Feedback Control (e.g., Closed Loop) Patents (Class 701/60)
  • Patent number: 8744707
    Abstract: An engine powered wheeled machine having improved engine over speed and under speed protection includes a parallel path transmission having a gear train with first and second transmission inputs and a transmission output, and including a hydraulic variator having a variator output driving the first transmission input, the hydraulic variator having a variator pump and a variator motor, the displacement of the variator pump being controlled by a variator actuator.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: June 3, 2014
    Assignee: Caterpillar Inc.
    Inventors: Wei Li, Brian D. Hoff
  • Patent number: 8738250
    Abstract: Methods and systems for controlling a power source of a mobile machine having a continuously variable transmission (CVT) are disclosed. In one embodiment, the method includes receiving, from an operator of the mobile machine, input selecting of one of a plurality of target travel speeds of the mobile machine and input indicative of a requested output speed of the power source. The method further includes calculating a difference between the selected target travel speed and an actual travel speed of the mobile machine. Finally, the method includes adjusting the requested output speed of the power source based on the calculated travel speed difference, and commanding the power source based on the adjusted requested output speed of the power source.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: May 27, 2014
    Assignee: Caterpillar Inc.
    Inventor: Brian D. Hoff
  • Patent number: 8738255
    Abstract: Disclosed here are inventive systems and methods for a powertrain of an electric vehicle (EV). In some embodiments, said powertrain includes a continuously variable transmission (CVT) coupled to an electric drive motor, wherein a control system is configured to control the CVT and/or the drive motor to optimize various efficiencies associated with the EV and/or its subsystems. In one specific embodiment, the control system is configured to operate the EV in an economy mode. Operating in said mode, the control system simultaneously manages the CVT and the drive motor to optimize the range of the EV. The control system can be configured to manage the current provided to the drive motor, as well as adjust a transmission speed ratio of the CVT. Other modes of operation are also disclosed. The control system can be configured to manage the power to the drive motor and adjust the transmission speed ratio of the CVT taking into account battery voltage, throttle position, and transmission speed ratio, for example.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: May 27, 2014
    Assignee: Fallbrook Intellectual Property Company LLC
    Inventors: Jeremy Carter, Brad P Pohl, Loren T McDaniel, Cyril Keilers, Tim Ruggles, David Rogers, Eric Diehl, Austin Orand, Alan Mark Delz, Paul Argus Parks, Mark E Bartholomew, Christopher M Vasiliotis
  • Patent number: 8725336
    Abstract: In this power transmission control device, an EV travel mode for traveling by using only an electric-motor driving torque in a state in which a clutch torque is maintained to zero, and an EG travel mode for traveling by using the internal-combustion-engine driving torque in a state in which the clutch torque is adjusted to a value larger than zero are selectively realized depending on a travel state. In a state in which the EV travel mode is selected, when it is determined that a vehicle speed is higher than a predetermined speed Vth, “a gear position to be realized” is changed depending on the travel state of the vehicle, and when it is determined that the vehicle speed is equal to or lower than the predetermined speed Vth, “the gear position to be realized” is maintained to a current gear position independently of the travel state of the vehicle.
    Type: Grant
    Filed: September 20, 2012
    Date of Patent: May 13, 2014
    Assignee: Aisin AI Co., Ltd.
    Inventors: Kazutaka Kobayashi, Takeshige Miyazaki
  • Publication number: 20140129101
    Abstract: A value correlated with a basic required driving force to be required at re-acceleration is estimated from the deceleration of a decelerating vehicle. A target gear ratio of a CVT is determined from a value obtained by correcting the value correlated with the basic required driving force based on a maximum amount of vehicle speed change at the current time point and an amount of vehicle speed change from the start of a gear ratio control up to the current time point.
    Type: Application
    Filed: November 1, 2013
    Publication date: May 8, 2014
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takaaki TOKURA, Shogo MATSUMOTO
  • Patent number: 8718886
    Abstract: A system and method for controlling double transition shifts in an automatic transmission having multiple gear sections. During a double transition shift, the system performs simultaneous closed loop control of the primary oncoming clutch in the primary gear section and the secondary off-going clutch of the secondary gear section. Before the input shaft of the secondary gear section is fully pulled down or the secondary off-going clutch becomes overheated, the system switches closed loop control of the input shaft to the secondary on-coming clutch of the secondary gear section. The system utilizes model-based calculations to determine the initial clutch pressure settings when a clutch enters closed loop control.
    Type: Grant
    Filed: July 3, 2013
    Date of Patent: May 6, 2014
    Assignee: Allison Transmission, Inc.
    Inventors: John Andrew Byerly, John P. Kresse, Mark A. Rains, Jeffrey K. Runde
  • Publication number: 20140121922
    Abstract: Systems and methods for controlling transmissions and associated vehicles, machines, equipment, etc., are disclosed. In one case, a transmission control system includes a control unit configured to use a sensed vehicle speed and a commanded, target constant input speed to maintain an input speed substantially constant. The system includes one or more maps that associate a speed ratio of a transmission with a vehicle speed. In one embodiment, one such map associates an encoder position with a vehicle speed. Regarding a specific application, an automatic bicycle transmission shifting system is contemplated. An exemplary automatic bicycle includes a control unit, a shift actuator, various sensors, and a user interface. The control unit is configured to cooperate with a logic module and an actuator controller to control the cadence of a rider.
    Type: Application
    Filed: January 3, 2014
    Publication date: May 1, 2014
    Applicant: Fallbrook Intellectual Property Company LLC
    Inventors: Christopher M. Vasiliotis, Loren T. McDaniel
  • Publication number: 20140121921
    Abstract: The present disclosure relates to a method of controlling a vehicle. The method includes receiving a signal indicative of the vehicle being in a stop condition or in the process of stopping. The method also includes activating an auxiliary hydraulic pressurization system in response to the signal and regulating a hydraulic pressure in a hydraulic control system of a transmission. A drive unit is disabled such that a main pump of the hydraulic control system discontinues providing hydraulic pressure to the hydraulic control system. The hydraulic pressure is maintained at a hold pressure in the hydraulic control system by the auxiliary hydraulic pressurization system.
    Type: Application
    Filed: August 16, 2013
    Publication date: May 1, 2014
    Applicant: Allison Transmission, Inc.
    Inventors: Charles F. Long, Jeffrey K. Runde
  • Patent number: 8712655
    Abstract: A control system is provided for shifting an automatic transmission of a motor vehicle, which includes, but is not limited to a speed controller, and an electronic control device. Through the electronic control device the parameters vehicle speed, position of the speed controller and acceleration of the speed controller can be captured. Through the electronic control device and through comparison of the captured values of the parameters with predetermined reference values a shifting time is determined for shifting the automatic transmission.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: April 29, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Martin Gentile, Gernot Becker
  • Patent number: 8712656
    Abstract: A bicycle shifting method suitable for controlling a gear ratio of a front chain ring and a rear chain ring of the bicycle is provided. The bicycle has a front electronic derailleur, a rear electronic derailleur, a controller, and a controlling switch, and the controller stores a gear-ratio table. The bicycle shifting method includes following steps. The controlling switch is triggered to generate a corresponding signal. One or both of the electronic derailleurs are controlled by the controller according the signal. When the signal is a speed-increasing signal, the controller controls the electronic derailleurs to increase the gear ratio along a speed-increasing path of the gear-ratio table. When the signal is a laborsaving signal, the controller controls the electronic derailleurs to decrease the gear ratio along a laborsaving path of the gear-ratio table. The speed-increasing path is different from the laborsaving path.
    Type: Grant
    Filed: September 23, 2013
    Date of Patent: April 29, 2014
    Assignee: Giant Manufacturing Co., Ltd.
    Inventor: Kun-Hui Lee
  • Patent number: 8706369
    Abstract: A closed loop shift control apparatus and method based on estimated torque in friction elements controls a torque transfer phase when shifting from a low gear configuration to a high gear configuration for an automatic transmission system. When pressure actuated friction elements are selectively engaged and released to establish torque flow paths in the transmission, estimates of torsional load exerted on the off-going friction element are used to predict the optimal off-going friction element release timing for achieving a consistent shift feel. The estimated torque is preferably calculated by using estimated torque signals generated as a function of speed measurements represented either the engine speed and turbine output speed or transmission output speed and wheel speed under dynamically changing conditions.
    Type: Grant
    Filed: July 23, 2013
    Date of Patent: April 22, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Diana Yanakiev, Yuji Fujii, Eric Tseng, Gregory Michael Pietron, Joseph F Kucharski
  • Publication number: 20140107901
    Abstract: A method for controlling synchronization of an automated manual transmission includes: a step of dividing synchronization section that divides the entire synchronization section where synchronization is performed into a plurality of synchronization sections in accordance with the speed of the synchronization; a step of setting the rate of change of a target number of revolutions that sets the rate of change of a target number of revolutions of an input shaft in accordance with the speed of the synchronization; and a step of synchronization that performs feedback control such that the rate of change of the number of revolutions of the input shaft is synchronized while following the rate of change of a target number of revolutions.
    Type: Application
    Filed: December 13, 2012
    Publication date: April 17, 2014
    Applicants: Kia Motors Corp., Hyundai Motor Company
    Inventors: Joung Chul KIM, Young Min YOON
  • Publication number: 20140095035
    Abstract: System and method for controlling a transmission in response to transient torque events are disclosed. The method includes commanding a maximum transmission output torque; comparing the commanded output torque to a feedback torque to determine if they are equal; and incrementally increasing the transmission output torque until equal. A machine and a powertrain include a controller configured to command a maximum negative transmission output torque in response to a transient torque event, and incrementally increase the transmission output torque until such time as the transmission output torque is equal to or within a preset range of the feedback torque.
    Type: Application
    Filed: October 23, 2012
    Publication date: April 3, 2014
    Applicant: CATERPILLAR INC.
    Inventors: Brian D. Hoff, Michael Barngrover, Mark E. Rettig
  • Patent number: 8688336
    Abstract: A system for controlling power downshifts of a transmission includes a flare generation module, a flare control module, and a shift control module. The flare generation module generates turbine speed flare by decreasing pressure applied to an off-going clutch of the transmission. The flare control module decreases the turbine speed flare by increasing the pressure applied to the off-going clutch of the transmission. The shift control module increases a pressure applied to an on-coming clutch of the transmission when the turbine speed flare is less than a predetermined amount from a desired turbine speed flare.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: April 1, 2014
    Inventor: Todd J. Thor
  • Publication number: 20140088845
    Abstract: An automatic transmission shift control device include a controller that is programmed to shift an automatic transmission by issuing a command for switching an interference shift element from an engaged state to a disengaged state, and by issuing a command for switching a friction shift element from a released state to a locked state. The controller includes a progressive friction-shift-element switchover section which causes progressive switching of the friction shift element from the released state to the locked state prior to the command for switching of the interference shift element from the engaged state to the disengaged state. The controller includes an interference-shift-element switchover section which causes the switching of the interference shift element from the engaged state to the disengaged state when transmission torque of the interference shift element decreases to a predetermined value as the friction shift element progressively switches from the released state to the locked state.
    Type: Application
    Filed: February 15, 2012
    Publication date: March 27, 2014
    Applicant: NISSAN MOTOR CO., LTD.
    Inventor: Ryohey Toyota
  • Publication number: 20140088846
    Abstract: A bicycle shifting method suitable for controlling a gear ratio of a front chain ring and a rear chain ring of the bicycle is provided. The bicycle has a front electronic derailleur, a rear electronic derailleur, a controller, and a controlling switch, and the controller stores a gear-ratio table. The bicycle shifting method includes following steps. The controlling switch is triggered to generate a corresponding signal. One or both of the electronic derailleurs are controlled by the controller according the signal. When the signal is a speed-increasing signal, the controller controls the electronic derailleurs to increase the gear ratio along a speed-increasing path of the gear-ratio table. When the signal is a laborsaving signal, the controller controls the electronic derailleurs to decrease the gear ratio along a laborsaving path of the gear-ratio table. The speed-increasing path is different from the laborsaving path.
    Type: Application
    Filed: September 23, 2013
    Publication date: March 27, 2014
    Applicant: Giant Manufacturing Co., Ltd.
    Inventor: Kun-Hui Lee
  • Patent number: 8682548
    Abstract: A method of controlling a vehicle washing mode for a vehicle equipped with shift-by-wire shifting device, may include performing an N-range-off determining step that determines whether a shift lever is in an N-range when an engine stops, performing an ACC determining step that determines whether the vehicle is in an ACC state, and performing a shifting step that shifts a P-range state of a transmission to a N-range state thereof by operating an actuator, when the N-range-off determining step determines that the shift lever is in the N-range when the engine was stopped, and when the ACC determining step determines that the vehicle is in the ACC state.
    Type: Grant
    Filed: September 8, 2010
    Date of Patent: March 25, 2014
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventor: Hangil Park
  • Publication number: 20140074365
    Abstract: A shift control method includes: a step for confirming whether a high rank shift order is made during a take up control; a step for determining whether a difference between rotation number of an input shaft and the rotation number of the engine is within a predetermined reference rotation number when a high rank shift order has been made as a result of the shift order confirming step; and a step for ending the take up control and converting it into a shift control when the difference between rotation numbers of the input shaft and the engine has been within a predetermined reference rotation number as a result of the slip determining step. Even when a high rank shift order is made, the reduction of the shift replying property and shift feeling can be minimized to improve riding feeling and durability of the first and second clutches.
    Type: Application
    Filed: December 13, 2012
    Publication date: March 13, 2014
    Applicants: Kia Motors Corporation, Hyundai Motor Company
    Inventors: Joung Chul KIM, Young Min YOON
  • Patent number: 8666622
    Abstract: A method of determining the size of a gear interval from a currently engaged gear to a target gear in a transmission. The method includes the steps of, for each current gear and for each possible gear interval from the current gear, recording a limit value for an acceleration or a deceleration in the target gear corresponding to the current gear and the respective gear interval used; for the current gear, starting with the smallest gear interval, applying a loop with successive increases of the gear interval to determine, depending on the current driving situation and characteristic parameters of the vehicle, the acceleration or the acceleration theoretically obtainable in the target gear produced by using the gear interval, which is compared with the respective recorded limit value until the acceleration or the deceleration theoretically obtainable no longer contravenes the limit value. The gear interval is then selected for a gearshift.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: March 4, 2014
    Assignee: ZF Friedrichshafen AG
    Inventors: Maik Wurthner, Joachim Staudinger, Johannes Kemler
  • Patent number: 8660762
    Abstract: When temperature increase promotion processing (for example, prohibiting lockup application and prohibiting shifts to a high gear position) is started while an initial value of an ATF temperature is in a low temperature region, an ATCU determines whether to terminate the temperature increase promotion processing on the basis of a current ATF temperature, and when the temperature increase promotion processing is started while the initial value of the ATF temperature is in an extremely low temperature region, the ATCU determines whether to terminate the temperature increase promotion processing on the basis of a duration of the temperature increase promotion processing. When the temperature increase promotion processing is determined to be complete, the ATCU terminates the temperature increase promotion processing.
    Type: Grant
    Filed: October 21, 2010
    Date of Patent: February 25, 2014
    Assignees: Jatco Ltd, Mitsubishi Electric Corporation
    Inventors: Nobuhide Kato, Nobuhiko Morifuji, Toyotaro Yoshida, Toshimitsu Yamamoto
  • Patent number: 8649952
    Abstract: A method for controlling a backing vehicle includes if a back-up sensor indicates that an obstacle is present behind the vehicle and a gear selector is moved to a reverse position, delaying reverse gear engagement and producing a warning signal, and producing a transmission tie-up if brakes are applied insufficiently to stop the vehicle.
    Type: Grant
    Filed: June 13, 2012
    Date of Patent: February 11, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Felix Nedorezov, Hong Jiang, Steven G. Thomas
  • Patent number: 8645034
    Abstract: A method of detecting synchronizer misalignment in a vehicle transmission, includes: applying an engagement force to an input side of a synchronizer or output side of the synchronizer; monitoring a performance characteristic of a power source configured to apply the engagement force; and determining a misalignment based on the performance characteristic exceeding or not achieving a predetermined threshold.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: February 4, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Shawn Adam Holland, Jeffrey James Tumavitch, Steve Craig Meisner, Bradley Dean Riedle
  • Publication number: 20140032067
    Abstract: A method for electronically controlling a bicycle gearshift comprising at least one derailleur is disclosed, comprising the sequential steps of: a) imparting a movement on the derailleur of the gearshift until the derailleur is in an intended position; b) waiting for a predetermined time period, c) performing a check whether the derailleur is in the intended position, within a possible predetermined tolerance, d) in case said check has a negative outcome, imparting a movement on the derailleur of the gearshift until the derailleur is in the intended position. A derailleur and an electronically servo-assisted bicycle gearshift comprising control electronics comprising modules adapted to carry out the method outlined above are also disclosed.
    Type: Application
    Filed: July 23, 2013
    Publication date: January 30, 2014
    Inventor: Federico Miglioranza
  • Publication number: 20140032066
    Abstract: In an apparatus for controlling a continuously variable transmission, a transmission ratio, an input shaft rotational speed and an input torque, etc., are detected, an axial thrusts of the drive and driven pulleys are detected therefrom, an inter-shaft force is detected, a friction coefficient of the driven pulley including at least a radial component of the friction coefficient ?RDN is calculated in accordance with predetermined relational equations, a target axial thrust of the driven pulley is calculated based on at least the friction coefficient and the axial thrust of the driven pulley is controlled based on the calculated target axial thrust.
    Type: Application
    Filed: July 23, 2013
    Publication date: January 30, 2014
    Applicant: HONDA MOTOR CO., LTD.
    Inventor: Shigeru KANEHARA
  • Publication number: 20140025269
    Abstract: A control device of a vehicle drive device in which an output of a power source is input from a hydraulic power transmission device via a friction engagement device to a continuously variable transmission and transmitted toward drive wheels after speed is changed by the continuously variable transmission, the control device includes: an abnormality detecting portion configured to make a determination of abnormality indicating that the friction engagement device is in a complete release state or a slip state; and an abnormality distinguishing portion, if the abnormality detecting portion makes a determination of abnormality, configured to judge that the friction engagement device is in the slip state when an input/output rotation speed difference between an input rotation speed and an output rotation speed of the hydraulic power transmission device is equal to or greater than a predetermined slip determination value and that the friction engagement device is in the complete release state when the input/output
    Type: Application
    Filed: April 12, 2011
    Publication date: January 23, 2014
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Atsushi Ayabe, Shinya Toyoda
  • Patent number: 8634996
    Abstract: A method of cooling a dual clutch transmission is provided. The transmission has first and second input clutches alternately engagable to transfer torque to an output member along first and second input shafts, respectively, at various speed ratios dependent upon engagement of synchronizers. The method includes determining a currently established speed ratio by determining which of the input clutches and synchronizers are currently engaged and which of the input clutches and synchronizers are currently open. One of the open synchronizers is then engaged during the currently established speed ratio to cause the open input clutch to rotate at a speed greater than the speed of rotation of the engaged input clutch, thereby creating a fan cooling effect.
    Type: Grant
    Filed: September 28, 2010
    Date of Patent: January 21, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Larry D. Diemer, Scott William Heitzenrater, James M. Partyka, Victor M. Roses
  • Publication number: 20140019023
    Abstract: A system and method for controlling double transition shifts in an automatic transmission having multiple gear sections. During a double transition shift, the system performs simultaneous closed loop control of the primary oncoming clutch in the primary gear section and the secondary off-going clutch of the secondary gear section. Before the input shaft of the secondary gear section is fully pulled down or the secondary off-going clutch becomes overheated, the system switches closed loop control of the input shaft to the secondary on-coming clutch of the secondary gear section. The system utilizes model-based calculations to determine the initial clutch pressure settings when a clutch enters closed loop control.
    Type: Application
    Filed: July 3, 2013
    Publication date: January 16, 2014
    Inventors: John Andrew Byerly, John P. Kresse, Mark A. Rains, Jeffrey K. Runde
  • Publication number: 20140012472
    Abstract: A travel control unit of a working vehicle includes an HST which is a hydraulic continuously variable transmission having a hydraulic pump and a hydraulic motor, a pedal sensor which is an operator sensor which detects a position of an acceleration pedal which is an acceleration operator, and a controller which changes a displacement of the hydraulic pump based on the position of the acceleration pedal. The controller increases the displacement of the hydraulic motor as the displacement of the hydraulic pump is reduced due to a displacement of the acceleration pedal to a low-velocity side.
    Type: Application
    Filed: June 26, 2013
    Publication date: January 9, 2014
    Inventor: Minoru KAMADA
  • Patent number: 8617030
    Abstract: A method of controlling an engine and a transmission coupled to the engine. The method including the steps of receiving and proceeding. The receiving step receives a signal value from a sensor. The signal value is representative of a desired ground engaging device speed of a vehicle. The proceeding step proceeds along a shift path defined by a one-to-one correspondence between the signal value and the ground engaging device speed. The proceeding step includes the steps of controlling a speed of the engine and selecting of a gear of the transmission along the shift path dependent upon the signal value.
    Type: Grant
    Filed: October 19, 2011
    Date of Patent: December 31, 2013
    Assignee: Deere & Company
    Inventors: Carroll C. Kellum, Hadeel Taha
  • Patent number: 8620544
    Abstract: A transmission includes a plurality of clutches that are selectively engageable alone or in combination with each other to establish a plurality of forward drive modes, wherein one of the clutches is configured as a neutral idle (NI) clutch that is selectively actuated to shift the transmission into an NI state, and a controller. The controller is adapted to shift the transmission from a forward drive mode into the NI state during a coast-down maneuver prior to the transmission reaching a zero output speed. A method of shifting the transmission into the NI state includes determining the presence of a predetermined one of the forward drive modes using the controller, and using the controller to actuate a designated one of the clutches as an NI clutch to enter the NI state during the forward drive mode, during a coast-down maneuver, and prior to the transmission reaching a zero output speed.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: December 31, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Ronald F. Lochocki, Jr., Sindu Sebastian, David W. Wright
  • Publication number: 20130345941
    Abstract: Receiving sensor data related to position of a gear in a transmission, the sensor data including data from a first sensor and data from a second sensor; determining a first indicated position of the gear from the data from the first sensor; determining a second indicated position of the gear from the data from the second sensor; comparing the first indicated position to the second indicated position; and determining based on the comparison a gear engagement status of the gear.
    Type: Application
    Filed: August 23, 2013
    Publication date: December 26, 2013
    Applicant: Eaton Corporation
    Inventors: Kerfegar Khurshed Katrak, Naresh Kumar Kodela, Richard Earl Zuppann, Christopher Pollack, John Manyala, Todd William Fritz, Ken R. Anderson, Ian Daniel McKenzie
  • Publication number: 20130332039
    Abstract: A method of controlling a vehicle includes detecting vibration in a drivetrain of the vehicle with a fore/aft accelerometer during a launch event. An operating regime of the vehicle is identified concurrently with the detected vibration when the detected vibration is outside a predefined allowable range. A control strategy of the drivetrain is adjusted to define a revised control strategy to avoid the identified operating regime. The revised control strategy is applied to control the drivetrain to mitigate vibration in the drivetrain.
    Type: Application
    Filed: June 7, 2012
    Publication date: December 12, 2013
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Ronald F. Lochocki, Kenneth K. Lang
  • Publication number: 20130325272
    Abstract: A powertrain includes an engine, a transmission having a first input connected to an engine output shaft, and a variator. The variator includes a pump connected to the engine output shaft and a motor connected to a second input of the transmission. The pump has a variable setting that is determinable by a position of a pump actuator in response to a command signal. A controller associated is disposed to control operation of the variator, at least in part, by providing the command signal to the pump actuator. The command signal is determined based on an operator command and on a compensation term, which depends on a correlation function of a parameter related to the speed ratio between a pump speed and a motor speed and a flow characteristic of the pump actuator.
    Type: Application
    Filed: June 1, 2012
    Publication date: December 5, 2013
    Applicant: CATERPILLAR INC.
    Inventors: Michael D. Beyer, Chad T. Brickner, Christopher Rhoades
  • Patent number: 8600633
    Abstract: A dual-clutch transmission (DCT) system includes a vehicle speed offset module that generates a vehicle speed offset signal based on a preselect time and a vehicle acceleration signal. A compensated vehicle speed module generates a compensated vehicle speed based on the vehicle speed offset signal and a vehicle speed. A preselect command module generates a predicted gear signal based on a comparison between the compensated vehicle speed and a shift point from a shift pattern module. The predicted gear signal, identifies a first predicted gear of a DCT. The preselect time is defined as at least an amount of time to disengage a second predicted gear and preengage the first predicted gear.
    Type: Grant
    Filed: August 24, 2010
    Date of Patent: December 3, 2013
    Inventors: Xuefeng Tim Tao, Donald D. Crites
  • Patent number: 8600634
    Abstract: A method is provided for controlling a normal force in a frictional contact of a continuously variable transmission including an input pulley and an output pulley where between an endless transmission element is arranged that is held between and in frictional contact with two pulley discs of each respective pulley under the influence of a respective normal force, wherein, as part the control method, the normal force at one pulley is actively oscillated, wherein a resulting oscillation of one of, or a ratio or difference between both of, a rotational speed of the input pulley and a rotational speed of the output pulley is determined and wherein at least one normal force is controlled in dependency on a correlation between the active oscillation and the resulting oscillation. The method includes a calibration step wherein a phase difference between the active oscillation and the resulting oscillation is determined.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: December 3, 2013
    Assignee: Robert Bosch GmbH
    Inventors: Francis Maria Antonius Van Der Sluid, Erik Van Der Noll, Antonius Adrianus Helena Maria Van Dongen, Robert Godefridus Matheus Verscheijden
  • Publication number: 20130317713
    Abstract: A continuously variable transmission (4) comprises an endless torque transmission member (13) looped around a pair of pulleys (11, 12). At least one of the pulleys changes a winding radius of the endless torque transmission member (13) in accordance with an applied pulley thrust. A controller (22) estimates a stretch amount of the endless torque transmission member (13) based on an operating state of the continuously variable transmission (4), sets a slip limit thrust based on the stretch amount, and controls the pulley thrusts based on the slip limit thrust. In this manner, appropriate pulley thrust control in accordance with whether or not the endless torque transmission member (13) stretches is realized.
    Type: Application
    Filed: December 2, 2011
    Publication date: November 28, 2013
    Inventors: Keita Okudaira, Masato Hoga
  • Patent number: 8594898
    Abstract: In an apparatus for controlling a belt type CVT connected to an engine (prime mover) mounted on a vehicle through a forward clutch to change power of the engine in speed and transmit the power to a driven wheel of the vehicle, it is configured to determine whether it is in a predetermined operating condition where an operator is likely to apply a panic brake or the like, set a first value as a friction coefficient ? of the clutch to calculate and control a desired supply hydraulic pressure based on the first value when the determination result is negative, and set a second value greater than the first value to calculate and control the desired supply hydraulic pressure based on the second value when the determination result is affirmative.
    Type: Grant
    Filed: July 5, 2010
    Date of Patent: November 26, 2013
    Assignee: Honda Motor Co., Ltd.
    Inventor: Hirohiko Totsuka
  • Publication number: 20130311057
    Abstract: A closed loop shift control apparatus and method based on estimated torque in friction elements controls a torque transfer phase when shifting from a low gear configuration to a high gear configuration for an automatic transmission system. When pressure actuated friction elements are selectively engaged and released to establish torque flow paths in the transmission, estimates of torsional load exerted on the off-going friction element are used to predict the optimal off-going friction element release timing for achieving a consistent shift feel. The estimated torque is preferably calculated by using estimated torque signals generated as a function of speed measurements represented either the engine speed and turbine output speed or transmission output speed and wheel speed under dynamically changing conditions.
    Type: Application
    Filed: July 23, 2013
    Publication date: November 21, 2013
    Applicant: Ford Global Technologies, LLC
    Inventors: Diana Yanakiev, Yuji Fujii, Eric Tseng, Gregory Michael Pietron, Joseph F. Kucharski
  • Patent number: 8589042
    Abstract: A control system for a transmission includes a memory module, a position module, an error module, an integral module, and an adjustment module. The memory stores a control value as a function of clutch torque. The position module controls a position of a clutch based on the control value. The error module periodically determines a slip speed error based on a difference between a target slip speed and an estimated slip speed of the clutch. The integral module periodically determines an integral of the slip speed error. The adjustment module adjusts the control value based on the integral. A method for controlling a transmission is also provided.
    Type: Grant
    Filed: July 13, 2011
    Date of Patent: November 19, 2013
    Inventors: Robert L. Williams, Matthew D. Whitton, Kurt Mitts, Daniel Deras
  • Patent number: 8589041
    Abstract: An ECU executes a program that includes: a step of outputting a shift stage after a power-on down shift; a step of, when a turbine rotation speed NT does not increase to a synchronized rotation speed corresponding to the shift stage after the shift after an accelerator is deactivated, executing sweep control; and a step of, in a state that the shift stage after the shift is not formed, when the accelerator is activated, executing sweep control.
    Type: Grant
    Filed: July 28, 2008
    Date of Patent: November 19, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Nobufusa Kobayashi, Tomohiro Asami
  • Patent number: 8571773
    Abstract: Disclosed herein is a gear selection method and device for an automatic transmission for a traction phase (Z2) after a coasting phase (S) of a motor vehicle. According to the method, in a traction phase (Z1) before the coasting phase (S), a sliding average value of the rotational speed level (n) and/or of the traction force level (Fx) is formed depending on the particular velocity (v) and particular gradient (ST) and is taken into consideration for defining at least one gear choice of the automatic transmission for the traction phase (Z2) after the particular coasting phase (S).
    Type: Grant
    Filed: June 13, 2011
    Date of Patent: October 29, 2013
    Assignee: Dr. Ing. h.c. F. Porsche Aktiengesellschaft
    Inventor: Martin Roth
  • Patent number: 8571772
    Abstract: A method and device are provided for securing lubrication of an automated manual transmission, AMT, in a vehicle, when towing the vehicle, and where a transmission lubrication system is drivingly connected to and driven by rotation of an intermediate shaft of the AMT. The following steps can be executed in mentioned order and starting from when ignition of the vehicle is switched on: registering a signal that towing of the vehicle is demanded, disengaging all gears that are arranged to drivingly engage or disengage an input shaft to the intermediate shaft of the automated manual transmission, and engaging one gear that is arranged to drivingly engage or disengage the intermediate shaft to an output shaft of the automated manual transmission.
    Type: Grant
    Filed: May 9, 2008
    Date of Patent: October 29, 2013
    Assignee: Volvo Lastvagnar AB
    Inventors: Johan Bjernetun, Anders Eriksson, Johnny Yngve
  • Publication number: 20130282245
    Abstract: The invention relates to a method for controlling an automatic transmission, more particularly a method for controlling gear changes in an automatic transmission of a motor vehicle driven by an internal combustion engine, having the following steps: predicting the fuel consumption of the internal combustion engine that would result if the automatic transmission were shifted from its present gear into a next higher gear with relatively low transmission ratio between a transmission input and a transmission output of the automatic transmission, and/or predicting the fuel consumption of the internal combustion engine that would result if the automatic transmission were shifted from its present gear into a next lower gear with a relatively high transmission ratio between the transmission input and the transmission output; and comparing the predicted fuel consumption of the internal combustion engine in the next higher gear of the automatic transmission and/or the predicted fuel consumption of the internal combusti
    Type: Application
    Filed: June 14, 2012
    Publication date: October 24, 2013
    Inventors: Bernd Dietzel, Rolf Hoffmann
  • Publication number: 20130282244
    Abstract: A vehicle includes an engine, a torque converter, a transmission, and a controller. The transmission has an input member connected to a turbine of the torque converter. The transmission includes a neutral idle (NI) state and a designated NI clutch actuated to enter the NI state. The controller calculates a reference slip error as a function of engine speed and turbine speed, detects when the designated NI clutch is exhausting while operating in the NI state as a function of the reference slip error, and executes a control action when the exhausting NI clutch is detected. A method includes measuring engine and turbine speed, calculating the reference slip error value as a function of the engine and turbine speeds, detecting when the designated NI clutch is exhausting while operating in the NI state using the reference slip error, and executing a control action when the exhausting NI clutch is detected.
    Type: Application
    Filed: April 18, 2012
    Publication date: October 24, 2013
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Ronald F. Lochocki, JR., Sindu Sebastian, Min K. Kim
  • Patent number: 8565986
    Abstract: A system and method for maintaining the operation of an automated transmission (16), particularly a dual dutch transmission, for a motor vehicle, in case of a failure of an engine speed sensor (50) or a bus connection (44) between a first control module (42) controlling an engine (28) being connectable to the transmission (16) through at least one separation clutch (12, 149), and a second control module (34) controlling regulating units (12, 14) for connecting the engine (28) to the transmission (16) or to one or more driving wheels (34) in a force-transmitting manner, wherein gear-shift relevant data, particularly a number of revolutions (no) of the engine, is exchanged between the control modules (34, 42) over the bus connection (44).
    Type: Grant
    Filed: June 3, 2009
    Date of Patent: October 22, 2013
    Assignees: GETRAG Getriebe- und Zahnradfabrik Hermann Hagenmeyer GmbH & Cie KG, GETRAG Transmission Corporation
    Inventors: Josef Glatthaar, Tobias Kalisch, Oliver Ottinger, Bruce Palansky
  • Publication number: 20130268170
    Abstract: A load control system for a work vehicle including set rotation speed detection means for detecting a set rotation speed of an engine of the work vehicle, actual rotation speed detection means that senses an actual rotation speed of the engine, a continuously variable speed change device that receives power from the engine of the work vehicle, speed change position detecting means for detecting a speed change operating position of the continuously variable speed change device, operating means for speed-shifting the continuously variable speed change device, and control means for controlling the operation of the operating means.
    Type: Application
    Filed: March 11, 2013
    Publication date: October 10, 2013
    Inventors: Eiji Nishi, Atsushi Shinkai, Keishiro Nishi, Yasunobu Nakatani
  • Patent number: 8554410
    Abstract: A device and a method for route guidance assistance in a vehicle that is connected to a navigation system. In order to make it easier for the driver to follow a route calculated by a navigation system, an assisting device is provided for route guidance. The assisting device includes a control unit for generating a control signal for haptic feedback to the driver of the vehicle. As haptic feedback, the control unit can output an additional moment on the steering system of the vehicle, for example, the additional moment being negative when the vehicle departs from the travel route while being positive when the vehicle follows the calculated direction of the navigation route.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: October 8, 2013
    Assignee: Continental Teves AG & Co. oHG
    Inventors: Ulrich Stählin, Mattias Strauss
  • Publication number: 20130261912
    Abstract: A dual clutch transmission includes a transmission control unit that controls action of a first clutch actuator, a second clutch actuator, and a shift mechanism; determines whether or not a clutch torque capacity for an engaging-side clutch has increased to a determination value during a clutch change period; and, if the clutch torque capacity for the engaging-side clutch has increased to the determination value, changes the torque transmission path by reducing the clutch torque capacity of a release-side clutch.
    Type: Application
    Filed: December 5, 2011
    Publication date: October 3, 2013
    Applicant: YAMAHA HATSUDOKI KABUSHIKI KAISHA
    Inventor: Katsuhiro Arai
  • Patent number: 8548701
    Abstract: A transmission controller determines whether an oil temperature in the CVT is higher than a high oil temperature control starting temperature or not. If it is determined that the oil temperature is higher than the high oil temperature control starting temperature, a first oil temperature lowering processing which limits an input rotation speed of the CVT by changing a speed ratio of the CVT smaller is executed. If the input rotation speed of the CVT reaches a predetermined lower limit rotation speed during execution of the first oil temperature lowering processing, the first oil temperature lowering processing is ended and a second oil temperature lowering processing that limits a torque of an engine is executed.
    Type: Grant
    Filed: October 2, 2009
    Date of Patent: October 1, 2013
    Assignee: Jatco Ltd
    Inventors: Shin Tsukamoto, Tooru Yokota
  • Publication number: 20130253788
    Abstract: A method shifting a vehicle drive-train transmission having frictional and interlocking shifting elements which are engageable to obtain various gears. When shifting from a current gear to a target gear, in which the interlocking shifting element is engaged, if after the shift starts it becomes necessary to engage the current gear in the transmission while engaging the interlocking shifting element, a current operating condition of the interlocking shifting element is determined. If the current operating condition of the interlocking shifting element indicates that engagement can be interrupted and the interlocking shifting element can be disengaged, the interlocking shifting element is disengaged.
    Type: Application
    Filed: November 8, 2011
    Publication date: September 26, 2013
    Inventors: Jorg Arnold, Georg Mihatsch