Coherent Patents (Class 708/310)
  • Patent number: 9608681
    Abstract: In one embodiment, an integrated circuit includes: a first input pad to receive a radio frequency (RF) signal; a radio receiver to process the RF signal and output a digitally processed signal; an analog filter to receive a digital signal via an input signal path and output a drive signal via an output signal path; and a first output pad coupled to the output signal path to output a filtered digital signal based on the drive signal.
    Type: Grant
    Filed: September 29, 2015
    Date of Patent: March 28, 2017
    Assignee: Silicon Laboratories Inc.
    Inventor: Michael R. May
  • Patent number: 9531475
    Abstract: A receiver (e.g., for a 10G fiber communications link) includes an interleaved ADC coupled to a multi-channel equalizer that can provide different equalization for different ADC channels within the interleaved ADC. That is, the multi-channel equalizer can compensate for channel-dependent impairments. In one approach, the multi-channel equalizer is a feedforward equalizer (FFE) coupled to a Viterbi decoder, for example a sliding block Viterbi decoder (SBVD); and the FFE and/or the channel estimator for the Viterbi decoder are adapted using the LMS algorithm.
    Type: Grant
    Filed: September 8, 2014
    Date of Patent: December 27, 2016
    Assignee: ClariPhy Communications, Inc.
    Inventors: Oscar Ernesto Agazzi, Diego Ernesto Crivelli, Hugo Santiago Carrer, Mario Rafael Hueda, German Cesar Augusto Luna, Carl Grace
  • Patent number: 8805554
    Abstract: A notch filter includes first, second, and third difference modules, a delay module, and a gain module. The first difference module calculates a first difference between a control signal in a pulse width modulation (PWM) system and a feedback value. The second difference module calculates a second difference between the first difference and a delayed second difference. The delay module generates the delayed second difference by introducing a one period delay to the second difference, wherein the period is based on a Nyquist frequency of the control signal. The gain module generates the feedback value by applying a gain to the delayed second difference. The third difference module generates a filtered control signal by calculating a difference between the signal and the feedback value, wherein the filtered control signal is used to control an operating parameter of the PWM system.
    Type: Grant
    Filed: August 18, 2011
    Date of Patent: August 12, 2014
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Paul Walker Latham, II, Stewart Gall Kenly, II, Mansur Kiadeh
  • Publication number: 20120150934
    Abstract: A receiver comprises an adaptive filter having an input for a digitized input signal, means for storing a pre-designed filter characteristic, means for analyzing a digital. representation of the input signal to determine a desired position of the filter characteristic to match the system requirements, and means for adapting the stored pre-designed filter characteristic in the frequency domain and/or the time domain to match the system requirements and for transforming the adapted filter characteristic to the time domain to update coefficients for the adaptive filter and for loading updated coefficients into adaptive filter. The updating of the coefficients may be done periodically. The adaptation may be one or more of adjusting bandwidth, frequency shift and, in the case of a bandpass characteristic, superimposing characteristics.
    Type: Application
    Filed: December 22, 2011
    Publication date: June 14, 2012
    Applicant: ST-ERICSSON SA
    Inventor: Robert Fifield
  • Patent number: 7606339
    Abstract: An information handling system includes a wireless device and interference suppression apparatus that adapts to the different interference problems experienced by the wireless device when the system changes from one operating mode or state to another. The interference suppression apparatus includes a controller that instructs an adaptive filter with respect to the appropriate filter characteristics to employ to suppress interference when the system is operating in a first mode. When the system changes to a second mode of operation, the interference suppression apparatus updates the filter characteristics to filter characteristics which are appropriate for suppressing interference associated with the second mode of operation.
    Type: Grant
    Filed: April 7, 2004
    Date of Patent: October 20, 2009
    Assignee: Dell Products L.P.
    Inventors: Fahd Pirzada, Kaushik Ghosh
  • Patent number: 6904443
    Abstract: In a filtering system, a first input receives a signal contaminated with noise. A second input receives a noise reference signal. Each notch filter in a set of M notch filters is responsive to a corresponding tuning coefficient so as to attenuate a corresponding noise frequency in the signal contaminated with noise. A tuning parameter generator responds to the noise reference signal by generating a tuning parameter corresponding to a fundamental frequency of the noise and tracks that fundamental frequency. A filter coefficient generator responds to the tuning parameter by providing each of the M notch filters with the corresponding tuning coefficient. A gain normalizer adjusts the overall gain of the M notch filters.
    Type: Grant
    Filed: August 13, 2001
    Date of Patent: June 7, 2005
    Assignee: Honeywell International Inc.
    Inventor: Stanley A. White