Feedback Control (e.g., Closed Loop) Patents (Class 701/60)
  • Patent number: 8275530
    Abstract: A transmission system that includes a transmission, a pressure sensor, a pressure booster, and a controller. The pressure booster being capable of raising the pressure of transmission fluid inside a closed-loop transmission by lowering the sensed pressure coming from the pressures sensor and being sent to the controller, thereby initiating a response from the controller that results in higher fluid pressures. The pressure booster does not lower the sensed pressure when the vehicle, and therefore, the transmission, is not in operation. Additionally, the pressure booster also does not increase the electric current through the electrical components of the fluid control system. The result is a transmission with a “firmer” feel between shifts and the correction of weak shifting problems such as gear slip.
    Type: Grant
    Filed: September 20, 2010
    Date of Patent: September 25, 2012
    Assignee: Sonnax Industries, Inc.
    Inventor: Gregg A. Nader
  • Patent number: 8271169
    Abstract: An ECU executes a program that outputs a shift command when a determination has been made to perform a power-on downshift (i.e., YES in S100); controls the hydraulic pressure supplied to a friction engagement element to perform the power-on downshift; allows the correction of the hydraulic pressure supplied to the friction engagement element during the power-on downshift when the difference between a target input torque and an estimated input torque is equal to or less than a threshold value ?TT (1) (i.e., YES in S130); and correcting the hydraulic pressure supplied to the friction engagement element during the power-on downshift.
    Type: Grant
    Filed: August 10, 2007
    Date of Patent: September 18, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yoshio Hasegawa, Takaaki Tokura
  • Patent number: 8265839
    Abstract: A method for controlling an automatic gearbox pertaining to a motor vehicle in a braking phase. According to the method, a gear ratio or speed value of the gearbox, requested on the basis of pre-established laws, is determined; and, on the basis of the value and parameters representative of the situation of the vehicle, a corrected gear ratio or speed value of the gearbox, able to trigger an anticipated downshifting of the automatic gearbox, is determined. The corrected gear ratio value of the gearbox is determined on the basis of an estimation of the desired primary speed for the automatic gearbox.
    Type: Grant
    Filed: October 21, 2005
    Date of Patent: September 11, 2012
    Assignee: Renault s.a.s.
    Inventors: Carine Poisson, Eric Brun
  • Patent number: 8260499
    Abstract: An automatic steering system for a work vehicle comprises a position sensor for detecting a position of the vehicle, a memory for storing information about a nominal path of the vehicle and a control unit coupled to the position sensor, to the memory and to a steering actuator for steering the vehicle. The control submits control signals to the steering actuator that depend upon a feedback gain and a lateral offset between the actual position and the nominal path. The feedback gain depends upon a sensed payload of the vehicle.
    Type: Grant
    Filed: May 1, 2007
    Date of Patent: September 4, 2012
    Assignee: Deere & Company
    Inventor: Broughton Boydell
  • Publication number: 20120221219
    Abstract: A fluid transmission device includes a fluid transmission section capable of transmitting power transmitted to an input member to an output member via a working fluid, a lock-up clutch section capable of transmitting power transmitted to the input member to the output member via a friction engagement section, and a control unit configured to execute a torque ratio variable control that makes a torque ratio which is a ratio between torque output from the output member and torque input to the input member variable by adjusting a friction engagement state of the friction engagement section, when the fluid transmission section is in an operation state that the fluid transmission section amplifies torque input to the input member and outputs torque from the output member.
    Type: Application
    Filed: November 16, 2009
    Publication date: August 30, 2012
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Kiyohito Murata
  • Patent number: 8255132
    Abstract: A control device is provided for a vehicle drive apparatus, which includes a differential mechanism and an electric motor provided in differential mechanism, which can be miniaturized in structure with improved fuel economy or enabling the suppression of occurrence in switching shocks. With a provision of a switching clutch C0 or a switching brake B0, a shifting mechanism 10 is placed in either a continuously variable shifting state or a step variable shifting state. This enables the vehicle drive apparatus to have combined advantages in a fuel economy improving effect with a transmission, enabled to electrically change a gear ratio, and a high transmitting efficiency with a gear type power transmitting device enabled to mechanically transmit drive power. During a shifting of an automatic shifting portion 20, engaging control variable control means 84 alters a method of learning an engaging pressure.
    Type: Grant
    Filed: May 19, 2006
    Date of Patent: August 28, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Atsushi Tabata, Yuji Inoue, Atsushi Kamada
  • Patent number: 8249787
    Abstract: A process of monitoring a drive direction of an automatic or automated vehicle transmission at near-zero vehicle speed via an engaged gear. A desired direction of drive of the transmission is determined from an engaged gear at the time the vehicle begins motion. An actual direction of drive is determined from the transmission and, if different from the desired direction of drive, an error signal is produced. The process includes determining the actual drive either from a sensed rotational direction of a transmission input shaft and a sensed rotational direction of a transmission output shaft or a sensed valve setting, a sensed pressure in an transmission electro-hydraulic control system or on a transmission shifting element or from a sensed direction of rotation of a transmission gearset element or from axial movement or force of a transmission constructional element.
    Type: Grant
    Filed: April 21, 2010
    Date of Patent: August 21, 2012
    Assignee: ZF Friedrichshafen AG
    Inventors: Georg Gierer, Christian Popp, Thilo Schmidt, Klaus Steinhauser
  • Patent number: 8239105
    Abstract: A control device of an automatic transmission includes a motor control portion to control an output of a motor that executes a control operation on a clutch control portion. The motor control portion includes a target motor current computation portion that computes a target motor current according to a desired driving state, a motor current detection portion that detects plural motor currents respectively corresponding to plural detection timings, a selection portion that selects a motor current corresponding to the desired driving state among the detected plural motor currents, and a motor driving portion that applies feedback control on an output of the motor according to a difference between the target motor current and the selected motor current. Hence, not only can the most suitable clutch control be applied for each gear-change interval at gear change, but also the comfortable feeling during the driving and the fuel efficiency can be enhanced.
    Type: Grant
    Filed: June 5, 2008
    Date of Patent: August 7, 2012
    Assignee: Mitsubishi Electric Corporation
    Inventors: Shiro Yonezawa, Takeru Okabe, Nozomu Kamioka, Tomohisa Shoda, Masaki Horii, Yasufumi Ogawa
  • Patent number: 8229635
    Abstract: A control device of a transmission is capable of instantaneously correcting a torque shortly after starting a motor, and properly correcting a gear operation shortly after starting (at transient time) even in case of coil temperature change. The device includes a gear change end determination unit, a motor stop determination unit, and a coil resistance estimation unit of estimating a coil resistance of the motor alternately by repeating at regular intervals a state of application of a predetermined voltage to the motor during stop before start of gear change and a state of no application; and when the motor is determined stop by the determination units, an initial value of a command voltage to be applied to the motor after start of gear change is corrected in a predetermined time period in accordance with a coil resistance value having been calculated by the coil resistance estimation unit.
    Type: Grant
    Filed: May 5, 2009
    Date of Patent: July 24, 2012
    Assignee: Mitsubishi Electric Corporation
    Inventors: Masaki Horii, Shiro Yonezawa, Takeru Okabe, Osamu Ishikawa, Tomohisa Shoda, Nozomu Kamioka, Yasufumi Ogawa
  • Patent number: 8224543
    Abstract: A shift position detecting device comprises a shift position sensor that continuously issues an output data that represents a shift position of the gear selection mechanism; and a control unit.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: July 17, 2012
    Assignee: Nissan Motor Co., Ltd.
    Inventor: Yoshinobu Kawamoto
  • Patent number: 8195345
    Abstract: The method for generating an integrated guidance law for aerodynamic missiles uses a strength Pareto evolutionary algorithm (SPEA)-based approach for generating an integrated fuzzy guidance law, which includes three separate fuzzy controllers. Each of these fuzzy controllers is activated in a unique region of missile interception. The distribution of membership functions and the associated rules are obtained by solving a nonlinear constrained multi-objective optimization problem in which final time, energy consumption, and miss distance are treated as competing objectives. A Tabu search is utilized to build a library of initial feasible solutions for the multi-objective optimization algorithm. Additionally, a hierarchical clustering technique is utilized to provide the decision maker with a representative and manageable Pareto-optimal set without destroying the characteristics of the trade-off front. A fuzzy-based system is employed to extract the best compromise solution over the trade-off curve.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: June 5, 2012
    Assignee: King Fahd University of Petroleum & Minerals
    Inventors: Hanafy M. Omar, Mohammad A. Abido
  • Patent number: 8195372
    Abstract: A braking control method that includes: (1) regularly updating a grip model representative of a relationship between a coefficient of friction and a wheel slip rate; (2) determining, with an iterative calculation process including a plurality of calculation cycles a variation of a braking setpoint in a given prediction horizon, the variation of the braking setpoint in the given prediction horizon being established using the regularly updated grip model and its characteristic shape and so that the variation of the braking setpoint in the given prediction horizon complies with the braking order and complies with a given calculation constraint which is function of the wheel slip rate; and (3) retaining as the generated braking setpoint a value of the braking setpoint in the given prediction horizon which corresponds to a first calculation cycle of the plurality of calculation cycles of the iterative calculation process.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: June 5, 2012
    Assignee: Messier-Bugatti-Dowty
    Inventors: Jean-Pierre Garcia, David Frank, Gérard Léon Gissinger, Michel Basset, Yann Chamaillard, Arnaud Jacquet
  • Patent number: 8190342
    Abstract: A hydraulic vehicle provided with a running-system hydraulic unit 10 that includes a hydraulic pump 11 being configured to be driven by an engine E, a hydraulic motor 12 being configured to be driven by pressure oil discharged from the hydraulic pump 11, and a pair of running-system oil passages 13a and 13b connected between the hydraulic pump 11 and the hydraulic motor 12 for forming a closed circuit. The hydraulic vehicle is configured to be driven by the hydraulic motor 12 for running. The hydraulic vehicle includes: a backup pump 40 being configured to be driven by the engine E; a backup control valve 30, a backup oil passage 47, a high-pressure selection valve 47b that are configured to allow pressure oil discharged from the backup pump 40 to flow to one of the running-system oil passages that is higher in pressure than the other.
    Type: Grant
    Filed: April 9, 2008
    Date of Patent: May 29, 2012
    Assignee: Komatsu Ltd.
    Inventor: Shigeru Shinohara
  • Patent number: 8190317
    Abstract: The present invention provides a mode change control method of a hybrid vehicle, which can improve driving performance and power performance and provide a more stable vehicle behavior control during a mode change from an EV mode to a HEV mode. For this purpose, a transmission input speed is compared with an engine idle speed. If the transmission input speed is lower than the engine idle speed, the pressure of a clutch is open-loop controlled so that an optimal engine torque of operation point determination circuit can be transferred to the clutch. On the other hand, if the transmission input speed is equal to or higher than the engine idle speed, the clutch pressure is feedback-controlled so that a delta RPM follows a target delta RPM profile.
    Type: Grant
    Filed: September 10, 2008
    Date of Patent: May 29, 2012
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventors: Sang Joon Kim, Joon Young Park
  • Patent number: 8190307
    Abstract: The control optimization method for helicopters carrying suspended loads during hover flight utilizes a controller based on time-delayed feedback of the load swing angles. The controller outputs include additional displacements, which are added to the helicopter trajectory in the longitudinal and lateral directions. This simple implementation requires only a small modification to the software of the helicopter position controller. Moreover, the implementation of this controller does not need rates of the swing angles. The parameters of the controllers are optimized using the method of particle swarms by minimizing an index that is a function of the history of the load swing. Simulation results show the effectiveness of the controller in suppressing the swing of the slung load while stabilizing the helicopter.
    Type: Grant
    Filed: August 23, 2010
    Date of Patent: May 29, 2012
    Assignee: King Fahd University of Petroleum & Minerals
    Inventor: Hanafy M. Omar
  • Patent number: 8190341
    Abstract: A method of controlling an auxiliary pump for use with a transmission in a vehicle is provided, the vehicle having a system voltage/current. The method comprises: determining an optimal auxiliary pump start voltage/current; determining if the system voltage/current is less than the optimal auxiliary pump start voltage/current; if yes, determining if the auxiliary pump is in a start-mode and if a predetermined override condition has been met; determining if the actual auxiliary pump speed is less than a desired auxiliary pump speed if the auxiliary pump is in the start-mode; if not, determining if the auxiliary pump is in an on-state; and, increasing an actual auxiliary pump voltage/current to equal the optimal auxiliary pump start voltage/current if the actual auxiliary pump speed is less than the desired auxiliary pump speed or the predetermined override condition has been met.
    Type: Grant
    Filed: January 24, 2008
    Date of Patent: May 29, 2012
    Assignee: GM Global Technology Operations LLC
    Inventor: Karl Andrew Sime
  • Patent number: 8185279
    Abstract: A control system (100) for traction transmission has at least two multi capacity motors (M1, M2), which are adapted to rotate a vehicle's wheels (J1, J2) and which multi capacity motor (M1) is arranged to rotate a traction wheel (J2), and the multi capacity motor (M2) is arranged to rotate another traction wheel (J1), whereby motor parts (M1a and M2a) of partial rotational volumes of the multi capacity motors (M1, M2) can be connected in series, whereby the anti-slip is on.
    Type: Grant
    Filed: January 25, 2008
    Date of Patent: May 22, 2012
    Assignee: Sampo-Hydraulics Oy
    Inventor: Roni Ryyppö
  • Patent number: 8185259
    Abstract: The fuzzy logic-based control method for helicopters carrying suspended loads utilizes a controller based on fuzzy logic membership distributions of sets of load swing angles. The anti-swing controller is fuzzy-based and has controller outputs that include additional displacements added to the helicopter trajectory in the longitudinal and lateral directions. This simple implementation requires only a small modification to the software of the helicopter position controller. The membership functions govern control parameters that are optimized using a particle swarm algorithm. The rules of the anti-swing controller are derived to mimic the performance of a time-delayed feedback controller. A tracking controller stabilizes the helicopter and tracks the trajectory generated by the anti-swing controller.
    Type: Grant
    Filed: August 23, 2010
    Date of Patent: May 22, 2012
    Assignee: King Fahd University of Petroleum & Minerals
    Inventor: Hanafy M. Omar
  • Patent number: 8185284
    Abstract: ECU executes in-neutral control in a case where a first clutch is brought into a half-engagement state on the basis of execution of neutral control. During the in-neutral control, ECU detects engine speed and input-shaft rotating speed, and detects differential rotation before an oil pressure change. Subsequently, in a case where the differential rotation before an oil pressure change detected by ECU has exceeded a first differential rotation threshold value, the operating oil pressure for a hydraulic servo is reduced by the first oil pressure.
    Type: Grant
    Filed: July 21, 2008
    Date of Patent: May 22, 2012
    Assignee: Aisin AW Co. Ltd.
    Inventors: Masakatsu Iwase, Hiroshi Tsutsui, Shingo Kodama, Yongsong Kang, Tatsurou Kameyama
  • Publication number: 20120123654
    Abstract: A system and method for controlling double transition shifts in an automatic transmission having multiple gear sections. During a double transition shift, the system performs simultaneous closed loop control of the primary oncoming clutch in the primary gear section and the secondary off-going clutch of the secondary gear section. Before the input shaft of the secondary gear section is fully pulled down or the secondary off-going clutch becomes overheated, the system switches closed loop control of the input shaft to the secondary on-coming clutch of the secondary gear section. The system utilizes model-based calculations to determine the initial clutch pressure settings when a clutch enters closed loop control.
    Type: Application
    Filed: November 11, 2011
    Publication date: May 17, 2012
    Inventors: John Andrew BYERLY, John P. KRESSE, Mark A. RAINS, Jeffrey K. RUNDE
  • Patent number: 8180540
    Abstract: A continuously variable transmission can have one or more rotatable output shafts, rotatable non-output shafts, continuously variable transmission elements selectively interconnecting at least one non-output shaft and one output shaft so as to permit variation of a transmission ratio therebetween. The transmission can also have one or more control elements for controlling the instantaneously prevailing ratio of the transmission including a sensor device for sensing the rotational position of a non-output shaft, and a processing device for determining the rotational position of the sensed, non-output shaft at a chosen instant. The processing device is connected to control elements to cause variation of the transmission ratio so that the output shaft attains a desired rotational position at a chosen instant.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: May 15, 2012
    Assignee: CNH America LLC
    Inventors: Riccardo Morselli, Paolo Ferracin, Alberto Berselli, Massimo Ronchetti, Sara Bonacini, legal representative
  • Publication number: 20120116637
    Abstract: In an apparatus for controlling a belt type CVT connected to an engine (prime mover) mounted on a vehicle through a forward clutch to change power of the engine in speed and transmit the power to a driven wheel of the vehicle, it is configured to determine whether it is in a predetermined operating condition where an operator is likely to apply a panic brake or the like, set a first value as a friction coefficient ? of the clutch to calculate and control a desired supply hydraulic pressure based on the first value when the determination result is negative, and set a second value greater than the first value to calculate and control the desired supply hydraulic pressure based on the second value when the determination result is affirmative.
    Type: Application
    Filed: July 5, 2010
    Publication date: May 10, 2012
    Applicant: Honda Motor Co., Ltd.
    Inventor: Hirohiko Totsuka
  • Patent number: 8172060
    Abstract: A dynamic pressure control system, such as a transmission pressure control system, is provided wherein one or more of electrical current command signals provided to a pressure control solenoid valve, such as a fast response variable force solenoid pressure control valve, are progressively trimmed in a manner to improve overall system pressure control performance by improving the overall commanded current response. The invention permits use of fast response pressure control solenoid valves and obtainment of in a manner to minimize overshoot and improve steady state accuracy, so as to thereby improve precision pressure control.
    Type: Grant
    Filed: April 2, 2008
    Date of Patent: May 8, 2012
    Assignee: Saturn Electonics & Engineering, Inc.
    Inventors: David L. Seid, Hamid Najmolhoda
  • Publication number: 20120109476
    Abstract: A method of operating a drive-train which comprises a drive aggregate, a transmission and a starting clutch connected between the drive aggregate and the transmission such that during rolling and coasting, in a thrust operation, the drive-train is operated in such manner that a target value for the position of the clutch is determined as a function of a transmission input speed. The target value for the position of the clutch is compared with a corresponding actual value and, on the basis of the deviation between the target and actual values, a control parameter is generated for adjusting the clutch. The target value for the position of the clutch, during rolling and coasting, is determined in such manner that for a defined value of the transmission input speed, a target value is determined for the position of the clutch when rolling which is different from that determined when coasting.
    Type: Application
    Filed: July 2, 2010
    Publication date: May 3, 2012
    Applicant: ZF FRIEDRICHSHAFEN AG
    Inventor: Norbert Wiencek
  • Patent number: 8170736
    Abstract: A control device includes a target rotation speed determination unit that determines a target rotation speed of an engine, a filtering process unit that receives an output of the target rotation speed determination unit, changes the received output such that the target rotation speed changes gently, and outputs the changed output, a property switching control unit that switches properties of the filtering process unit in accordance with a vehicle state, and a first torque value calculation unit that calculates a target torque of a motor generator in accordance with a difference between the output of the filtering process unit and an actual rotation speed of the engine. Preferably, the property switching control unit increases a time constant of the filtering process in accordance with a shift switch instruction to switch a vehicle state from a traveling state to a neutral state.
    Type: Grant
    Filed: July 10, 2007
    Date of Patent: May 1, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Koichiro Muta
  • Patent number: 8170762
    Abstract: A method for controlling a hydraulic flow within a powertrain comprising an electromechanical transmission mechanically-operatively coupled to an engine adapted to selectively transmit power to an output, wherein the transmission utilizes a hydraulic control system serving a number of hydraulic oil consuming functions includes monitoring minimum hydraulic pressure requirements for each of the functions, determining a requested hydraulic pressure based upon the monitoring minimum hydraulic pressure requirements and physical limits of the hydraulic control system including a maximum pressure, determining a desired flow utilizing a hydraulic control system flow model based upon the requested hydraulic pressure, and utilizing the desired flow to control an auxiliary hydraulic pump.
    Type: Grant
    Filed: October 13, 2008
    Date of Patent: May 1, 2012
    Assignees: GM Global Technology Operations LLC, Daimler AG, Chrysler LLC, Bayerische Motoren Werke Aktiengesellschaft
    Inventors: Michael D. Foster, Eric S. Tryon, Jy-Jen F. Sah, Ali K Naqvi
  • Patent number: 8165765
    Abstract: A method and system for configuring a hydromechanical transmission having a hydraulic pump and a hydraulic motor driven by the hydraulic pump and a pressure-driven actuator employs a particular torque-pressure curve configuration to maximize torque resolution with respect to actuator pressure changes while ensuring that the curve is substantially monotonic in each dimension and at any available motor speed within a predetermined motor speed limit and any available actuator pressure within predetermined actuator pressure limits. The resultant four-dimensional association between actuator pressure, motor speed, primary power source speed and motor torque allows selection of an actuator pressure to provide a desired torque.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: April 24, 2012
    Assignee: Caterpillar Inc.
    Inventors: Frank A. DeMarco, Michael G. Cronin
  • Publication number: 20120095658
    Abstract: A control apparatus which is capable of enhancing the accuracy of control of a controlled object having characteristics that dead time and response delay thereof vary. The control apparatus includes an ECU. The ECU calculates four predicted values as values of a controlled variable associated with respective times when four dead times elapse, respectively, calculates four weight function values associated with an exhaust gas volume, and calculates four products by multiplying the predicted values by the weight function values, respectively. The ECU sets the total sum of the four products as a predicted equivalent ratio and calculates an air-fuel ratio correction coefficient such that the predicted equivalent ratio becomes equal to a target equivalent ratio.
    Type: Application
    Filed: October 13, 2011
    Publication date: April 19, 2012
    Applicant: HONDA MOTOR CO., LTD.
    Inventor: Yuji YASUI
  • Publication number: 20120078480
    Abstract: A method of cooling a dual clutch transmission is provided. The transmission has first and second input clutches alternately engagable to transfer torque to an output member along first and second input shafts, respectively, at various speed ratios dependent upon engagement of synchronizers. The method includes determining a currently established speed ratio by determining which of the input clutches and synchronizers are currently engaged and which of the input clutches and synchronizers are currently open. One of the open synchronizers is then engaged during the currently established speed ratio to cause the open input clutch to rotate at a speed greater than the speed of rotation of the engaged input clutch, thereby creating a fan cooling effect.
    Type: Application
    Filed: September 28, 2010
    Publication date: March 29, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Larry D. Diemer, Scott William Heitzenrater, James M. Partyka, Victor M. Roses
  • Patent number: 8140138
    Abstract: The present invention provides a method, system, and computer usable medium for directing service in a vehicle. A service request is received at a service management application from the vehicle. A vehicle location is also received. Vehicle delivery-enabling information is determined based on the service request and the vehicle location. The service corresponding to the service request is configured based on the vehicle delivery-enabling information. The configured service is sent to the vehicle.
    Type: Grant
    Filed: February 9, 2009
    Date of Patent: March 20, 2012
    Assignee: General Motors LLC
    Inventor: Edward P. Chrumka
  • Publication number: 20120065821
    Abstract: A method for optimizing torque control in a vehicle having a controller and a rotating member includes generating a closed-loop total proportional torque command using a state space feedback portion of the controller, and splitting the total proportional torque command into high-frequency and low-frequency proportional torque components. A total proportional torque is passed to the rotating member to provide driveline damping control when speed control is not required. The high-frequency proportional torque component is passed to the rotating member to provide driveline damping control, and the low-frequency torque component is passed with a total integral torque command to the rotating member to provide speed control, when speed control is required. A vehicle includes a controller having proportional-integral control capabilities and a state space observer, and a powertrain having a rotating member whose speed and damping characteristics are controlled by the controller.
    Type: Application
    Filed: March 3, 2011
    Publication date: March 15, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Steven M. Hessell, R. Anthony Hansen, Robert L. Morris, Houchun Xia, Gil J. Mendoza
  • Publication number: 20120065854
    Abstract: A method for preventing shift hunting in a powertrain is disclosed. The powertrain includes an engine and a transmission having a variator, a first gearset, and a second gearset. The engine is operated at a first substantially constant speed. A first transmission shift condition is detected. One or more shift hunting prevention methods are selected as a function of operating parameters from a group of shift hunting prevention methods. The one or more shift hunting prevention methods are implemented as a function of detecting the first transmission shift condition.
    Type: Application
    Filed: September 10, 2010
    Publication date: March 15, 2012
    Applicant: Caterpillar Inc.
    Inventors: Jason Stoller, Adam J. Vaccari, Michael D. Beyer, Christopher A. Rhoades
  • Patent number: 8135521
    Abstract: A control device for an automatic transmission capable of operating in an automatic shift mode in which a gear ratio is automatically selected based on driving conditions of a vehicle, and also capable of operating in a manual shift mode in which the gear ratio is changed based on an upshift command or a downshift command by manual operation of a manual operation device, the control device includes a manual shift control unit that changes and sets the gear ratio after downshift depending on a degree of requirement for deceleration based on a driving operation when the downshift command has been operated by the manual operation device in the manual shift mode, and performs the downshift to the gear ratio that has been changed and set.
    Type: Grant
    Filed: December 17, 2008
    Date of Patent: March 13, 2012
    Assignee: Aisin AW Co., Ltd.
    Inventors: Tadashi Sugiura, Yosuke Takei, Hideaki Ogasawara, Hiroshi Tsutsui
  • Publication number: 20120053800
    Abstract: A system for a vehicle includes a filter module and a coefficient determination module. The filter module generates a valve body oil temperature signal as a function of a transmission oil temperature signal, the valve body oil temperature signal, and a filter coefficient. The coefficient determination module varies the filter coefficient based on the valve body oil temperature signal. The transmission oil temperature signal corresponds to a first temperature of transmission oil measured at a location between a torque converter and a variable bleed solenoid (VBS). The valve body oil temperature signal corresponds to a second temperature of transmission oil provided to a clutch of a transmission from a valve body.
    Type: Application
    Filed: September 27, 2010
    Publication date: March 1, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventor: Mark David Kieliszewski
  • Publication number: 20120035819
    Abstract: A powertrain includes a torque generative device and a torque converter having an impeller, a turbine and a torque converter clutch. A method to control torque converter slip includes monitoring a reference slip and a turbine speed of the torque converter, determining a turbine torque based upon the reference slip and the turbine speed, determining a feed forward torque converter clutch pressure command based upon the turbine torque, a torque generative device torque, and a TCC gain, and controlling the torque converter clutch based upon the feed forward torque converter clutch pressure command.
    Type: Application
    Filed: August 4, 2010
    Publication date: February 9, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Kumaraswamy V. Hebbale, Chi-Kuan Kao, Chunhao J. Lee, Xu Chen, Jeremy V. Horgan, Farzad Samie
  • Publication number: 20120029777
    Abstract: A dual-clutch transmission (DCT) system includes a vehicle speed offset module that generates a vehicle speed offset signal based on a preselect time and a vehicle acceleration signal. A compensated vehicle speed module generates a compensated vehicle speed based on the vehicle speed offset signal and a vehicle speed. A preselect command module generates a predicted gear signal based on a comparison between the compensated vehicle speed and a shift point from a shift pattern module. The predicted gear signal, identifies a first predicted gear of a DCT. The preselect time is defined as at least an amount of time to disengage a second predicted gear and preengage the first predicted gear.
    Type: Application
    Filed: August 24, 2010
    Publication date: February 2, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Xuefeng Tim Tao, Donald D. Crites
  • Publication number: 20120022751
    Abstract: A control system in a vehicle in which at least one pair of driving power transmission members are engaged with each other with a slack on a driving power transmission path, comprises an input shaft rotational speed detector for detecting a rotational speed of an input shaft located upstream of engaged portions of the driving power transmission members in a direction in which the driving power is transmitted, a determiner for determining whether or not the driving power transmission members are in a non-contact state at the engaged portions for a period of time based on a change rate of the detected input shaft rotational speed, and a controller for controlling the vehicle to reduce a rotational speed difference between the input shaft and an output shaft located downstream of the engaged portions, when the determiner determines that the driving power transmission members are in the non-contact state.
    Type: Application
    Filed: July 19, 2011
    Publication date: January 26, 2012
    Applicant: KAWASAKI JUKOGYO KABUSHIKI KAISHA
    Inventor: Yoshimoto Matsuda
  • Publication number: 20110320097
    Abstract: When a post-direct shift gear position does not match a target gear position during a direct shift but before engagement of an input clutch for the post-direct shift gear position begins, an ECU executes engagement control on a reaction brake for the new target gear position instead of executing engagement control on a reaction brake for the post-direct shift gear position, and executes engagement control on an input clutch for the new target gear position instead of executing engagement control on an input clutch for the post-direct shift gear position.
    Type: Application
    Filed: February 25, 2010
    Publication date: December 29, 2011
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Koji Oshima
  • Patent number: 8086329
    Abstract: The present invention is related to a method of controlling a device having a calibration process. The calibration process has a partial calibration routine and a calibration routine. A detector within the control system is capable of receiving one or more input signals and determining whether a partial calibration or calibration should occur. The first step in the process involves starting the control method where the detector receives input signals or generates it own data within the detector. The detector also determines whether a partial calibration routine or a calibration routine will take place based upon the value of the input signals received. A partial calibration routine will be performed if the input signals to the detector do not favor a calibration.
    Type: Grant
    Filed: May 30, 2006
    Date of Patent: December 27, 2011
    Assignee: BorgWarner Inc.
    Inventors: Robert D. Keefover, Joseph Labataille
  • Publication number: 20110313630
    Abstract: The described system and method allow a controller to calibrate a transmission variator of a continuously variable transmission for torque control by obtaining static and dynamic qualities and parameters of the variator through an automated calibration procedure. The system and method employ a pair of transmission mode configurations and operational configurations in combination to obtain system-specific information. In this way, the system is able to calibrate out the system variations to provide effective feed forward torque control of the continuously variable transmission. In an embodiment, a first calibration operation is performed while the transmission is neutralized and a second calibration operation is performed while the transmission is engaged in a mode providing a fixed variator output speed.
    Type: Application
    Filed: June 18, 2010
    Publication date: December 22, 2011
    Applicant: CATERPILLAR INC.
    Inventors: Jason Stoller, Chad Brickner, Brian Lister
  • Publication number: 20110313631
    Abstract: Disclosed herein is a gear selection method and device for an automatic transmission for a traction phase (Z2) after a coasting phase (S) of a motor vehicle. According to the method, in a traction phase (Z1) before the coasting phase (S), a sliding average value of the rotational speed level (n) and/or of the traction force level (Fx) is formed depending on the particular velocity (v) and particular gradient (ST) and is taken into consideration for defining at least one gear choice of the automatic transmission for the traction phase (Z2) after the particular coasting phase (S).
    Type: Application
    Filed: June 13, 2011
    Publication date: December 22, 2011
    Applicant: Dr. Ing. h.c. F. Porsche Aktiengesellschaft
    Inventor: Martin Roth
  • Publication number: 20110313632
    Abstract: A control unit (200) executes fail-safe control that forcibly releases a lockup clutch (15) by activating a fail-safe valve (112), abnormality diagnosis control that determines whether a solenoid valve (DSU) is suffering from a solenoid ON abnormality when the vehicle has started with the fail-safe control executed, and reproduction control that simulatively reproduces, when the vehicle has started without the fail-safe control executed, a condition coinciding with the condition for allowing execution of the abnormality diagnosis control.
    Type: Application
    Filed: June 17, 2011
    Publication date: December 22, 2011
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Kazutaka Yoshimizu
  • Patent number: 8068966
    Abstract: A powertrain system includes a hybrid transmission coupled to an engine and an auxiliary hydraulic pump. The auxiliary hydraulic pump is commanded to operate at a predetermined speed only when enable criteria are met. An engine-off state is inhibited based upon a difference between a commanded speed and a monitored operating speed of the auxiliary hydraulic pump.
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: November 29, 2011
    Assignees: GM Global Technology Operations LLC, Daimler AG, Chrysler LLC, Bayerische Motoren Werke Aktiengesellschaft
    Inventors: Peter E. Wu, Ali K Naqvi, Rebecca Trierweiler, Syed Naqi, Ryan D Martini
  • Patent number: 8046143
    Abstract: An ECU executes a program including: a step of detecting a turbine revolution speed, a step of detecting an engine torque TE, a step of detecting a speed change ratio, a step of setting a range an enlarged slip region when a slip region enlargement condition is satisfied, and a step of enlarging the slip region toward a lock-up region side (high-load side).
    Type: Grant
    Filed: April 17, 2006
    Date of Patent: October 25, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kazuaki Nakamura, Hiromichi Kimura, Shun Minaki, Koji Oshima, Tomohiro Asami, Takahiro Kondo
  • Publication number: 20110224877
    Abstract: A powertrain of a vehicle has a drive unit, a transmission and an auxiliary gearbox. Operation of the transmission and the auxiliary gearbox is controlled by a transmission control unit. The transmission control unit controls shifting of the auxiliary gearbox and the transmission while the vehicle is in operation. The auxiliary gearbox may be electronically shifted, independently of activity of the vehicle operator.
    Type: Application
    Filed: November 2, 2010
    Publication date: September 15, 2011
    Inventors: Bruce Faucett, Robert F. Combs, Leroy K. Johnson
  • Publication number: 20110208395
    Abstract: The invention concerns a method and a device for controlling an automated transmission, in which a transmission control device is provided which, on the basis of input signals, emits to suitable actuators control signals which initiate a shift sequence of the automatic transmission.
    Type: Application
    Filed: April 25, 2007
    Publication date: August 25, 2011
    Applicant: ZF Friedrichshafen AG
    Inventors: Bernd Doebele, Norbert Wiencek
  • Publication number: 20110202244
    Abstract: A method of operating the torque converter lock-up clutch in a power transmission of a working machine comprising at least one hydraulically actuated lifting device. The torque converter lock-up clutch is actuated for disengagement when a predefined limit value for the position of the lifting hydraulic mechanism of the at least one lifting device is exceeded. When the position of the lifting hydraulic mechanism falls below a predefined limit value and when the turbine rotational speed exceeds a predefined threshold value, the torque converter lock-up clutch is reengaged.
    Type: Application
    Filed: September 30, 2009
    Publication date: August 18, 2011
    Applicant: ZF FRIEDRICHSHAFEN AG
    Inventors: Hans Hofler, Thomas Kurz
  • Patent number: 7998006
    Abstract: In a speed ratio control device for a belt continuously variable transmission according to this invention, when a speed ratio is subjected to feedback control on the basis of a difference between an actual speed ratio and a target speed ratio, pressure supplied to a primary pulley is corrected through feedforward (S17, S18) in order to suppress variation in the groove width of the primary pulley caused by a rapid variation in an input torque into the primary pulley (S17) while traveling in a fixed speed ratio mode (S14) in which the target speed ratio is held at a fixed value.
    Type: Grant
    Filed: October 2, 2006
    Date of Patent: August 16, 2011
    Assignee: Jatco Ltd
    Inventors: Hironori Nihei, Tetsuya Izumi, Seonjae Kim, Fumito Shinohara, Kiyotaka Sawano, Takuya Numata
  • Publication number: 20110196587
    Abstract: A device and method are provided for automatically adjusting torque transmitting ability of a hydrodynamic coupling in a transmission arranged between a power turbine and a crank shaft in a turbocompound combustion engine. The method includes continuously registering a value for one or several of: a. engine load parameter for the combustion engine and/or, b. temperature in the combustion engine and/or, c. parameters for indicating NVH in the transmission; If parameters a to c have passed a predetermined value for each of the parameters, then braking a power turbine side of the hydrodynamic coupling and continuously adjusting said torque transmitting ability of the hydrodynamic coupling in dependence of the development of the parameters a to c. Increased control of the transmission and engine performance, especially lower noise and exhaust emissions, and accelerated heating of the engine during cold starts, but also better auxiliary braking, can be provided.
    Type: Application
    Filed: October 30, 2008
    Publication date: August 11, 2011
    Applicant: VOLVO LASTVAGNAR AB
    Inventor: Jan Arnell
  • Publication number: 20110190993
    Abstract: A method and system for controlling a powertrain in a vehicle includes steps including registering a road condition. If the registered road condition corresponds to normal road conditions then a first gear selection control algorithm is used intended for driving the vehicle in a normal mode corresponding to the conditions on an ordinary road. If the registered road condition corresponds to soft surface road conditions then a second gear selection control algorithm is used intended for driving the vehicle in a soft surface mode corresponding to the conditions on an soft surface road. In this way, a vehicle can be adapted to be provided with an AMT to work in a satisfactorily way under an increased diversity of conditions.
    Type: Application
    Filed: October 10, 2008
    Publication date: August 4, 2011
    Applicant: VOLVO LASTVAGNAR AB
    Inventors: Anders Eriksson, Niklas Öberg