus and leaflets a more functional anatomic shape and tension. The more functional anatomic shape and tension are conducive to coaptation of the leaflets during systole, which, in turn, reduces regurgitation. The implant improves function to the valve, without surgically cinching, resecting, and/or fixing in position large portions of a dilated annulus, or without the surgical fixation of ring-like structures.
    Type: Grant
    Filed: August 12, 2009
    Date of Patent: January 9, 2018
    Assignee: MVRX INC.
    Inventors: Timothy R. Machold, David A. Rahdert, John A. Macoviak, Robert T. Chang, Rick A. Soss
  • Patent number: 9795713
    Abstract: The present invention is directed to methods of manufacturing bioactive gels from ECM material, i.e., gels which retain bioactivity, and can serve as scaffolds for preclinical and clinical tissue engineering and regenerative medicine approaches to tissue reconstruction. The manufacturing methods take advantage of a new recognition that bioactive gels from ECM material can be created by digesting particularized ECM material in an alkaline environment and neutralizing to provide bioactive gels.
    Type: Grant
    Filed: October 11, 2016
    Date of Patent: October 24, 2017
    Assignee: ACell, Inc.
    Inventors: Kimberly Kentner, Katherine A. Stuart, Abram D. Janis
  • Patent number: 9737398
    Abstract: Described embodiments are directed toward prosthetic heart valve leaflets of particular shapes that control bending character. In accordance with an embodiment, a prosthetic heart valve comprises a leaflet frame having a generally tubular shape with attached film. The leaflet frame defines a plurality of leaflet windows. The film defines at least one leaflet extending from each of the leaflet windows. Each leaflet attachment zone on the leaflet frame has substantially the shape of an isosceles trapezoid having two leaflet sides, a leaflet base and a leaflet free edge opposite the leaflet base. The two leaflet sides diverge from the leaflet base, wherein the leaflet base is substantially flat.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: August 22, 2017
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: William C. Bruchman, Daniel A. Crawford, Logan R. Hagaman, Cody L. Hartman
  • Patent number: 9730794
    Abstract: A prosthetic mitral valve with a compressible and expandable stent that, when expanded, is circumferentially oval, elliptical, or D-shaped, with a major axis and a minor axis ratio of from about 3:4 to about 4:5. Embodiments of the stent comprise three commissure posts disposed towards an outflow end and three curved cusp regions between adjacent commissure posts. Three flexible leaflets are attached to the commissure posts in a tri-foil configuration. Embodiments of the prosthetic mitral valve include an atrial ring disposed at the inflow end of the stent.
    Type: Grant
    Filed: October 12, 2015
    Date of Patent: August 15, 2017
    Assignee: Edwards Lifesciences Corporation
    Inventors: Alain F. Carpentier, Hung L. Lam, Hugues Lafrance
  • Patent number: 9662202
    Abstract: Mitral valve prosthesis are disclosed that include a frame or support structure having an inflow portion, a valve-retaining tubular portion and a pair of support arms. The inflow portion radially extends from a first end of the valve-retaining tubular portion and the pair of support arms are circumferentially spaced apart and radially extend from an opposing second end of the valve-retaining tubular portion. The inflow portion is formed from a plurality of struts that outwardly extend from the first end of the valve-retaining tubular portion with adjacent struts of the plurality of struts being joined, wherein each strut of the plurality of struts has a substantially s-shaped profile and at least one twisted area.
    Type: Grant
    Filed: October 21, 2014
    Date of Patent: May 30, 2017
    Assignee: Medtronic, Inc.
    Inventors: Jason Quill, Igor Kovalsky
  • Patent number: 9655719
    Abstract: A prosthetic heart valve includes an annular frame having annularly spaced commissure portions and an annulus portion disposed near an inflow edge, a fabric covering at least a portion of the frame and a valve assembly connected to the frame at the commissure portions, the valve assembly including a plurality of leaflets. A stiffening member is disposed about the frame to limit ovalization of the frame when a radial force is applied to the frame.
    Type: Grant
    Filed: January 29, 2013
    Date of Patent: May 23, 2017
    Assignee: St. Jude Medical, Cardiology Division, Inc.
    Inventors: Stephanie Marie Board, Jeffrey Ross Ambrus, Joseph Donald Smith, Deborah Ann Wojcik, Mai Sia Vue, Aaron J. Chalekian
  • Patent number: 9642700
    Abstract: A prosthetic heart valve includes annularly spaced commissure portions, each of which includes a tip. The stent is formed from a polymeric material, and is specifically configured to perform similarly to conventional metal stents. A first fabric covers each of the tips, and a second fabric covers the first fabric and remaining exposed portions of the stent. A first layer of tissue covers the second fabric, and a second layer of tissue overlies the second fabric. The second layer of tissue includes leaflet portions that extend inwardly between annularly adjacent ones of the commissure portions.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: May 9, 2017
    Assignee: St. Jude Medical, Cardiology Division, Inc.
    Inventors: Sara Sundler, Andreas Temnell, Niklas Borg, Anna Norlin Weissenrieder
  • Patent number: 9636222
    Abstract: A prosthetic heart valve includes a collapsible and expandable stent having a proximal end and a distal end, and a collapsible and expandable valve assembly, the valve assembly including a plurality of leaflets connected to at least one of the stent and a cuff. The heart valve further includes a conformable band disposed about the perimeter of the stent near the proximal end for filling gaps between the collapsible prosthetic heart valve and a native valve annulus.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: May 2, 2017
    Assignee: St. Jude Medical, Cardiology Division, Inc.
    Inventor: John Oslund
  • Patent number: 9610157
    Abstract: A prosthetic heart valve includes a stent extending in a longitudinal direction and having a plurality of commissure features. A valve assembly is secured to the stent, the valve assembly including a cuff and a plurality of leaflets. Each of the leaflets has a pair of attachment regions and a free edge extending between the attachment regions. A deflection feature disposed in each attachment region is configured and arranged to prevent the free edges of the leaflets from contacting at least one of the stent or the cuff.
    Type: Grant
    Filed: March 19, 2015
    Date of Patent: April 4, 2017
    Assignee: St. Jude Medical, Cardiology Division, Inc.
    Inventors: Peter N. Braido, Kent J. Smith, Andrea L. McCarthy, Yousef F. Alkhatib
  • Patent number: 9610158
    Abstract: A method of making a replacement heart valve device whereby a fragment of biocompatible tissue material is treated and soaked in one or more alcohol solutions and a solution of glutaraldehyde. The dried biocompatible tissue material is folded and rehydrated in such a way that forms a two- or three-leaflet/cusp valve without affixing of separate cusps or leaflets or cutting slits into the biocompatible tissue material to form the cusps or leaflets. After the biocompatible tissue material is folded, it is affixed at one or more points on the outer surface to the inner cavity or a stent.
    Type: Grant
    Filed: November 13, 2012
    Date of Patent: April 4, 2017
    Assignee: COLIBRI HEART VALVE LLC
    Inventors: David Paniagua, R. David Fish, Eduardo Induni, Carlos Meija, Fransisco Lopez-Jimenez
  • Patent number: 9603705
    Abstract: Prosthetic heart valve apparatus is adapted for delivery into a patient in a circumferentially collapsed condition, followed by circumferential re-expansion at the implant site in the patient. The apparatus includes an annular anchoring structure that can be implanted in the patient first. The apparatus further includes an annular valve support structure, which supports a flexible leaflet structure of the valve. The support and leaflet structures are initially separate from the anchoring structure, but they can be implanted in the patient by interengagement of the support structure with the already-implanted anchoring structure.
    Type: Grant
    Filed: October 15, 2014
    Date of Patent: March 28, 2017
    Assignee: St. Jude Medical, Inc.
    Inventor: Yousef F. Alkhatib
  • Patent number: 9579195
    Abstract: A heart valve assembly has a leaflet support structure and a leaflet assembly. The leaflet support structure has a wire frame that supports the leaflet assembly. The leaflet assembly has first and second separate leaflets, each of which is comprised of a skirt section and a sinus leaflet section. Each skirt section has a flange portion and a body portion that has a smaller diameter than the flange portion, with the body portion having opposing side edges, and a curved opening defined by a first stitching edge at about the central portion of the body portion. Each sinus leaflet section has an outflow edge, and a curved second stitching edge, with the sinus leaflet section stitched to the skirt section along the first and second stitching edges. The opposing side edges of the body portion of the first leaflet are stitched to the corresponding side edges of the body portion of the second leaflet.
    Type: Grant
    Filed: January 13, 2015
    Date of Patent: February 28, 2017
    Assignee: Horizon Scientific Corp.
    Inventors: Min Frank Zeng, Pham Lo
  • Patent number: 9554901
    Abstract: A low pressure gradient prosthetic heart valve for implant in a human. The valve includes a support frame with undulating inflow cusps and outflow commissure posts to which flexible leaflets attach and coapt in a flow area. The commissure posts angle outward in a neutral state to widen the outflow orifice area. Also, the leaflets are designed to fit within the support frame and expand outward in a valve open state without creating a shelf or belly that would restrict flow.
    Type: Grant
    Filed: May 11, 2011
    Date of Patent: January 31, 2017
    Assignee: Edwards Lifesciences Corporation
    Inventors: Hengchu Cao, Wei Sun
  • Patent number: 9522062
    Abstract: A mitral valve prosthesis and methods for implanting the prosthesis transapically (i.e., through the apex of the heart), transatrially (i.e., through the left atrium of the heart), and transseptally (i.e., through the septum of the heart). The prosthesis generally includes a self-expanding frame and two or more support arms. A valve prosthesis is sutured to the self-expanding frame. Each support arm corresponds to a native mitral valve leaflet. At least one support arm immobilizes the native leaflets, and holds the native leaflets close to the main frame.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: December 20, 2016
    Assignee: Medtronic Ventor Technologies, Ltd.
    Inventor: Yosi Tuval
  • Patent number: 9510942
    Abstract: An implantable prosthetic valve has an upper frame section and a lower frame section. The upper frame section has a plurality of struts and a first leaflet receiving surface at a lower portion of the upper frame section. The lower frame section has a second leaflet receiving surface at an upper portion of the lower frame section. An edge of a flexible leaflet is disposed between the first and second leaflet receiving surfaces to attach the leaflet to the upper and lower frame sections.
    Type: Grant
    Filed: December 15, 2008
    Date of Patent: December 6, 2016
    Assignee: Edwards Lifesciences Corporation
    Inventor: Netanel Benichou
  • Patent number: 9510944
    Abstract: A method of making a prosthetic heart valve may include providing an annular stent having a plurality of annularly spaced commissure portions having tips, covering each of the tips with a first fabric cover, covering the first fabric covers and the remainder of the stent with a second fabric cover, covering the second fabric cover with a first tissue membrane, and covering the outside of the first tissue membrane with a second tissue membrane, the second tissue membrane forming leaflet portions that extend inwardly between the commissure portions.
    Type: Grant
    Filed: October 15, 2015
    Date of Patent: December 6, 2016
    Assignee: St. Jude Medical, Inc.
    Inventors: Chad Cai, Peter N. Braido, Bob Allan, Paul E. Ashworth, Steven D. Kruse, Lise LaChance
  • Patent number: 9510943
    Abstract: A compressible and expandable stent assembly for implantation in a body lumen such as a mitral valve, the stent assembly including at least one stent barrel that is shaped and sized so that it allows for normal operation of adjacent heart structures. One or more stent barrels can be included in the stent assembly, where one or more of the stent barrels can include a cylinder with a tapered edge.
    Type: Grant
    Filed: January 17, 2008
    Date of Patent: December 6, 2016
    Assignee: Medtronic, Inc.
    Inventors: Thierry Mesana, Timothy G. Laske, Allen Tower, Alexander J. Hill, Timothy R. Ryan
  • Patent number: 9480564
    Abstract: A delivery system and method for percutaneous aortic valve (PAV) replacement and apparatus used therein. A temporary aortic valve including a reversibly expandable occluder surrounds a central catheter mechanism. The temporary valve is positioned within the ascending aorta, just above and downstream from the coronary ostia. The occluder is configured such that, when fully expanded against the aortic wall, gaps are left that promote continuous coronary perfusion during the cardiac cycle. The temporary valve substitutes for the function of the native aortic valve during its replacement. The native aortic valve is next dilated, and then ablated through deployment of low profile, elongated, sequentially delivered stents. The stent(s) displace the native tissues and remain within the aortic annulus to receive and provide a structure for retaining the PAV. The PAV is delivered, positioned and deployed within the stent(s) at the aortic annulus with precision and relative ease.
    Type: Grant
    Filed: January 14, 2014
    Date of Patent: November 1, 2016
    Assignee: HOCOR Cardiovascular Technologies, LLC
    Inventor: Paul C. Ho
  • Patent number: 9480559
    Abstract: This invention relates to the design and function of a compressible valve replacement prosthesis, collared or uncollared, which can be deployed into a beating heart without extracorporeal circulation using a transcatheter delivery system. The design as discussed focuses on the deployment of a device via a minimally invasive fashion and by way of example considers a minimally invasive surgical procedure preferably utilizing the intercostal or subxyphoid space for valve introduction. In order to accomplish this, the valve is formed in such a manner that it can be compressed to fit within a delivery system and secondarily ejected from the delivery system into the annulus of a target valve such as a mitral valve or tricuspid valve.
    Type: Grant
    Filed: August 13, 2012
    Date of Patent: November 1, 2016
    Assignee: Tendyne Holdings, Inc.
    Inventors: Robert Vidlund, Kemal Schankereli, Lucian Lozonschi, Georg Lutter
  • Patent number: 9468527
    Abstract: A cardiac implant system including a cardiac implant such as an annuloplasty ring, a prosthetic heart valve, or a valved conduit pre-assembled at the time of manufacture with devices for securing the implant to a heart valve annulus using knotless suture fasteners. The knotless suture fasteners may be embedded within a pliant sealing edge of the cardiac implant, or they may be positioned adjacent to the sealing edge. The knotless suture fasteners are spring-biased so as to grip onto annulus anchoring sutures pass to therethrough upon removal of a restraining device, such as a hypotube inserted within the suture fasteners. Guide tubes are assembled in line with the suture fasteners to permit introduction of suture snares that pass through the suture fasteners and through the sealing edge to facilitate capture of the pre-installed annulus anchoring sutures.
    Type: Grant
    Filed: June 12, 2014
    Date of Patent: October 18, 2016
    Assignee: Edwards Lifesciences Corporation
    Inventors: Salvador Marquez, Brian S. Conklin, Manouchehr A. Miraki, Yoon H. Kwon
  • Patent number: 9421097
    Abstract: A prosthetic aortic valve includes an annular, annulus inflow portion that is designed to reside in or near the patient's native aortic valve annulus, and an annular, aortic outflow portion that is designed to reside in the patient's aorta downstream from at least a portion of the valsalva sinus. The annulus inflow portion and the aortic outflow portion are connected to one another by a plurality of connecting struts that are confined to regions near the commissures of the patient's native aortic valve. The connecting struts are designed to bulge out into the valsalva sinus to help anchor the prosthetic valve in place. The valve is circumferentially collapsible to a relatively small diameter for less-invasive delivery into the patient. The valve circumferentially expands to a larger operational diameter when deployed at the implant site.
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: August 23, 2016
    Assignee: St. Jude Medical, Inc.
    Inventor: Yousef F. Alkhatib
  • Patent number: 9414913
    Abstract: A stented prosthetic heart valve including a stent assembly, a leaflet assembly, and mounting members. The stent assembly includes a stent post frame, a stent post frame covering, and a base frame. The stent post frame includes a continuous rail forming a closed-curved shape defining a longitudinal axis, and a plurality of circumferentially-spaced posts projecting from cusp segments in a direction of the longitudinal axis. The cloth covering encompasses the rail. The base frame supports the cusp segments. The valve leaflet assembly is attached to the stent assembly, and includes a leaflet clamped between one of the cusp segments and the base frame. The mounting members each directly pass through the stent post frame cloth covering, the first leaflet and the base frame. The rail can have a constant cross-sectional shape with a major axis dimension that is greater than a minor axis dimension.
    Type: Grant
    Filed: October 25, 2013
    Date of Patent: August 16, 2016
    Assignee: Medtronic, Inc.
    Inventors: Jason Beith, Elliot Howard
  • Patent number: 9402720
    Abstract: A modular prosthetic valve device for implantation in a patient and a system for and method of delivering such a modular valve device and assembling it in vivo are disclosed. The valve device is designed as two or more modules to be delivered unassembled, spatially separate, and combined into an assembled valve device in the body at or near the site of implantation. The valve device of the invention is deliverable as modules, providing a smaller delivery diameter than pre-assembled percutaneous valves, permitting use of a delivery device of reduced diameter, and increasing the flexibility of the valve device during delivery, compared to percutaneous valve devices in the art. The modules of the valve device may be connected by pull wires for delivery sequentially, and then assembled by remote manipulation using the pull wires. Various locking mechanisms are provided for attaching the device modules together.
    Type: Grant
    Filed: January 12, 2010
    Date of Patent: August 2, 2016
    Assignee: Valve Medical Ltd.
    Inventors: Yoram Richter, Jacob Richter
  • Patent number: 9364321
    Abstract: A prosthetic heart valve is circumferentially collapsible for less invasive delivery into a patient. The valve re-expands to operating size at the implant site in the patient. A frame structure of the valve includes restraining structure that can help to push one or more of the patient's native heart valve leaflets radially outwardly so that this native leaflet tissue does not interfere with the operation or service life of the prosthetic valve.
    Type: Grant
    Filed: August 12, 2015
    Date of Patent: June 14, 2016
    Assignee: St. Jude Medical, Inc.
    Inventors: Yousef F. Alkhatib, Michael J. Girard
  • Patent number: 9358108
    Abstract: A system for implanting a heart valve includes a radially self-expandable tubular body having a preformed groove disposed at an outer surface of the tubular body, and a valve disposed within the tubular body. The preformed groove extends at least partially around the tubular body, and has a circumferential opening facing radially outward. A trapping member is configured to be disposed within the preformed groove on the outer surface of the tubular body and form at least a partial loop around the tubular body. The circumferential opening of the preformed groove is relatively larger when an outflow end of the tubular body has been deployed from a catheter and an inflow end of the tubular body is disposed within the catheter, and the circumferential opening of the preformed groove is relatively smaller when both the outflow end and the inflow end are fully deployed from the catheter.
    Type: Grant
    Filed: March 11, 2014
    Date of Patent: June 7, 2016
    Assignee: HIGHLIFE SAS
    Inventors: Georg Börtlein, Malek Nasr
  • Patent number: 9358110
    Abstract: Medical devices and delivery systems for delivering medical devices to a target location within a subject. In some embodiments the medical devices can be locked in a fully deployed and locked configuration. In some embodiments the delivery systems are configured with a single actuator to control the movement of multiple components of the delivery system. In some embodiments the actuator controls the independent and dependent movement of multiple components of the delivery system.
    Type: Grant
    Filed: December 31, 2013
    Date of Patent: June 7, 2016
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: David J. Paul, Benjamin T. Sutton, Brian K. McCollum, Brian D. Brandt, Emma Leung, Kenneth M. Martin, Amr Salahieh, Daniel K. Hildebrand
  • Patent number: 9289290
    Abstract: A prosthetic heart valve is circumferentially collapsible for less invasive delivery into a patient. The valve re-expands to operating size at the implant site in the patient. A frame structure of the valve includes restraining structure that can help to push one or more of the patient's native heart valve leaflets radially outwardly so that this native leaflet tissue does not interfere with the operation or service life of the prosthetic valve.
    Type: Grant
    Filed: May 19, 2014
    Date of Patent: March 22, 2016
    Assignee: St. Jude Medical, Inc.
    Inventors: Yousef F. Alkhatib, Michael J. Girard
  • Patent number: 9277995
    Abstract: Devices and method are disclosed for reducing pressure in a patient's vena cava and in the right atrium of a patient's heart. A valve is implanted in the inferior vena cava (IFC) between the patient's renal veins and hepatic veins. When pressure in a patient's IFC reaches high levels, i.e., the pressure differential across the valve reaches high levels, the valve automatically closes or begins to close. The closing is caused by the pressure of the patient's blood moving one or more flaps in the valve to a closed or near-closed position. This prevents excessive pressure in the upper or superior vena cava and the right atrium of the patient's heart. The device also includes a pressure relief feature that opens and allows retrograde flow of blood if the pressure differential exceeds a yet higher pressure.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: March 8, 2016
    Assignee: Corvia Medical, Inc.
    Inventors: David Celermajer, Michael W. Sutherland, Edward McNamara
  • Patent number: 9259313
    Abstract: An artificial heart valve comprises a support structure defining an aperture for blood flow and a flexible leaflet connected to the support structure along first and second at least partially straight lines of attachment, wherein the leaflet is movable relative to the support structure between an open configuration in which the leaflet permits blood flow through the aperture and a closed configuration in which the leaflet restricts blood flow through the aperture. A lateral cross-section taken through the leaflet defines an outwardly convex portion, an outwardly concave portion and a junction between the convex and concave portions. The heart valve may be configured for implantation in a human or animal subject. A method of manufacturing a heart valve and a former for use in such a method are also disclosed.
    Type: Grant
    Filed: August 14, 2013
    Date of Patent: February 16, 2016
    Inventor: David J. Wheatley
  • Patent number: 9220594
    Abstract: A prosthetic heart valve is provided with a cuff having features which promote sealing with the native tissues even where the native tissues are irregular. The cuff may include a portion adapted to bear on the LVOT when the valve is implanted in a native aortic valve. The valve may include elements for biasing the cuff outwardly with respect to the stent body when the stent body is in an expanded condition. The cuff may have portions of different thickness distributed around the circumference of the valve in a pattern matching the shape of the opening defined by the native tissue. All or part of the cuff may be movable relative to the stent during implantation.
    Type: Grant
    Filed: August 6, 2014
    Date of Patent: December 29, 2015
    Assignee: St. Jude Medical, Inc.
    Inventors: Peter N. Braido, Paul Edward Ashworth, Julia Ann Schraut
  • Patent number: 9186248
    Abstract: A method of making a replacement heart valve device whereby a fragment of biocompatible tissue material is treated and soaked in one or more alcohol solutions and a solution of glutaraldehyde. The dried biocompatible tissue material is folded and rehydrated in such a way that forms a two- or three-leaflet/cusp valve without affixing of separate cusps or leaflets or cutting slits into the biocompatible tissue material to form the cusps or leaflets. After the biocompatible tissue material is folded, it is affixed at one or more points on the outer surface to the inner cavity or a stent.
    Type: Grant
    Filed: February 6, 2012
    Date of Patent: November 17, 2015
    Assignee: COLIBRI HEART VALVE LLC
    Inventors: David Paniagua, Eduardo Induni, R. David Fish
  • Patent number: 9180004
    Abstract: A system for delivering a collapsible and re-expandable prosthetic heart valve into a patient includes a valve support structure (140) around which the valve (10) is disposed in a collapsed condition. A sheath structure (110) surrounds the collapsed valve, but can be moved relative to the valve to uncover it for expansion at the desired implant site in the patient. The sheath structure may be variously mounted and moved to deploy the valve in various ways. For example, the sheath structure may include multiple parts, each of which can be moved separately to separately deploy various parts of the valve. The apparatus may have other aspects, such as the ability to reverse deployment of the valve, the ability to pass other instrumentation through the valve delivery apparatus, the ability to be smoothly withdrawn from the patient after deployment of the valve, etc.
    Type: Grant
    Filed: January 8, 2009
    Date of Patent: November 10, 2015
    Assignee: St. Jude Medical, Inc.
    Inventor: Yousef F. Alkhatib
  • Patent number: 9168133
    Abstract: A prosthetic heart valve comprises a radially crimpable and radially expandable, net-like, annular support frame and a valve assembly disposed therein, the valve assembly comprising a conduit tapering from an inlet towards an outlet thereof. Some embodiments or the support frame comprise a proximal portion and a distal portion, a diameter of the proximal portion smaller than a diameter of the distal portion. The proximal portion is dimensioned for deployment in an annulus of a native aortic valve and a distal portion for deployment in an ascending aorta. Some embodiments of the conduit comprise a support construction with a three-cusp, crown-shaped cut line, the support construction sutured to the support frame around a bottom portion thereof and around the cut line. A method for using the prosthetic heart valve to replace a defective native aortic valve uses a minimally invasive procedure.
    Type: Grant
    Filed: May 19, 2015
    Date of Patent: October 27, 2015
    Assignee: Edwards Lifesciences PVT, Inc.
    Inventors: Benjamin Spenser, Netanel Benichou, Assaf Bash, Avraham Zakai
  • Patent number: 9132006
    Abstract: A prosthetic heart valve comprises a radially crimpable and radially expandable, net-like, annular support frame and a valve assembly disposed therein, the valve assembly comprising a conduit tapering from an inlet towards an outlet thereof. Some embodiments or the support frame comprise a proximal portion and a distal portion, a diameter of the proximal portion smaller than a diameter of the distal portion. The proximal portion is dimensioned for deployment in an annulus of a native aortic valve and a distal portion for deployment in an ascending aorta. Some embodiments of the conduit comprise a support construction with a three-cusp, crown-shaped cut line, the support construction sutured to the support frame around a bottom portion thereof and around the cut line. A method for using the prosthetic heart valve to replace a defective native aortic valve uses a minimally invasive procedure.
    Type: Grant
    Filed: January 20, 2014
    Date of Patent: September 15, 2015
    Assignee: Edwards Lifesciences PVT, Inc.
    Inventors: Benjamin Spenser, Netanel Benichou, Assaf Bash, Avraham Zakai
  • Patent number: 9095431
    Abstract: An invasive cardiac valve comprises a tubular stent (1) and a valve (2). One end of the tubular stent (1) is of a frusto-conical structure, the other end is wide open, and the diameter of the open end is greater than the diameter of the frusto-conical end. The valve (2) is attached to the frusto-conical end of the tubular stent (1); and a delivery and retrieval hole (4) of the cardiac valve is provided at the top of the open end of the tubular stent (1). Because the diameter of the open end is greater than the diameter of the frusto-conical end, the cardiac valve can be effectively fixed in a position of aortic annulus to prevent the cardiac valve displacement caused by the impact of the blood flow. Because the valve (2) is attached to the frusto-conical end of the tubular stent (1), the valve (2) can totally avoid the left and right coronary ostia and does not affect the haemodynamics of the coronary artery.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: August 4, 2015
    Assignee: SHANGHAI MICROPORT MEDICAL (GROUP) CO., LTD.
    Inventors: Qifeng Yu, Xiang Liu, Yunlei Wang, Chengyun Yue, Qiyi Luo
  • Patent number: 9078751
    Abstract: A valve prosthesis is adapted to operate in conjunction with native heart valve leaflets. The prosthesis includes an annulus and a skirt extending from the annulus. The skirt may be configured to be positioned through a native heart valve annulus, and the skirt may be movable between an open configuration permitting blood flow through the skirt and a closed configuration blocking blood flow through the skirt in cooperation with opening and closing of the native heart valve leaflets.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: July 14, 2015
    Assignee: Mitrassist Medical Ltd.
    Inventor: Gil Naor
  • Patent number: 9072602
    Abstract: A transcatheter valve prosthesis includes a self-expanding tubular stent component and a prosthetic valve disposed within and secured to the stent component. The tubular stent component has a proximal portion, a distal portion, and an intermediate portion between the proximal and distal portions. In a compressed delivery configuration, the tubular stent component has a generally circular cross-section along its length. In an expanded deployed configuration, the proximal and distal portions have a generally circular cross-section while the intermediate portion of the stent component has a generally triangular cross-section with three vertexes that are configured to project into three commissural points of a native valve when the valve prosthesis is implanted in situ.
    Type: Grant
    Filed: November 14, 2012
    Date of Patent: July 7, 2015
    Assignee: Medtronic, Inc.
    Inventors: Daniel Glozman, Igor Kovalsky, Jason Quill
  • Publication number: 20150142104
    Abstract: A prosthetic heart valve for replacing a native valve includes a collapsible and expandable stent having a proximal end and a distal end, and a valve assembly disposed within the stent, the valve assembly including a plurality of leaflets and a cuff annularly disposed about the stent. The cuff includes a surplus portion capable of forming a sealing structure having a diameter greater than a diameter of the proximal end of the stent when deployed.
    Type: Application
    Filed: November 19, 2014
    Publication date: May 21, 2015
    Applicant: ST. JUDE MEDICAL, CARDIOLOGY DIVISION, INC.
    Inventor: Peter N. Braido
  • Patent number: 9028542
    Abstract: A venous valve with a frame and a cover on the frame for unidirectional flow of a liquid through the valve.
    Type: Grant
    Filed: September 6, 2011
    Date of Patent: May 12, 2015
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Jason P. Hill, Susan M. Shoemaker, Jaydeep Y. Kokate
  • Patent number: 9023100
    Abstract: A replacement heart valve and method of treating valve insufficiency includes an expandable frame configured to engage a native valve annulus. A valve body is coupled to the frame. The valve body can include a leaflet portion and possibly a skirt portion. A portion of the frame has a foreshortening portion configured to longitudinally expand when urged to a radially compacted state and longitudinally contract when urged to a radially expanded state. In one embodiment the valve skirt is attached to the frame so that it can adapt to changes in the length of the frame. A delivery device in some embodiments can use one or more coverings, such as sheaths, to controllably release the replacement heart valve at a native heart valve.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: May 5, 2015
    Assignee: CardiAQ Valve Technologies, Inc.
    Inventors: Arshad Quadri, J. Brent Ratz
  • Publication number: 20150119980
    Abstract: A stented prosthetic heart valve including a stent assembly, a leaflet assembly, and mounting members. The stent assembly includes a stent post frame, a stent post frame covering, and a base frame. The stent post frame includes a continuous rail forming a closed-curved shape defining a longitudinal axis, and a plurality of circumferentially-spaced posts projecting from cusp segments in a direction of the longitudinal axis. The cloth covering encompasses the rail. The base frame supports the cusp segments. The valve leaflet assembly is attached to the stent assembly, and includes a leaflet clamped between one of the cusp segments and the base frame. The mounting members each directly pass through the stent post frame cloth covering, the first leaflet and the base frame. The rail can have a constant cross-sectional shape with a major axis dimension that is greater than a minor axis dimension.
    Type: Application
    Filed: October 25, 2013
    Publication date: April 30, 2015
    Applicant: Medtronic, Inc.
    Inventors: Jason Beith, Elliot Howard
  • Patent number: 9011525
    Abstract: A heart valve prosthesis includes a collapsible stent and a one-piece multi-leaflet valve. The stent includes at least one length of wire having a series of turns forming a spring-like stent. The one-piece multi-leaflet valve is attached to the stent and includes a cylinder of polyester material secured thereto at three points. The stent is collapsible in a radial direction between a contracted state and an expanded state. The contracted state has a radial dimension smaller than a radial dimension of the expanded state. The stent is spring biased toward the expanded state such that it occupies an active state when implanted into a heart. The active state has a radial dimension that is between the radial dimension of the contracted state and the radial dimension of the expanded state such that a radial load generated by the bias of the collapsible stent is sufficient to retain the heart valve prosthesis in the heart.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: April 21, 2015
    Assignee: The Florida International University Board of Trustees
    Inventors: Thomas E. Claiborne, III, Richard T. Schoephoerster, Siobhain L. Gallocher
  • Patent number: 9011527
    Abstract: A prosthetic heart valve includes a stent having a collapsed condition and an expanded condition. The stent includes a plurality of cells, each cell being formed by a plurality of struts, and a plurality of commissure features. The heart valve further includes a valve assembly secured to the stent and including a cuff and a plurality of leaflets, each leaflet being attached to adjacent commissure features and to the stent struts and/or the cuff.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: April 21, 2015
    Assignee: St. Jude Medical, Cardiology Division, Inc.
    Inventors: XueMei Li, Peter Nicholas Braido
  • Patent number: RE45962
    Abstract: A device for the transvascular implantation and fixation of prosthetic heart valves having a self-expanding heart valve stent (10) with a prosthetic heart valve (11) at its proximal end is introducible into a patient's main artery. With the objective of optimizing such a device to the extent that the prosthetic heart valve (11) can be implanted into a patient in a minimally-invasive procedure, to ensure optimal positioning accuracy of the prosthesis (11) in the patient's ventricle, the device includes a self-expanding positioning stent (20) introducible into an aortic valve positioned within a patient. The positioning stent is configured separately from the heart valve stent (10) so that the two stents respectively interact in their expanded states such that the heart valve stent (10) is held by the positioning stent (20) in a position in the patient's aorta relative the heart valve predefinable by the positioning stent (20).
    Type: Grant
    Filed: August 7, 2014
    Date of Patent: April 5, 2016
    Assignee: JenaValve Technology GmbH
    Inventors: Hans-Reiner Figulla, Markus Ferrari, Christoph Damm