Feedback Control (e.g., Closed Loop) Patents (Class 701/60)
  • Patent number: 8543299
    Abstract: An exemplary control device includes an input torque detection unit that detects an input torque input to the input shaft; and a controller that: determines torque distribution of two of the friction engagement elements that form the shift speeds; and calculates a transmission torque of the two friction engagement elements based on the input torque and the torque distribution and sets the engagement pressure to obtain a torque capacity that can transmit the transmission torque, wherein the controller sets the engagement pressure such that slippage does not occur in the two friction engagement elements in a state where engagement of the two friction engagement elements forms the shift speeds and such that, even if an additional friction engagement element engages based on the line pressure while the two friction engagement elements are engaged, one of the three friction engagement elements is caused to slip.
    Type: Grant
    Filed: July 24, 2012
    Date of Patent: September 24, 2013
    Assignee: Aisin AW Co., Ltd.
    Inventors: Tetsuya Shimizu, Masamichi Yamaguchi, Satoshi Nishio, Kenichi Tsuchida, Akitomo Suzuki, Kazunori Ishikawa, Shin-ichirou Murakami
  • Patent number: 8532892
    Abstract: A system includes a pump, accumulator, a sensor which measures line pressure in a fluid circuit, and a controller. The controller plots and calculates respective slopes of first and second sets of measured pressure values from the sensor, calculates a slope ratio, and compares the slope ratio to a threshold. The controller also records the pre-charge pressure as the point of intersection of lines representing the slopes when the ratio exceeds the threshold. A control action is executed when the pre-charge pressure drops below a calibrated minimum threshold. A method includes measuring the pressure values, calculating the respective slopes and the slope ratio, comparing the slope ratio to a ratio threshold, recording the point of intersection of lines representing the slopes as an interpolated pre-charge pressure value when the ratio exceeds the threshold, and executing the control action.
    Type: Grant
    Filed: January 11, 2012
    Date of Patent: September 10, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Crystal Nassouri, Mark A. Schang, Stephen Lewis Pudvay
  • Patent number: 8527167
    Abstract: A control apparatus of a driving force in case of belt slipping includes a belt slip control detecting unit adapted to detect that the belt slip control is in execution, a belt contact radius ratio calculating unit adapted to calculate a belt contact radius ratio of the V-belt to the pulleys, and a power source output torque determining unit adapted to determine a target power output torque according to the belt contact radius ratio in execution of the belt slip control in response to signals from the belt slip control detecting unit and the belt contact radius ratio calculating unit.
    Type: Grant
    Filed: June 7, 2010
    Date of Patent: September 3, 2013
    Assignees: Nissan Motor Co., Ltd., Jatco Ltd
    Inventors: Tsuyoshi Yamanaka, Manabu Yamanaka, Shigeki Shimanaka
  • Patent number: 8521382
    Abstract: A system for a vehicle includes a filter module and a coefficient determination module. The filter module generates a valve body oil temperature signal as a function of a transmission oil temperature signal, the valve body oil temperature signal, and a filter coefficient. The coefficient determination module varies the filter coefficient based on the valve body oil temperature signal. The transmission oil temperature signal corresponds to a first temperature of transmission oil measured at a location between a torque converter and a variable bleed solenoid (VBS). The valve body oil temperature signal corresponds to a second temperature of transmission oil provided to a clutch of a transmission from a valve body.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: August 27, 2013
    Inventor: Mark David Kieliszewski
  • Patent number: 8515635
    Abstract: A method and system provides a Brake Transmission Shift Interlock Override mode in a vehicle including a shift-by-wire transmission. With power applied and ignition on, a driver will press and hold an override switch for a calibrated time. While the override switch is pressed, the driver presses a non-Park button for another calibrated time. The result will be that the vehicle is placed in the selected range wherein the transmission will not automatically shift to Park upon detecting a triggering event. The driver is able to shift the vehicle from Park, even if an electrical failure prevents the transmission from shifting out of Park. As such the vehicle can be driven until the failure is serviced.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: August 20, 2013
    Assignee: Ford Global Technology, LLC
    Inventors: Todd Curtis Spaulding, Brian J Deurloo, Mark Edward Zyskowski, Richard Reynolds Hathaway, Jeffrey James Turnavitch, Christopher Lee Danks, David Spuller, Charles C Poon, Matthew Luke Fyie
  • Patent number: 8504261
    Abstract: A control system includes an engine control module and a transmission control module. The transmission control module communicates with the engine control module via a network. The transmission control module generates at least one of a back torque signal and a first engine acceleration signal. The transmission control module transmits the at least one of the back torque signal and the first engine acceleration signal to the engine control module via the network. The engine control module controls operation of an engine based on the at least one of the back torque signal and the first engine acceleration signal.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: August 6, 2013
    Inventor: Andrew W. Phillips
  • Patent number: 8494730
    Abstract: A power transmitting apparatus includes a clutch that operates based on pressure of a fed fluid to adjust a mode of power transmission of an engine or/and a motor/generator on a power transmission route, a first driving pump that feeds the fluid to the clutch by being driven in accordance with rotation of the motor/generator, and a second driving pump that feeds the fluid to the clutch by being driven in accordance with electric power, wherein a first engagement unit and a second engagement unit can be caused to engage rapidly or slowly by selecting one of the first driving pump and the second driving pump as a source of the fluid, and when a drive request of the clutch is present and a rotation speed of the motor/generator is lower than a predetermined rotation speed, the first engagement unit and the second engagement unit are caused to engage rapidly by feeding the fluid from the second driving pump.
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: July 23, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Masato Yoshikawa
  • Patent number: 8494735
    Abstract: A method of operating the torque converter lock-up clutch in a power transmission of a working machine comprising at least one hydraulically actuated lifting device. The torque converter lock-up clutch is actuated for disengagement when a predefined limit value for the position of the lifting hydraulic mechanism of the at least one lifting device is exceeded. When the position of the lifting hydraulic mechanism falls below a predefined limit value and when the turbine rotational speed exceeds a predefined threshold value, the torque converter lock-up clutch is reengaged.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: July 23, 2013
    Assignee: ZF Friedrichshafen AG
    Inventors: Hans Hofler, Thomas Kurz
  • Patent number: 8494728
    Abstract: A transmission 20 includes an input shaft 12, an output shaft 13, a primary sheave 23 that rotates together with the input shaft 12, a secondary sheave 24 that rotates together with the output shaft 13, and a belt 25 wound around both the primary sheave 23 and the secondary sheave 24. The transmission 20 includes a motor 22 that shifts a transmission ratio by driving a movable sheave 23a of the primary sheave 23. A control device (ECU 5) of the transmission 20 includes a secondary sheave rotation speed sensor 28 that detects rotation of the belt 25, and a control portion 55 of the ECU 5 performs a sheave position control (normal control of the transmission ratio) after rotation of the belt 25 is detected after starting.
    Type: Grant
    Filed: September 2, 2008
    Date of Patent: July 23, 2013
    Assignee: Yamaha Hatsudoki Kabushiki Kaisha
    Inventor: Toshio Unno
  • Patent number: 8489295
    Abstract: A transmission control module including a shift control module that generates an enable signal when an up-shift is requested and the engine torque is below a threshold torque value. A turbine speed profile determination module that selectively generates a desired turbine speed profile. The shift control module controls a clutch pressure of an off-going clutch based on a measured turbine speed and the desired turbine speed profile when the enable signal is generated.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: July 16, 2013
    Inventors: Kevin L. Kluemper, Brett R. Caldwell, Jeffrey K. Runde, Robert M. Merrion
  • Publication number: 20130179046
    Abstract: A system includes a pump, accumulator, a sensor which measures line pressure in a fluid circuit, and a controller. The controller plots and calculates respective slopes of first and second sets of measured pressure values from the sensor, calculates a slope ratio, and compares the slope ratio to a threshold. The controller also records the pre-charge pressure as the point of intersection of lines representing the slopes when the ratio exceeds the threshold. A control action is executed when the pre-charge pressure drops below a calibrated minimum threshold. A method includes measuring the pressure values, calculating the respective slopes and the slope ratio, comparing the slope ratio to a ratio threshold, recording the point of intersection of lines representing the slopes as an interpolated pre-charge pressure value when the ratio exceeds the threshold, and executing the control action.
    Type: Application
    Filed: January 11, 2012
    Publication date: July 11, 2013
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Crystal Nassouri, Mark A. Schang, Stephen Lewis Pudvay
  • Patent number: 8483919
    Abstract: A system and method for controlling double transition shifts in an automatic transmission having multiple gear sections. During a double transition shift, the system performs simultaneous closed loop control of the primary oncoming clutch in the primary gear section and the secondary off-going clutch of the secondary gear section. Before the input shaft of the secondary gear section is fully pulled down or the secondary off-going clutch becomes overheated, the system switches closed loop control of the input shaft to the secondary on-coming clutch of the secondary gear section. The system utilizes model-based calculations to determine the initial clutch pressure settings when a clutch enters closed loop control.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: July 9, 2013
    Assignee: Allison Transmission, Inc.
    Inventors: John Andrew Byerly, John P. Kresse, Mark A. Rains, Jeffrey K. Runde
  • Patent number: 8473170
    Abstract: The described system and method provide improved transmission performance and response with closed loop torque feedback by implementing situational gain scheduling and nonlinear control techniques for continuously variable transmissions. The system uses contextual information regarding the operation of the machine to determine a gain to be applied in associated PID control logic. In an embodiment, the determined gain is applied in the integral portion of the closed loop controller.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: June 25, 2013
    Assignee: Caterpillar Inc.
    Inventors: Jason Stoller, Adam Vaccari
  • Publication number: 20130151094
    Abstract: A method of controlling the system pressure in an automatic transmission having interlocking shifting elements in which, during shifts and gear engagement and gear disengagement processes involving interlocking shifting elements, as a function of the engagement and disengagement times of the interlocking shifting elements involved and the shift conditions of the frictional shifting elements involved, the system pressure is increased to an elevated pressure that enables rapid engagement or disengagement of the interlocking shifting elements, in such manner that the system pressure is increased in at least two phases whose timing depends on the shift conditions of at least one of the shifting elements involved.
    Type: Application
    Filed: December 3, 2012
    Publication date: June 13, 2013
    Applicant: ZF FRIEDRICHSHAFEN AG
    Inventor: ZF Friedrichshafen AG
  • Patent number: 8463515
    Abstract: A powertrain includes a torque generative device and a torque converter having an impeller, a turbine and a torque converter clutch. A method to control torque converter slip includes monitoring a reference slip and a turbine speed of the torque converter, determining a turbine torque based upon the reference slip and the turbine speed, determining a feed forward torque converter clutch pressure command based upon the turbine torque, a torque generative device torque, and a TCC gain, and controlling the torque converter clutch based upon the feed forward torque converter clutch pressure command.
    Type: Grant
    Filed: August 4, 2010
    Date of Patent: June 11, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Kumaraswamy V. Hebbale, Chi-Kuan Kao, Chunhao J. Lee, Xu Chen, Jeremy V. Horgan, Farzad Samie
  • Publication number: 20130138310
    Abstract: A power transmission apparatus includes a continuously variable transmission, a clutch, a drive condition determination device, an input torque calculator, a belt transfer torque calculator, and a clutch transfer torque controller. The continuously variable transmission includes a drive pulley, a driven pulley, and a belt. The clutch transfer torque controller controls a transfer torque of the clutch so that the transfer torque of the clutch is higher than or equal to an input torque calculated by the input torque calculator and is lower than a transfer torque of the belt calculated by the belt transfer torque calculator if it is determined that the vehicle is under a drive condition.
    Type: Application
    Filed: October 30, 2012
    Publication date: May 30, 2013
    Applicant: HONDA MOTOR CO., LTD.
    Inventor: HONDA MOTOR CO., LTD.
  • Patent number: 8447481
    Abstract: A transmission, such as an automated manual transmission for a motor vehicle, with at least one shift group, such that the shift group or each shift group comprises a shift rail which actuates a shift fork that co-operates with a shift sleeve of the shift group concerned. Associated with the shift rail of the shift group or of each shift group there is a sensor that moves together with the respective shift rail relative to a corresponding measurement receiver such that in the area of at least one shift group, a first relative position between the measurement receiver and the sensor in the actuation direction and a second relative position between the measurement receiver and the sensor perpendicular to the actuation direction of the shift rail concerned can be detected, and from the second relative position, an evaluation device deduces system conditions of the shift group concerned.
    Type: Grant
    Filed: July 9, 2009
    Date of Patent: May 21, 2013
    Assignee: ZF Friedrichshafen AG
    Inventors: Ulrich Reith, Mario Steinborn
  • Publication number: 20130113407
    Abstract: A control system for a transmission includes a transmission control module having a processor configured to determine an output torque command and having a pulse width modulation (PWM) switch configured to generate a PWM signal at least partially representative of the output torque command. A network is in communication with the transmission control module and is configured to receive and transmit the PWM signal. A driver is integrated with the electromagnetic actuator and is in communication with the network. The driver is configured to receive the PWM signal and convert the PWM signal into a drive current that enables the electromagnetic actuator to fulfill the output torque command.
    Type: Application
    Filed: November 9, 2011
    Publication date: May 9, 2013
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: VIJAY A. NEELAKANTAN, BRET M. OLSON
  • Publication number: 20130110335
    Abstract: A method for automatically controlling the gear of a gearshift of an electric bicycle. At least one actual operating parameter of a drive component of the electric bicycle is recorded by recording an operating variable of the drive component. The at least one actual operating parameter is compared to a setpoint default, which reflects an operating point of the electric drive, which is linked to a higher efficiency, a greater reliability or a greater durability of components of the electric drive or of the drive component than in response to an operation according to the at least one actual operating parameter. The at least one actual operating parameter is approximated to the setpoint default by changing the gear. A corresponding device for automatically controlling the gear is also described.
    Type: Application
    Filed: April 13, 2011
    Publication date: May 2, 2013
    Inventors: Ivica Durdevic, Peter Kimmich, Philipp Kohlrausch, Gregor Dasbach, Sigmund Braun
  • Publication number: 20130096787
    Abstract: A method for preventing potential vehicle damage during operation of an automatic rocking control system in an automotive vehicle employing an automatic transmission is described. The method includes monitoring a plurality of actual and derived automatic transmission parameters and comparing the actual values with predetermined limits for the monitored parameters. Upon determining, based on the comparison, that an imminent component vulnerability level exists, the method transmits a warning signal. Further, upon determining, based on the comparison, that an immediate component vulnerability level exists, the method terminates the vehicle rock cycle assist mode. A system for preventing potential vehicle damage is also described.
    Type: Application
    Filed: October 14, 2011
    Publication date: April 18, 2013
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Patrick Kevin Holub, Steven Yellin Schondorf, Bob Bruce Kleve
  • Patent number: 8423213
    Abstract: A vehicle control device for controlling a vehicle drive apparatus, the vehicle control device configured with a phase determining mechanism that determines the end of the torque phase in a shift operation, and a rotary electrical machine control mechanism that controls the torque of the rotary electrical machine using a variation of input torque. The vehicle control device is also configured with an engagement control mechanism that provides feedback controlling supplied oil pressure to an engagement side element as an engagement element on a side to be engaged after switching of shift speeds so that the rotation speed change rate of the input member becomes the target rotation speed change rate.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: April 16, 2013
    Assignee: Aisin AW Co., Ltd.
    Inventors: Kohei Tsuda, Yomei Hakumura, Masahiro Asai, Yoichi Tajima, Tomokazu Ito
  • Publication number: 20130090818
    Abstract: A speed ratio shaft control for multiple ratio vehicle transmission has controlled release of an off-going transmission clutch and controlled engagement of an on-coming transmission clutch during a speed ratio upshift, at least one clutch being a friction torque establishing clutch. A controller, using shift-timing software strategy, actively manages in real time a clutch torque level for each clutch so that transient torque disturbances in a transmission torque output shaft are mitigated.
    Type: Application
    Filed: November 30, 2012
    Publication date: April 11, 2013
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventor: Ford Global Technologies, LLC
  • Publication number: 20130085648
    Abstract: A control system is provided for shifting an automatic transmission of a motor vehicle, which includes, but is not limited to a speed controller, and an electronic control device. Through the electronic control device the parameters vehicle speed, position of the speed controller and acceleration of the speed controller can be captured. Through the electronic control device and through comparison of the captured values of the parameters with predetermined reference values a shifting time is determined for shifting the automatic transmission.
    Type: Application
    Filed: September 21, 2012
    Publication date: April 4, 2013
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Martin GENTILE, Gernot BECKER
  • Publication number: 20130080006
    Abstract: Systems and methods for controlling transmissions and associated vehicles, machines, equipment, etc., are disclosed. In one case, a transmission control system includes a control unit configured to use a sensed vehicle speed and a commanded, target constant input speed to maintain an input speed substantially constant. The system includes one or more maps that associate a speed ratio of a transmission with a vehicle speed. In one embodiment, one such map associates an encoder position with a vehicle speed. Regarding a specific application, an automatic bicycle transmission shifting system is contemplated. An exemplary automatic bicycle includes a control unit, a shift actuator, various sensors, and a user interface. The control unit is configured to cooperate with a logic module and an actuator controller to control the cadence of a rider.
    Type: Application
    Filed: November 20, 2012
    Publication date: March 28, 2013
    Applicant: Fallbrook Intellectual Property Company LLC
    Inventor: Fallbrook Intellectual Property Company LLC
  • Patent number: 8406975
    Abstract: An ECU executes a program including the steps of: determining whether or not the conditions for execution of low-temperature neutral control: the temperature of the automatic transmission hydraulic fluid is at most a threshold value; the shift position is D or R position; the vehicle speed is zero; and the brake is ON and the vehicle is stopped, are continuously satisfied for a period of time represented by a threshold value; executing the neutral control when the conditions for execution of low-temperature neutral control are continuously satisfied for at least the period represented by the threshold value; returning from the neutral control when the conditions for execution of low-temperature neutral control are not satisfied; and restricting the throttle opening position in returning from the neutral control.
    Type: Grant
    Filed: August 23, 2007
    Date of Patent: March 26, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Takeshi Ishiwada
  • Patent number: 8406974
    Abstract: The present disclosure relates to methods of detecting misalignment in a transmission synchronizer and methods of alignment. Detection of misalignment is accomplished via monitoring a performance characteristic of a power source configured to provide an engagement force to the synchronizer. Where misalignment is detected a predetermined torque is applied to the input or output side of the synchronizer to rotationally align synchronizer components.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: March 26, 2013
    Assignee: Ford Global Technologies, LLC
    Inventors: Shawn Adam Holland, Jeffrey James Tumavitch, Steve Craig Meisner, Bradley Dean Riedle
  • Patent number: 8401737
    Abstract: A vehicle control device calculates an operation amount and a motion state amount for varying an operation amount necessary for a real vehicle's operation based on a dynamic vehicle model modeling the motion state of a vehicle running in accordance with running targets such as a target path and a speed pattern and determines whether the calculated operation amount and the motion state amount satisfy prescribed running requirements. The operation amount and the motion state amount determined to satisfy the running requirements are a feed-forward (FF) operation amount and a target state amount in a state feedback (FB) control, respectively.
    Type: Grant
    Filed: December 5, 2007
    Date of Patent: March 19, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Makoto Aso
  • Publication number: 20130060435
    Abstract: A method for managing torque transmitting mechanism actuator output pressure under low supply pressure conditions is provided. The method is executable to control engagement of a torque transmitting mechanism during such conditions.
    Type: Application
    Filed: October 29, 2012
    Publication date: March 7, 2013
    Inventors: Jeff Shultz, Peter Swingler
  • Patent number: 8392083
    Abstract: A method for controlling a twin clutch transmission including at least two partial drive trains, each of which is coupleable to a combustion engine using a clutch.
    Type: Grant
    Filed: January 11, 2012
    Date of Patent: March 5, 2013
    Assignee: Schaeffler Technologies AG & Co. KG
    Inventors: Erhard Hodrus, Juergen Eich
  • Patent number: 8392080
    Abstract: A process for monitoring a direction of drive from an automatic or automated vehicle transmission at near-zero vehicle speed via an engaged gear. A desired direction of drive of the transmission is determined from an engaged gear at the time the vehicle begins motion. An actual direction of drive is determined from the transmission and if different from the desired direction of drive, an error signal is produced. The process including determining the actual drive either from a sensed rotational direction of a transmission input shaft and a sensed rotational direction of a transmission output shaft or a sensed valve setting, a sensed pressure in an transmission electro-hydraulic control system or on a transmission shifting element or from a sensed direction of rotation of a transmission gearset element or from axial movement or force of a transmission constructional element.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: March 5, 2013
    Assignee: ZF Friedrichshafen AG
    Inventors: Georg Gierer, Christian Popp, Thilo Schmidt, Klaus Steinhauser
  • Patent number: 8386140
    Abstract: A control device controls an input coupled to a drive force source including a rotary electric machine and an internal combustion engine, an output coupled to wheels, and a speed change mechanism that transfers rotation of the input to the output with a speed of the rotation changed in accordance with a speed ratio of a shift speed selected from a plurality of shift speeds. When switching between the shift speeds, a rotation-varying torque value is calculated, the rotary electric machine outputs torque based on the rotation-varying torque value, and when an absolute value of the torque that the rotary electric machine outputs will become more than a predetermined threshold, both the rotary electric machine and the internal combustion engine are caused to output torque corresponding to the rotation-varying torque value such that the output torque of the rotary electric machine becomes equal to or less than the predetermined threshold.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: February 26, 2013
    Assignee: Aisin AW Co., Ltd.
    Inventors: Kohei Tsuda, Yoichi Tajima, Yomei Hakumura, Hiroaki Kioka
  • Publication number: 20130046425
    Abstract: A method of controlling a pump supplying a fluid to a transmission includes sensing a requested power and an excess power for a powertrain. The requested power substantially meets the needs of the powertrain, while the excess power is not part of the requested power. The method includes sensing a triggering condition in response to the ability to convert the excess power into heat in the transmission, and determining that an operating temperature of the transmission is below a maximum. The method also includes determining a calibrated baseline and a dissipation command for the pump. The calibrated baseline command is configured to supply the fluid based upon the requested power, and the dissipation command is configured to supply additional fluid and consume the excess power with the pump. The method operates the pump at a combined command, which is equal to the calibrated baseline plus the dissipation commands.
    Type: Application
    Filed: August 17, 2011
    Publication date: February 21, 2013
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Karl Andrew Sime, Brian L. Spohn, Besim Demirovic, Ryan D. Martini, Jean Marie Miller
  • Publication number: 20130041563
    Abstract: In a control apparatus for an automatic transmission that changes speed of an engine output and transmits it to driven wheels, having an electromagnetic control valve installed in a hydraulic pressure supply device of the transmission and operated upon receipt of current to control hydraulic pressure supply to the transmission; and a current supply controller composed of a microcomputer installed on an electronic circuit board, calculating a current supply command value of the current supplied to the valve based on a hydraulic pressure supply control value of the transmission calculated based on the vehicle's operating condition and controlling current supply from a battery to the valve based on the command value, a load detector detects load of an electric device that shares ground set on the board with the valve; and the current supply controller calculates the command value based on the hydraulic pressure supply control value and detected load.
    Type: Application
    Filed: July 10, 2012
    Publication date: February 14, 2013
    Applicant: HONDA MOTOR CO., LTD
    Inventors: Nobuaki Komiya, Atsushi Kurauchi
  • Patent number: 8364357
    Abstract: A shifting point display for indicating shift advice is provided in a motor vehicle having a manual transmission and a control unit for the continuous determination of a current operating point of the motor vehicle. At least one characteristic upshift indication curve or a characteristic downshift indication curve is stored in an electronic memory. An upshift indication or a downshift indication is displayed when the characteristic upshift indication curve or the characteristic downshift indication curve is reached by the current operating point and a currently differently engaged gear.
    Type: Grant
    Filed: June 11, 2008
    Date of Patent: January 29, 2013
    Assignee: Bayerische Motoren Werke Aktiengesellschaft
    Inventors: Gerd Kraemer, Alberto Croci
  • Patent number: 8364361
    Abstract: A method for controlling a clutch assembly includes controlling an actual clutch fill pressure using open-loop pressure controls when an active fill phase is detected, and using closed-loop pressure controls when the active fill phase is complete or when an overfill condition is detected. The method supplies the actual clutch pressure according to a second set of open-loop pressure controls when a step in commanded clutch pressure is detected. The method monitors a fill pressure and time during the step, and applies the clutch pressure according to the closed-loop pressure controls when either value equals a corresponding threshold value. A clutch assembly has a piston for compressing clutch disks to initiate a shift event, an algorithm for controlling the shift event, and a sensor for determining an actual clutch pressure during the shift phases. The algorithm switches between closed-loop and open-loop pressure controls in response to different shift phases.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: January 29, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Bret M. Olson, Robert L. Moses, Randall B. Dlugoss
  • Patent number: 8364360
    Abstract: A motor vehicle with insertable four-wheel drive, including an engine having a crankshaft, a pair of main driving wheels constantly connected to the crankshaft by interposition of a gearbox provided with a first clutch, and a pair of secondary driving wheels, which may be connected to the crankshaft by an insertable transmission system. The insertable transmission system presents a second clutch, which is connected on one end with a fixed transmission ratio to the crankshaft upstream of the gearbox and on the other end with a fixed transmission ratio to the secondary driving wheels. A percentage of motive torque to be transmitted to the secondary driving wheels by the second clutch is determined according to dynamic parameters of the motor vehicle detected by respective sensors.
    Type: Grant
    Filed: March 24, 2006
    Date of Patent: January 29, 2013
    Assignee: Ferrari S.p.A.
    Inventors: Franco Cimatti, Rudolf Morawetz
  • Publication number: 20130018556
    Abstract: A control system for a transmission includes a memory module, a position module, an error module, an integral module, and an adjustment module. The memory stores a control value as a function of clutch torque. The position module controls a position of a clutch based on the control value. The error module periodically determines a slip speed error based on a difference between a target slip speed and an estimated slip speed of the clutch. The integral module periodically determines an integral of the slip speed error. The adjustment module adjusts the control value based on the integral. A method for controlling a transmission is also provided.
    Type: Application
    Filed: July 13, 2011
    Publication date: January 17, 2013
    Applicant: GM Global Technology Operations LLC
    Inventors: Robert L. Williams, Matthew D. Whitton, Kurt Mitts, Daniel Deras
  • Patent number: 8352109
    Abstract: A vehicle control device for controlling a vehicle drive apparatus, the vehicle control device configured with a release control mechanism that provides feedback controlling supplied oil pressure to a release side element, and an engagement control mechanism that increases supplied oil pressure to an engagement side element as an engagement element on a side to be engaged in a state that the differential rotation speed is substantially constant. The control device is further configured with a phase determining mechanism that determines if the torque phase has started when a condition that a phenomenon accompanying a change of the differential rotation speed due to increase of the supplied oil pressure to the engagement side element is detected is met.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: January 8, 2013
    Assignee: Aisin AW Co., Ltd.
    Inventors: Kohei Tsuda, Yomei Hakumura, Masahiro Asai, Yoichi Tajima, Tomokazu Ito
  • Patent number: 8335622
    Abstract: A vehicle device control device includes an automatic drive control device for executing an automatic drive control by controlling at least a driving torque generating device, which applies a driving torque on a vehicle, so that a vehicle speed reaches a preset target vehicle speed, and a shift position determination portion for determining a shift position of a gear lever of the vehicle, wherein in a case where the shift position determination portion determines that the gear lever is set at a neutral position on the basis of a determination result of the shift position determination portion while the automatic drive control is executed, the automatic drive control device controls the driving torque generating device so that the driving torque applied to the vehicle becomes zero while continuously executing the automatic drive control.
    Type: Grant
    Filed: September 4, 2008
    Date of Patent: December 18, 2012
    Assignee: Advics Co., Ltd.
    Inventors: Yasuhito Ishida, Gen Inoue
  • Patent number: 8332109
    Abstract: A method for responding to a rapid change in engine torque includes monitoring a change in engine torque and determining a rapid change in engine torque when the change in engine torque exceeds a threshold change in engine torque. Subsequent to determining a rapid change in engine torque, an increase in the torque converter slip is provided by reducing the torque converter clutch pressure command by a selected value and thereafter the feedback control is deactivated for a predetermined duration. Subsequent to the predetermined duration, the feedback control is reactivated to decrease the torque converter slip toward a desired torque converter slip value.
    Type: Grant
    Filed: January 4, 2010
    Date of Patent: December 11, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Paul G. Otanez, Chunhao J. Lee, Farzad Samie, Scott A. Hearld, Xu Chen, Daniel J. Wickman, Xuefeng Tim Tao
  • Patent number: 8332091
    Abstract: A method for operating a hybrid drive of a motor vehicle in particular. An internal combustion engine is connected to a generator via a force-conducting connection. In a learning mode, the generator is operated as a motor and drives the internal combustion engine. In this learning mode, a so-called zero quantity calibration is performed.
    Type: Grant
    Filed: November 16, 2010
    Date of Patent: December 11, 2012
    Assignee: Robert Bosch GmbH
    Inventors: Dietmar Zeh, Holger Rapp, Thomas Pauer, Markus Rueckle, Werner Teschner
  • Patent number: 8321108
    Abstract: A method of controlling an automobile clutch in an automated transmission system with a CMPC control is disclosed having application to vehicle clutch control in an AMT system. The driver's request is translated in terms of sliding velocity ?sl. Constraints on the engine and clutch actuators are defined to respect their operating limits, and driving quality constraints are defined to guarantee comfort during the clutch engagement phase. In order to meet these quality constraints, a reference trajectory is defined for ?sl as a function of the clutch engagement time. An analytical expression allowing real-time calculation of a set of control trajectories with a CMPC control law is then defined from the expression of this reference trajectory. The trajectory respecting the constraints on the actuators is selected from among all these control trajectories. Finally, the clutch is controlled with the selected control trajectory.
    Type: Grant
    Filed: July 1, 2009
    Date of Patent: November 27, 2012
    Assignee: IFP
    Inventors: Paolino Tona, Rachid Amari, Mazen Alamir
  • Patent number: 8321100
    Abstract: A powertrain system includes a hybrid transmission device operative to transfer power between an input member and torque machines and an output member in one of a plurality of operating range states. The torque machines are connected to an energy storage device. A method for operating the powertrain system includes determining a permissible range of input operating points to the input member, determining ranges of motor torques for the torque machines, determining an available power range from the energy storage device, selecting a candidate input operating point within the permissible range of input operating points, and determining maximum and minimum achievable output torques transferable to the output member for the candidate engine operating point within the ranges of motor torques for the torque machines and within the available power range from the energy storage device in a candidate operating range state.
    Type: Grant
    Filed: October 21, 2008
    Date of Patent: November 27, 2012
    Assignees: GM Global Technology Operations LLC, Daimler AG, Chrysler Group LLC, Bayerische Motoren Werke Aktiengesellschaft
    Inventor: Anthony H. Heap
  • Patent number: 8321104
    Abstract: A control system provides an aggregate driven quantity demand signal for controlling an actuatable component. The system has a summing junction which generates the aggregate driven quantity demand signal by summing a first output signal, which converges on a steady state driven quantity requirement value, and a change in driven quantity demand signal. The system further has a feedback loop which generates the first output signal in response to the aggregate driven quantity demand signal. The system also has a first variable gain which tunes the change in driven quantity demand signal in response to a reference demand signal. The feedback loop includes a second variable gain which tunes the rate at which the first output signal converges on the steady state driven quantity requirement value. Typically, the reference demand signal corresponds to a desired value or desired change in value of a parameter which is itself varied or controlled by actuation of the actuatable component.
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: November 27, 2012
    Assignee: Rolls-Royce PLC
    Inventor: Shahid Mahmood
  • Publication number: 20120290180
    Abstract: An exemplary control device includes an input torque detection unit that detects an input torque input to the input shaft; and a controller that: determines torque distribution of two of the friction engagement elements that form the shift speeds; and calculates a transmission torque of the two friction engagement elements based on the input torque and the torque distribution and sets the engagement pressure to obtain a torque capacity that can transmit the transmission torque, wherein the controller sets the engagement pressure such that slippage does not occur in the two friction engagement elements in a state where engagement of the two friction engagement elements forms the shift speeds and such that, even if an additional friction engagement element engages based on the line pressure while the two friction engagement elements are engaged, one of the three friction engagement elements is caused to slip.
    Type: Application
    Filed: July 24, 2012
    Publication date: November 15, 2012
    Applicant: AISIN AW CO., LTD.
    Inventors: Tetsuya SHIMIZU, Masamichi YAMAGUCHI, Satoshi NISHIO, Kenichi TSUCHIDA, Akitomo SUZUKI, Kazunori ISHIKAWA, Shin-ichirou MURAKAMI
  • Patent number: 8311714
    Abstract: A method for monitoring an automated drive train of a motor vehicle, in particular of a passenger car. The drive train comprises a drive engine, a friction clutch arrangement and a multi-speed transmission. The friction clutch arrangement connects or disconnects the drive engine to/from the multi-speed transmission. The method comprises the step of determining at least one rotational speed parameter of the drive train; checking whether the rotational speed parameter is greater than a first threshold value for a first predetermined time interval, and initiating a measure in the drive train in order to lower the rotational speed parameter if the rotational speed parameter is greater than the first threshold value for the first predetermined time interval.
    Type: Grant
    Filed: June 24, 2010
    Date of Patent: November 13, 2012
    Assignee: GETRAG Getriebe- und Zahnradfabrik Hermann Hagenmeyer GmbH & Cie KG
    Inventors: Martin Seufert, Tobias Kalisch, Markus Goldbach, Michael Schachtmann, Ralf Hettich, Matthias Neundorf
  • Patent number: 8296024
    Abstract: The described system and method allow a controller to calibrate a transmission variator of a continuously variable transmission for torque control by obtaining static and dynamic qualities and parameters of the variator through an automated calibration procedure. The system and method employ a pair of transmission mode configurations and operational configurations in combination to obtain system-specific information. In this way, the system is able to calibrate out the system variations to provide effective feed forward torque control of the continuously variable transmission. In an embodiment, a first calibration operation is performed while the transmission is neutralized and a second calibration operation is performed while the transmission is engaged in a mode providing a fixed variator output speed.
    Type: Grant
    Filed: June 18, 2010
    Date of Patent: October 23, 2012
    Assignee: Caterpillar Inc.
    Inventors: Jason Stoller, Chad Brickner, Brian Lister
  • Patent number: 8285462
    Abstract: A hybrid transmission is operative to transfer torque between an input member and torque machines and an output member in one of a plurality of fixed gear and continuously variable operating range states through selective application of torque transfer clutches. The torque machines are operative to transfer power from an energy storage device. A method for controlling the hybrid transmission includes operating the hybrid transmission in one of the operating range states, determining a first set of internal system constraints on output torque transferred to the output member, determining a second set of internal system constraints on the output torque transferred to the output member, and determining an allowable output torque range that is achievable within the first set of internal system constraints and the second set of internal system constraints on the output torque transferred to the output member.
    Type: Grant
    Filed: October 21, 2008
    Date of Patent: October 9, 2012
    Assignees: GM Global Technology Operations LLC, Daimler AG, Chrysler Group LLC, Bayerische Motoren Werke Aktiengesellschaft
    Inventors: Anthony H. Heap, Tung-Ming Hsieh, Bin Wu
  • Patent number: 8280598
    Abstract: A method for operating a hybrid powertrain system includes monitoring operation of the torque machine, and limiting the motor torque output from the torque machine to a maximum allowable motor torque that is associated with an acceptable audible noise level when the motor speed of the torque machine is within a motor speed range associated with objectionable audible noise.
    Type: Grant
    Filed: July 16, 2009
    Date of Patent: October 2, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Rama Munukur, Goro Tamai, Sean W. McGrogan
  • Publication number: 20120245812
    Abstract: An electronic control system for an automatic transmission having an alternate forward start gear, a lower forward start gear and a lower forward start gear lock our feature, in which the electronic control system can sense from various conditions when more power to the drive train is needed and cause the automatic transmission to automatically downshift to the lower forward start gear.
    Type: Application
    Filed: March 22, 2011
    Publication date: September 27, 2012
    Applicant: CATERPILLAR, INC.
    Inventors: Robert Anderson, James Landes, David Dickrell