Polymers Patents (Class 623/23.58)
  • Patent number: 11541150
    Abstract: The invention relates to compositions useful for bone repair and methods of preparing the same. The invention is particularly suitable for bone repair of large bone defects. In an aspect of the invention, the compositions comprise a biocompatible polymer and a clay that form a scaffold. In a further aspect of the invention, the multiple scaffolds can be configured together to form scaffold blocks.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: January 3, 2023
    Assignee: NDSU RESEARCH FOUNDATION
    Inventors: Kalpana S. Katti, Dinesh Ramanath Katti
  • Patent number: 11517646
    Abstract: A scaffold for tissue repair or wound dressing comprising: a material layer; a polymer fibre layer; and an adhesive component between the material layer and the polymer fibre layer, wherein the adhesive component comprises material having a lower melting temperature (Tm) than the material layer and the polymer fibre layer.
    Type: Grant
    Filed: November 19, 2019
    Date of Patent: December 6, 2022
    Assignee: Oxford University Innovation Limited
    Inventors: Osnat Hakimi, Pierre-Alexis Mouthuy, Nasim Zargar Baboldashti, Andrew Carr
  • Patent number: 11491261
    Abstract: Provided are compositions and methods for a scaffold coated with a primer coating and a mineral coating. Also provided is a composition for a scaffold having a mineral coating similar to bone. Also provided is a method for mineral coating a scaffold so as to promote mineral coating of the scaffold with a plate-like nanostructure and a carbonate-substituted, calcium-deficient hydroxyapatite phase.
    Type: Grant
    Filed: March 3, 2016
    Date of Patent: November 8, 2022
    Assignee: Warsaw Orthopedic, Inc.
    Inventors: Leenaporn Jongpaiboonkit, William L. Murphy, Sharon Virginia Schulzki
  • Patent number: 11364323
    Abstract: The described invention provides soft tissue grafts, hard tissue grafts, and composite soft/hard tissue grafts and methods of producing such grafts. The grafts comprise a three-dimensional carrier matrix, a growth factor composition comprising an autologous platelet-rich fibrin and a cell culture composition comprising a culture medium, a population of cells suspended in the culture medium, and cells impregnated on or in a surface of osteoconductive particles.
    Type: Grant
    Filed: September 11, 2019
    Date of Patent: June 21, 2022
    Assignee: REJUVABLAST LLC
    Inventors: Nicholas Elian, Sean M. O'Connell, William K. Boss, Jr.
  • Patent number: 11278411
    Abstract: A method of creating a wedge-shaped recess in a bone is disclosed. The method includes creating a cylindrical recess within a bone, positioning a tool within the cylindrical recess, radially expanding an articulating cutter of the tool and rotating the tool to remove additional bone along the cylindrical recess' side walls and create a wedge-shaped recess; wherein, a diameter of the bottom surface of the wedge-shaped recess is larger than a diameter of a surface opening of the wedge-shaped recess.
    Type: Grant
    Filed: June 26, 2019
    Date of Patent: March 22, 2022
    Assignee: CARTIVA, INC.
    Inventors: Steven P. Walsh, Letitia Tudor, Ernest N. Corrao, Jr., Craig B. Berky, Jonathan P. Bauer, Jeremy Hemingway, Michael Axelrod
  • Patent number: 11083569
    Abstract: A semisolid graft applicator may be used for dispensing a graft during rhinoplasty procedures. The applicator includes a graft container and a pusher. The graft container defines a trough for containing a semisolid graft, such as a graft made from diced cartilage and platelet rich fibrin. A portion of the pusher resides within a tubular sheath of the graft container to guide axial movement between the pusher and graft container. A distal end of the pusher includes a block which slides along the length of the trough when the graft container is moved relative to the pusher.
    Type: Grant
    Filed: May 16, 2020
    Date of Patent: August 10, 2021
    Inventor: Khalid Al-Sebeih
  • Patent number: 10779960
    Abstract: An apparatus and a method are provided for performing cartilage allograft implant surgeries. The apparatus comprises an allograft plug kit comprising one or more grafts configured to treat osteochondral defects in various bone joint locations in a patient's body. Each of the grafts comprises a cartilage layer coupled with a bone portion. The cartilage layer comprises a thickness selected to closely match the thickness of existing cartilage at an implant location. The bone portion comprises surface features configured to encourage the patient's bone tissue to grow into the bone portion, thereby accelerating incorporation of the graft into the patient's bone. An instrument kit comprises a multiplicity of instruments configured for implantation of the grafts into the patient's body, including at least a graft inserter, a guidewire, a reamer, and a size gauge.
    Type: Grant
    Filed: February 19, 2016
    Date of Patent: September 22, 2020
    Assignee: In2Bones USA, LLC
    Inventor: Rebecca Hawkins Wahl
  • Patent number: 10624746
    Abstract: The present invention includes a fluid interface system for use in medical implants. The fluid interface system of the present invention can include one or more fluid interface channels disposed within an implant. The fluid interface systems can optionally include fluid redirection channels, fluid interface ports and a corresponding instrument to transfer fluid in or out of the fluid interface ports.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: April 21, 2020
    Assignee: HD LifeSciences LLC
    Inventors: Christopher L. Jones, Ian Helmar, Lucas Diehl, Jason Tinley, Kevin D. Chappuis, John F. Sullivan
  • Patent number: 10597755
    Abstract: The present invention relates to a porous material, wherein the pores of the porous material are uniformly distributed. The uniform distribution of the pores means that the pores are evenly distributed at any unit-level volume of the porous material. The elastic modulus of the porous material is reduced by 10-99% compared to that of the raw material used to make the porous material. This kind of porous material ensures the uniformity of its various properties. It is a porous material with excellent performance and quality. Its uniformity also ensures that its elastic modulus can be effectively reduced to meet multiple purposes.
    Type: Grant
    Filed: August 15, 2016
    Date of Patent: March 24, 2020
    Assignee: CHONGQING RUNZE PHARMACEUTICAL CO., LTD.
    Inventor: Lei Ye
  • Patent number: 10537417
    Abstract: A density gradient biopolymeric matrix implant is disclosed. The implant includes a first homogeneous matrix layer and a second homogeneous matrix layer having a density different from that of the first homogeneous matrix layer. Biopolymeric fibers at the surface of the first homogeneous matrix layer are physically in contact with and cross-linked to the biopolymeric fibers at the surface of the second homogeneous matrix layer. Also disclosed is a three-dimensional density gradient biopolymeric matrix implant that includes a first homogeneous matrix surrounding a second homogeneous matrix having a different density. Biopolymeric fibers at an inner surface of the first homogeneous matrix are physically in contact with and cross-linked to biopolymeric fibers at an outer surface of the second homogeneous matrix. Furthermore, methods for preparing the density gradient biopolymeric matrix implant and the three-dimensional density gradient biopolymeric matrix implant are provided.
    Type: Grant
    Filed: July 7, 2016
    Date of Patent: January 21, 2020
    Assignee: Collagen Matrix, Inc.
    Inventors: Shu-Tung Li, Natsuyo Shishido Lee, Debbie Yuen
  • Patent number: 10507260
    Abstract: The invention relates, generally, to porous absorbent materials which are suitable for packing antrums or other cavities of the human or animal body. More particularly, it relates to hydrophilic biodegradable foams, which may be used e.g. in the form of a plug or tampon, for instance for controlling bleeding, wound closure, prevent tissue adhesion and/or support tissue regeneration. The invention provides an absorbent foam, suitable for packing antrums or other cavities of the human or animal body, comprising a biodegradable synthetic polymer, which polymer preferably comprises —C(O)—O— groups in the backbone of the polymer, for instance polyurethane and/or polyester units combined with polyethers.
    Type: Grant
    Filed: April 24, 2015
    Date of Patent: December 17, 2019
    Assignee: Stryker European Holdings I, LLC
    Inventors: Catharina Everdina Hissink, Theodorus Adrianus Cornelius Flipsen, Johan Zuidema, Linda Joan Gibcus
  • Patent number: 10046084
    Abstract: This invention provides aragonite- and calcite-based scaffolds for the repair, regeneration, enhancement of formation or a combination thereof of cartilage and/or bone, which scaffolds comprise at least two phases, wherein each phase differs in terms of its chemical content, or structure, kits comprising the same, processes for producing solid aragonite or calcite scaffolds and methods of use thereof.
    Type: Grant
    Filed: March 1, 2016
    Date of Patent: August 14, 2018
    Assignee: CARTIHEAL (2009) LTD.
    Inventors: Nir Altschuler, Razi Vago
  • Patent number: 9987394
    Abstract: A prosthetic implant comprising a biocompatible three-dimensional scaffold and at least two cell types selected from the group consisting of osteoblasts, osteoclasts, and endothelial cells or progenitors thereof.
    Type: Grant
    Filed: April 7, 2009
    Date of Patent: June 5, 2018
    Inventor: Shai Meretzki
  • Patent number: 9610381
    Abstract: A process is for extracting natural hydroxyapatite from bone in order to make granules for a bone graft. The process involves soaking and boiling raw bone cubes in deionized water. Soaking and boiling removes lipids, blood components, and proteins and creates bone cubes. Next, washing the bone cubes in deionized water and drying the bone cubes. Then, segregating cancellous bone cubes with densified porous structure from those without densified porous structure. After that, soaking the cancellous bone cubes with densified porous structure in a solution of sodium hydroxide and a solution of hydrogen peroxide. Next, washing the cancellous bone cubes with densified porous structure in deionized water and drying the bone cubes. Then, sintering the cancellous bone cubes with densified porous structure. After that, fracturing the cancellous bone cubes with densified porous structure into the granules for the bone graft.
    Type: Grant
    Filed: October 8, 2013
    Date of Patent: April 4, 2017
    Assignee: SIGMAGRAFT, INC.
    Inventors: Seung Hyun Lee, Yuni Pai, Katherine Park, Dae Kyu Chang
  • Patent number: 9585757
    Abstract: The present disclosure provides, among other things, prosthetic joint components having textured surface(s) for improving lubrication and increasing the useful life of the prosthetic joint components. The textured surface includes solid features configured to stably contain a biological fluid or a synthetic biological fluid therebetween or therewithin for a non-zero residence time.
    Type: Grant
    Filed: September 3, 2013
    Date of Patent: March 7, 2017
    Assignee: Massachusetts Institute of Technology
    Inventors: Alexander H. Slocum, Jr., Adam T. Paxson, Jonathan David Smith, Daniel H. Goodman, Kripa K. Varanasi
  • Patent number: 9526632
    Abstract: According to some embodiments, a method of treating a joint of a patient comprises creating a recess in a bone located at or near a targeted joint, wherein the recess includes a generally wedge or truncated cone shape. In one embodiment, the recess in a bone comprises a surface opening along an outer surface of the bone and a bottom opening along the distal end of the recess, such that a diameter of the surface opening is generally smaller than a diameter of the bottom opening. The method additionally comprises providing a joint implant having a wedge or truncated cone shape, wherein a diameter of a top end of the joint implant is generally smaller than a diameter of a bottom end of the joint implant, inserting the joint implant within the recess.
    Type: Grant
    Filed: August 14, 2015
    Date of Patent: December 27, 2016
    Assignee: Cartiva, Inc.
    Inventors: Steven P. Walsh, Letitia Tudor, Ernest N. Corrao, Craig B. Berky, Jonathan P. Bauer, Jeremy Hemingway, Michael Axelrod
  • Patent number: 9498431
    Abstract: A controlled releasing composition comprising a plurality of microparticles and a matrix as well as the preparation method thereof is disclosed. The plurality of microparticles comprise a first material and the matrix comprises a second material. The melting temperature of the first material is higher than the melting temperature of the second material.
    Type: Grant
    Filed: December 10, 2009
    Date of Patent: November 22, 2016
    Inventors: Jianjian Xu, Shiliang Wang, Manzhi Ding
  • Patent number: 9155543
    Abstract: According to some embodiments, a method of treating a joint of a patient comprises creating a recess in a bone located at or near a targeted joint, wherein the recess includes a generally wedge or truncated cone shape. In one embodiment, the recess in a bone comprises a surface opening along an outer surface of the bone and a bottom opening along the distal end of the recess, such that a diameter of the surface opening is generally smaller than a diameter of the bottom opening. The method additionally comprises providing a joint implant having a wedge or truncated cone shape, wherein a diameter of a top end of the joint implant is generally smaller than a diameter of a bottom end of the joint implant, inserting the joint implant within the recess.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: October 13, 2015
    Assignee: Cartiva, Inc.
    Inventors: Steven P. Walsh, Letitia Tudor, Ernest N. Corrao, Jr., Craig B. Berky, Jonathan P. Bauer, Jeremy Hemingway
  • Patent number: 9119902
    Abstract: The present invention is directed to absorbable microspheres comprising a copolymer formed from greater than 88 to about 99 mole percent ?-caprolactone or p-dioxanone, and about 1 to less than 12 mole percent of a different second monomer selected from the group consisting of glycolide, p-dioxanone, trimethylene carbonate and the lactides and combinations thereof, said microspheres having a particle size ranging from about 5 to 2,000 microns. Also described herein are a method for making such microspheres and formulations comprising such absorbable microspheres.
    Type: Grant
    Filed: June 22, 2006
    Date of Patent: September 1, 2015
    Assignee: Ethicon, Inc.
    Inventors: Modesto Erneta, Zhangwen Wu
  • Patent number: 9056150
    Abstract: In certain described embodiments, implantable medical materials comprise a scaffolding material, a liquid organic binder, and entrapped calcium-containing particles. The medical materials can incorporate an osteoinductive factor such as a protein. The scaffolding material can bind the factor. In additional described embodiments, implantable medical materials include an osteoconductive scaffolding material, an incorporated osteoinductive factor, and a biodegradable barrier material effective to delay release of the factor from the scaffolding material. The scaffolding material can bind the factor. Also described a methods for preparing and implanting the described medical materials.
    Type: Grant
    Filed: December 4, 2007
    Date of Patent: June 16, 2015
    Assignee: Warsaw Orthopedic, Inc.
    Inventors: Jeffrey M. Gross, Steve Peckham, Jeffrey Scifert, Jeffrey Badura, Nelson Scarborough, Scott Vickers
  • Patent number: 9034361
    Abstract: Hydroswellable, absorbable and non-absorbable, aliphatic, segmented polyurethanes and polyurethane-urea capable of swelling in the biological environment with associated increase in volume of at least 3 percent have more than one type of segments, including those derived from polyethylene glycol and the molecular chains are structurally tailored to allow the use of corresponding formulations and medical devices as carriers for bioactive agents, rheological modifiers of cyanoacrylate-based tissue adhesives, as protective devices for repairing defective or diseased components of articulating joints and their cartilage, and scaffolds for cartilage tissue engineering.
    Type: Grant
    Filed: October 21, 2013
    Date of Patent: May 19, 2015
    Assignee: Poly-Med, Inc.
    Inventors: Shalaby W. Shalaby, Joel T. Corbett, Michael Aaron Vaughn, David R. Ingram
  • Patent number: 9017416
    Abstract: This invention relates to a method of forming a polymer component and comprises blending polymer particles with antioxidant to form a mixture in which the antioxidant coats the polymer particles, irradiating the mixture to cross-link the polymer particles therein and forming the irradiated mixture into a consolidated component. The invention also relates to a method of forming an articular surface for a prosthesis and a prosthesis having a polymer articular bearing surface wherein at least one pre-determined portion of the bearing surface is provided with cross-linked polymer bonds.
    Type: Grant
    Filed: June 21, 2010
    Date of Patent: April 28, 2015
    Inventor: Derek J. McMinn
  • Patent number: 9005286
    Abstract: The present invention involves tissue engineering constructs made from a new composite bone graft material made from biocompatible poly(D,L-lactic-co-glycolic acid) (PLGA) and bioceramic particles exposed on its surface using a gas foaming particle leaching (GF/PL) method and infused with collagen. Methods and apparatus for of forming scaffolds are also disclosed.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: April 14, 2015
    Assignee: Thierry Giorno
    Inventor: Thierry Giorno
  • Patent number: 8992628
    Abstract: A covering for delivering a substance or material to a surgical site is provided. The covering, with substance provided therein, may be referred to as a delivery system. Generally, the covering may be formed of polymers for providing extended shelf life and/or increased moisture and radiation resistance, and may include a single or multi-compartment structure capable of at least partially retaining a substance provided therein until the covering is placed at a surgical site. Upon placement, the covering may facilitate transfer of the substance or surrounding materials. For example, the substance may be released (actively or passively) to the surgical site. The covering may participate in, control, or otherwise adjust the release of the substance. In various embodiments, the covering may be formed of a biocompatible material and is suitable for a variety of procedure specific uses.
    Type: Grant
    Filed: January 20, 2012
    Date of Patent: March 31, 2015
    Assignee: Warsaw Orthopedic, Inc.
    Inventors: Susan J. Drapeau, Guobao Wei
  • Publication number: 20150010607
    Abstract: The invention relates to methods of preparing a bone matrix solution, a bone matrix implant, and variants thereof. The invention also relates to methods of cell culture using the same. The invention further relates to bone matrix scaffolds comprising one or more bone matrix nanofibers, methods of preparing, and methods of use thereof. The invention also relates to methods of culturing cells and promoting differentiation of stem cells using the same.
    Type: Application
    Filed: February 7, 2013
    Publication date: January 8, 2015
    Inventors: Michael Francis, Roy Ogle
  • Patent number: 8926710
    Abstract: Osteoconductive bone graft materials are provided. These compositions contain injectable cements and demineralized bone matrix fibers. The combination of these materials enables the filling of a bone void while balancing strength and resorption.
    Type: Grant
    Filed: October 25, 2010
    Date of Patent: January 6, 2015
    Assignee: Warsaw Orthopedic, Inc.
    Inventor: William F. McKay
  • Patent number: 8912247
    Abstract: Improved methods for preparing polyethylene glycol fumarate) are disclosed. Methods for chemically crosslinking or photocross-linking hydrophilic polyethylene glycol fumarate) with hydrophobic polymers such as poly(propylene fumarate) (PPF) and poly(caprolactone fumarate) (PCLF) to form various hydrogels (FIG. 1) with controllable hydrophilicity are also disclosed. The hydrogels are useful in the fabrication of injectable and in-situ hardening scaffolds for application in skeletal reconstruction. An injectable material including the hydrogels may be useful in controlled drug release.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: December 16, 2014
    Assignee: Mayo Foundation for Medical Education and Research
    Inventors: Shanfeng Wang, Lichun Lu, Michael J. Yaszemski
  • Publication number: 20140358238
    Abstract: A bioabsorbable plug implant, suitable for bone tissue regeneration, comprising a first portion, and a second portion extending outwardly from the first portion, the first and second portions formed from expandable material. A method for bone tissue regeneration comprising the steps of: providing a bioabsorbable plug implant, wherein the implant comprises a first portion and a second portion extending outwardly from the first portion, the first and second portions formed from expandable material; inserting the second portion into a defect or gap of a bone, the first surface engaging the outside contour of the defect or gap; allowing the plug implant to contact body fluids, thereby expanding the size of the plug implant so that the plug fits into the defect or gap.
    Type: Application
    Filed: March 24, 2014
    Publication date: December 4, 2014
    Applicant: OSTEOPORE INTERNATIONAL PTE LTD.
    Inventors: Swee Hin TEOH, Kim Cheng TAN, Dietmar HUTMACHER, Thiam Chye LIM, Jan-Thorsten SCHANTZ, Ning CHOU
  • Publication number: 20140350692
    Abstract: Bone tissue biomimetic materials, biomimetic constructs that can be formed with the materials, and methods for forming the materials and constructs are described. The bone tissue biomimetic materials include electrospun nanofibers formed of polymers that are conjugated with peptides that include acidic amino acid residues. The materials can incorporate high levels of mineralization so as to provide mechanical strength and promote osteogenesis and/or osteoconductivity on/in the bone tissue biomimetic materials. The materials and constructs can be utilized in forming tissue engineered structures for in vitro and in vivo use. Macroscopic bone tissue biomimetic scaffolds formed from the materials can be seeded with osteogenic cells and utilized to develop bone graft materials that can exhibit strength and osteoconductivity similar to the native bone and that exhibit uniform distribution of nutrients in the scaffolds.
    Type: Application
    Filed: April 24, 2014
    Publication date: November 27, 2014
    Applicant: University of South Carolina
    Inventor: Esmaiel Jabbari
  • Patent number: 8877499
    Abstract: A biocompatible implantable bone anchor is provided that has a threaded first portion that engages and anchors into a bone. The implant also has a neck region extending from the first portion adapted to promote autologous cell growth thereon at an interface of the bone and one or more epidermal or gum layers, the neck region having a plurality of channels extending about the neck region. The neck region is configured to mechanically engage at least one of an abutment, dental restoration, or osseous device attachment. An in situ bone anchor cell growth assembly includes the bone anchor and a manifold encompassing the neck portion so as to form a seal therebetween and a route of fluid communication between a manifold inlet and at least one of said plurality of channels. A process for growing autologous cells on a neck region of a bone anchor is provided.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: November 4, 2014
    Assignee: ViaDerm LLC
    Inventors: Allen B. Kantrowitz, Michael N. Helmus
  • Patent number: 8877220
    Abstract: A compressed implant composite for repairing mineralized tissue. The compressed implant composite includes a matrix formed of biopolymeric fibers and a plurality of calcium- and/or silicate-based mineral particles dispersed in the matrix. The matrix constitutes 4 to 80% by weight and the mineral particles constitute 20 to 96% by weight of the composite. The composite is free of soluble collagen and is expandable to a volume 2 to 100 times of its compressed volume (e.g., upon absorption of water). Also disclosed are methods of preparing the above-described composite.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: November 4, 2014
    Assignee: Collagen Matrix, Inc.
    Inventors: Shu-Tung Li, Hui-Chen Chen, Debbie Yuen
  • Patent number: 8865788
    Abstract: A medical prosthesis for use within the body which is formed of radiation treated ultra high molecular weight polyethylene having substantially no detectable free radicals, is described. Preferred prostheses exhibit reduced production of particles from the prosthesis during wear of the prosthesis, and are substantially oxidation resistant. Methods of manufacture of such devices and material used therein are also provided.
    Type: Grant
    Filed: January 19, 2001
    Date of Patent: October 21, 2014
    Assignees: The General Hospital Corporation, Massachusetts Institute of Technology
    Inventors: Edward W. Merrill, William H. Harris, Murali Jasty, Charles R. Bragdon, Daniel O. O'Connor, Premnath Venugopalan
  • Publication number: 20140277572
    Abstract: Methods to produce structures containing ultrafine fibers with average diameters from 10 nm to 10 ?m and more preferably from 50 nm to 5 ?m, have been developed. These methods produce ultrafine fibers without substantial loss of the polymer's weight average molecular weight. The ultrafine electrospun fibers have an unexpectedly higher degree of molecular orientation, and higher melt temperature than fibers derived by dry spinning. In the preferred embodiment, the polymer comprises 4-hydroxybutyrate. The ultrafine fibers are preferably derived by electrospinning. A solution of the polymer is dissolved in a solvent, pumped through a spinneret, subjected to an electric field, and ultrafine fibers with a high degree of molecular orientation are collected. These structures of ultrafine fibers can be used for a variety of purposes including fabrication of medical devices.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Inventors: David P. Martin, Kai Guo, Said Rizk, Simon F. Williams
  • Patent number: 8821583
    Abstract: A strain-hardened interpenetrating polymer network (IPN) hydrogel is provided. The interpenetrating polymer network hydrogel is based on two different networks. The first network is a non-silicone network of preformed hydrophilic non-ionic telechelic macromonomers chemically cross-linked by polymerization of its end-groups. The second network is a non-silicone network of ionizable monomers. The second network has been polymerized and chemically cross-linked in the presence of the first network and has formed physical cross-links with the first network. An aqueous salt solution having a neutral pH is used to ionize and swell the second network in the interpenetrating polymer network. The swelling of the second network is constrained by the first network, and this constraining effect results in an increase in effective physical cross-links within the interpenetrating polymer network, and, in turn, an increase its elastic modulus.
    Type: Grant
    Filed: February 15, 2008
    Date of Patent: September 2, 2014
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: David Myung, Laura Hartmann, Jean Noolandi, Christopher N. Ta, Curtis W. Frank
  • Patent number: 8815970
    Abstract: A method of preparing polyurethane prepolymer does not require using a toxic isocyanate monomer (manufactured by harmful phosgene) as a raw material. Epoxy resin and carbon dioxide are used as major raw materials to form cyclic carbonates to be reacted with a functional group oligomer, and then amino groups in a hydrophilic (ether group) or hydrophobic (siloxane group) diamine polymer are used for performing a ring-opening polymerization, and the microwave irradiation is used in the ring-opening polymerization to efficiently synthesize the amino-terminated PU prepolymer, and then an acrylic group at an end is added to manufacture an UV cross-linking PU (UV-PU) oligomer which can be coated onto a fabric surface, and the fabric is dried by UV radiation for a surface treatment to form a washing-resisted long lasting hydrophilic or hydrophobic PU fabric.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: August 26, 2014
    Assignee: Tamkang University (A University of Taiwan)
    Inventors: Jing-Zhong Hwang, Guei-Jia Chang, Jhong-Jheng Lin, Cheng-Wei Tsai, Shih-Chieh Wang, Po-Cheng Chen, Kan-Nan Chen, Kan-Nan Chen
  • Patent number: 8796347
    Abstract: The present invention presents methods for making oxidation-resistant and wear-resistant polyethylenes and medical implants made therefrom. Preferably, the implants are components of prosthetic joints, e.g., a bearing component of an artificial hip or knee joint. The resulting oxidation-resistant and wear-resistant polyethylenes and implants are also disclosed.
    Type: Grant
    Filed: April 27, 2001
    Date of Patent: August 5, 2014
    Assignee: Orthopaedic Hospital
    Inventors: Harry A. McKellop, Fu-Wen Shen
  • Patent number: 8795841
    Abstract: Disclosed is a graft polymerization method which has solved problems involved in use of a solvent, a radical initiator and high-energy radiation when a monomer is graft-polymerized on the surface of a polymer base. The graft polymerization method is characterized in that a polymerization product is obtained by immersing a polymer base (i) having a ketone group on the surface into a reaction system containing a monomer (ii) and then irradiating the polymer base (i) with light so that polymerization of the monomer starts from the surface of the polymer base (i).
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: August 5, 2014
    Assignees: Japan Medical Materials Corporation, The University of Tokyo
    Inventors: Masayuki Kyomoto, Kazuhiko Ishihara
  • Patent number: 8790681
    Abstract: This invention provides aragonite- and calcite-based scaffolds for the repair, regeneration, enhancement of formation or a combination thereof of cartilage and/or bone, which scaffolds comprise at least two phases, wherein each phase differs in terms of its chemical content, or structure, kits comprising the same, processes for producing solid aragonite or calcite scaffolds and methods of use thereof.
    Type: Grant
    Filed: May 23, 2010
    Date of Patent: July 29, 2014
    Assignee: Cartiheal (2009) Ltd.
    Inventors: Nir Altschuler, Razi Vago
  • Publication number: 20140207237
    Abstract: Embodiments described include devices and methods for forming a porous polymer material. Devices disclosed and formed using the methods described a spacer for spinal fusion, craniomaxillofacial (CMF) structures, and other structures for tissue implants.
    Type: Application
    Filed: August 15, 2013
    Publication date: July 24, 2014
    Applicant: Depuy Synthes Products, LLC
    Inventors: Sean Hamilton Kerr, Ali Recber, Thomas Pepe, Dominique Messerli, Lawton Laurence, Ryan Walsh, Thomas Kueenzi, Brandon Randall
  • Patent number: 8771369
    Abstract: The present invention relates to polymers and, specifically, to surface modification of polymers. In one exemplary embodiment, the present invention increases the bond strength of UHMWPE components to PMMA bone cement by creating a chemical bond between the UHMWPE components and the PMMA bone cement. Specifically, in one exemplary embodiment, a surface of the UHMWPE component that is to be bonded to PMMA bone cement is treated with an oxidizing agent, such as an aqueous solution of hydrogen peroxide. In one exemplary embodiment, the UHMWPE component is treated with hydrogen peroxide by swabbing the surface of the UHMWPE component with the hydrogen peroxide solution. The surface of the UHMWPE component may then be dried and PMMA bone cement applied to the surface of the UHMWPE component.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: July 8, 2014
    Assignee: Zimmer, Inc.
    Inventors: Donald L. Yakimicki, Brian H. Thomas, Lynn A. Kirkpatrick
  • Patent number: 8765265
    Abstract: Disclosed is a sliding member with excellent durability and capable of maintaining wear resistance over a long period of time. Further disclosed is an artificial joint member for which the film thickness of the polymer base material is reduced. Further disclosed is an artificial joint which is capable of demonstrating high lubricity, biocompatibility, and resistance to dislocation after introduction into the body. Further disclosed are a medical appliance material and a medical appliance which demonstrate excellent biocompatibility.
    Type: Grant
    Filed: December 25, 2009
    Date of Patent: July 1, 2014
    Assignees: Kyocera Medical Corporation, The University of Tokyo
    Inventors: Masayuki Kyomoto, Kazuhiko Ishihara
  • Publication number: 20140178455
    Abstract: The present invention provides gradient porous scaffolds for bone regeneration and osteochondral defect repair, methods for making such gradient porous scaffolds, and methods for using the gradient porous scaffolds.
    Type: Application
    Filed: December 20, 2013
    Publication date: June 26, 2014
    Inventors: Syam P. Nukavarapu, Cato T. Laurencin, Ami R. Amini, Deborah L. Dorcemus
  • Publication number: 20140163691
    Abstract: The invention relates to an osteosynthesis implant (1) for adapting the shape and the working volume of a ribcage with a view to the implantation of an artificial heart in said ribcage, characterized in that it comprises the following elements:—a main part (10) which has a shape and dimensions that can be adapted to the shape and the dimensions of the rib cage,—attaching elements (20) for attaching the main part to the ribcage, wherein said attaching elements (20) are rigidly attached to the main part (10), and—a protection (30) for the artificial heart, attached to the main part (10).
    Type: Application
    Filed: May 23, 2012
    Publication date: June 12, 2014
    Inventor: Philippe Dartevelle
  • Publication number: 20140155356
    Abstract: A novel composition, kit, and method of using the composition as a bone substitute for dental, orthopedic and drug delivery purposes. Specifically, the bone substitute comprises a plurality of polymeric beads having a crosslinkable shell where the shell is cured by light and/or chemical curing.
    Type: Application
    Filed: November 30, 2012
    Publication date: June 5, 2014
    Applicant: A Enterprises, Inc.
    Inventor: A Enterprises, Inc.
  • Patent number: 8722073
    Abstract: The present invention relates to a bone cement precursor system that is presented in the form of two shelf-stable pastes which have been terminally sterilized and are held in separate containers during product transport and storage. When the product is used during surgery, these pastes inject to a site of application through a static mixing device by the action of applied injection force. When the two pastes are mixed, they start to react to each other while injecting out. The resulting composition is highly biocompatible, osteoconductive, injectable, rapid setting and bioresorbable, and is useful in connection with bone repair procedures, for example, in the craniomaxillofacial, trauma and orthopedic areas.
    Type: Grant
    Filed: June 6, 2013
    Date of Patent: May 13, 2014
    Assignee: Howmedica Osteonics Corp.
    Inventors: Donal O'Mahony, Venkat R. Garigapati, Adrian Sun Wai, Brian Hess, Matthew E. Murphy
  • Publication number: 20140128990
    Abstract: The present invention relates to a macroporous material for filling bone voids. In particular, we describe an implant material comprising bioresorbable polymer granules and a biocompatible water-miscible solvent, wherein the solvent at least partially dissolves and/or softens the polymer granules to form a mouldable mass that can be used to fill a bone defect but hardens when water is added and/or the implant material is placed in an aqueous environment, and wherein the implant material has macroporosity suitable for bone in-growth.
    Type: Application
    Filed: April 4, 2012
    Publication date: May 8, 2014
    Applicant: SMITH & NEPHEW, INC.
    Inventors: David Franklin Farrar, Nicola Jayne MacAuley, John Rose
  • Patent number: 8703293
    Abstract: Provided herein re a composition and a coating or a device (e.g., absorbable stent) that includes a PEGylated hyaluronic acid and a PEGylated non-hyaluronic acid biocompatible polymer and the methods of use thereof.
    Type: Grant
    Filed: April 1, 2010
    Date of Patent: April 22, 2014
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventors: Lothar W. Kleiner, Connie S. Kwok
  • Patent number: 8680173
    Abstract: A method of producing an improved polyethylene, especially an ultra-high molecular weight polyethylene utilizes a sequential irradiation and annealing process to form a highly cross-linked polyethylene material. The use of sequential irradiation followed by sequential annealing after each irradiation allows each dose of irradiation in the series of doses to be relatively low while achieving a total dose which is sufficiently high to cross-link the material. The process may either be applied to a preformed material such as a rod or bar or sheet made from polyethylene resin or may be applied to a finished polyethylene part.
    Type: Grant
    Filed: October 23, 2012
    Date of Patent: March 25, 2014
    Assignee: Howmedica Osteonics Corp.
    Inventors: Aiguo Wang, John H. Dumbleton, Aaron Essner, Shi-Shen Yau
  • Patent number: 8679190
    Abstract: An arthroplasty device is provided having an interpenetrating polymer network (IPN) hydrogel that is strain-hardened by swelling and adapted to be held in place in a joint by conforming to a bone geometry. The strain-hardened IPN hydrogel is based on two different networks: (1) a non-silicone network of preformed hydrophilic non-ionic telechelic macromonomers chemically cross-linked by polymerization of its end-groups, and (2) a non-silicone network of ionizable monomers. The second network was polymerized and chemically cross-linked in the presence of the first network and has formed physical cross-links with the first network. Within the IPN, the degree of chemical cross-linking in the second network is less than in the first network. An aqueous salt solution (neutral pH) is used to ionize and swell the second network. The swelling of the second network is constrained by the first network resulting in an increase in effective physical cross-links within the IPN.
    Type: Grant
    Filed: March 12, 2012
    Date of Patent: March 25, 2014
    Assignees: The Board of Trustees of the Leland Stanford Junior University, The United States of America as Represented by the Department of Veterans Affairs
    Inventors: David Myung, Lampros Kourtis, Laura Hartmann, Curtis W. Frank, Stuart B. Goodman, Dennis R. Carter
  • Patent number: 8673014
    Abstract: A method of cranial repair and the cranial implant molding device used therein, the device having a frame or base that receives a bottom or convex molding plate and a top or concave molding plate in a manner whereby the two plates are separated a distance to receive a settable or curable implant forming material therebetween. The plates are separated by a compressible member such that by the use of threaded mechanical fasteners or similar members the distance between the two plates can be adjusted by tightening or loosening the mechanical members. The thickness of the implant is varied by varying the separation distance on different sides of the frame.
    Type: Grant
    Filed: April 2, 2012
    Date of Patent: March 18, 2014
    Assignee: KLS-Martin, L.P.
    Inventors: Shawn Burke, Michael Teague, Pat Lemoyne