Gas Of Combustion Patents (Class 73/23.31)
  • Publication number: 20140157868
    Abstract: A wire retention clip includes a first compartment for allowing at least a first wire to pass through the compartment uninterrupted and for retaining the at least one wire to the wire retention clip. The wire retention clip also includes a second compartment that is distinct from the first compartment and contains and electronic device.
    Type: Application
    Filed: December 6, 2012
    Publication date: June 12, 2014
    Applicant: DELPHI TECHNOLOGIES, INC.
    Inventors: JAMES D. WARD, HARRY L. HUSTED
  • Patent number: 8747634
    Abstract: A gas sensor including a gas sensor element, and an inner member surrounding the gas sensor element. The gas sensor element has a detection element having therein a space to which a gas to be measured is introduced, and a heater laminated on the detection element. The detection element includes a first oxygen pumping cell for pumping oxygen into or out of the space, an oxygen concentration detection cell, a detection electrode and a reference electrode. In side faces of the detection element along a laminating direction, a region from a front end of the inner member to a part of the detection electrode along a longitudinal direction is covered with a glass coat having a glass transition point of over 700° C. Further the detection electrode is controlled at a temperature range from 600° C. or more to not more than the glass transition point of the glass coat.
    Type: Grant
    Filed: March 10, 2011
    Date of Patent: June 10, 2014
    Assignee: NGK Spark Plug Co., Ltd.
    Inventors: Seiji Oya, Shin Yoshida, Yuko Yamada
  • Patent number: 8747636
    Abstract: A gas sensor is disclosed. The gas sensor includes a gas sensing electrode and a counter electrode disposed within a housing, and respective conductors that connects the gas sensing electrode and the counter electrode to a sensing circuit. The housing includes walls defining a cavity containing electrolyte in fluid communication with the gas sensing electrode and counter electrode and wherein the walls further comprise one or more coatings or second layers superimposed on the walls. The one or more coatings or second layers have a lower water vapor transport rate than that of the walls, such that, in use, water vapor transport between the electrolyte and atmosphere through the walls of the housing is reduced.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: June 10, 2014
    Assignee: Life Safety Distribution AG
    Inventors: Paul Westmarland, Dan Hawkinson, Tony Downer
  • Patent number: 8747635
    Abstract: A gas sensor is provided with a multilayer body of solid electrolyte layers, a measurement electrode, a reference electrode, a reference gas introduction layer, a detection unit and a heater. The reference electrode and the measurement electrode are formed directly on the same first solid electrolyte layer. Thus, heat from the heater is transferred from a third substrate layer to the first solid electrolyte layer, and also to the reference electrode and the measurement electrode through the same first solid electrolyte layer. The reference electrode is covered with a reference gas introduction layer, formed of a porous body. The transference of heat from the heater to the reference electrode through the reference gas introduction layer is smaller than the transference of heat from the heater to the reference electrode through the first solid electrolyte layer on which the reference electrode is formed directly.
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: June 10, 2014
    Assignee: NGK Insulators, Ltd.
    Inventors: Mika Murakami, Naoya Saito, Tomoya Seimori
  • Publication number: 20140150528
    Abstract: A simplified method for measuring a first property and a second property of an exhaust gas mixture utilizing sensors manufactured for the purpose of measuring a first property, but having a cross-sensitivity to a second property of the exhaust gas mixture. Sensor response characteristics to the first property and the second property are accounted for and used in conjunction with a direct differential measurement between sensors to quantify the concentrations of a first and a second property.
    Type: Application
    Filed: February 4, 2013
    Publication date: June 5, 2014
    Applicant: Engine Control and Monitoring
    Inventors: Ronald S. Patrick, Robert Lupul
  • Patent number: 8741118
    Abstract: A sensor control apparatus includes: a gas sensor including an oxygen concentration detection cell having a first solid electrolyte body, a reference electrode and a detection electrode, and a heater; an electric current supply unit that supplies electric current to the oxygen concentration detecting cell; an activation determination unit; a heater control unit that sets a first target temperature equal to or higher than an activation determination temperature when the activation determination unit determines that the temperature of the gas sensor is equal to or higher than the activation determination temperature; an automatic stop detection unit; and a first temperature switching unit that controls electric current supplied to the heater such that the target temperature of the heater is switched to a second target temperature different from a temperature at which blackening is generated in the first solid electrolyte body when an automatic stop is detected.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: June 3, 2014
    Assignee: NGK Spark Plug Co., Ltd.
    Inventor: Hiroshi Inagaki
  • Publication number: 20140144208
    Abstract: A sensor includes an electrode and a seed structure. The electrode is configured to measure current due to movement of particulate matter relative to the electrode. The seed structure is deposited on the electrode. The seed structure includes a plurality of elongated members extending outward from the surface of the electrode. The elongated members are configured to promote charge transfer to particles and/or agglomerates of the particulate matter during operation of the sensor.
    Type: Application
    Filed: January 28, 2014
    Publication date: May 29, 2014
    Applicant: EmiSense Technologies, LLC
    Inventors: Klaus Allmendinger, Joe Fitzpatrick, Brett Henderson, Anthoniraj Lourdhusamy, Lee Sorensen, James Steppan, Gangquiang Wang
  • Publication number: 20140130572
    Abstract: A gas sensor element and a gas sensor incorporating the gas sensor element. The gas sensor element (100) includes a detection portion (150) including a solid electrolyte body (105) and a pair of electrodes (104) and (106) disposed on the solid electrolyte body; and a porous protection layer (20) covering the detection portion. The porous protection layer includes an inner porous layer (21) and an outer porous layer (23). The inner porous layer has a higher porosity than the outer porous layer. Further, the inner porous layer contains, as main components, ceramic particles (21a), and ceramic fiber filaments (21b), and the amount of the ceramic fiber filaments is 25 to 75 vol % based on the total amount of the ceramic particles and the ceramic fiber filaments taken as 100 vol %.
    Type: Application
    Filed: May 31, 2013
    Publication date: May 15, 2014
    Inventors: Shigehiro OTSUKA, Masaki ONKAWA, Toru IWANO, Satoshi TERAMOTO, Kuniharu TANAKA, Takeshi MITSUOKA
  • Patent number: 8721855
    Abstract: A crimp contact, a gas sensor including the crimp contact for outputting a signal from a sensing portion of a sensor element to an external device, and a method for manufacturing the crimp contact. The crimp contact includes a barrel portion crimped so as to fix a plurality of lead core wires (16) of an electrical lead connected to the external device. A hold portion constituting the barrel portion is formed such that the lead core wires 16 of the electrical lead are disposed in an U-shaped hold portion 77 so as to be crimped between an anvil 120 and a crimper 121. An outer surface of the U-shaped hold portion 77 has a plating layer 85 thereon to thereby constantly secure slidability between a sliding face of the crimper 121 and the outer surface of the U-shaped hold portion 77.
    Type: Grant
    Filed: November 29, 2006
    Date of Patent: May 13, 2014
    Assignee: NGK Spark Plug Co. Ltd.
    Inventors: Hisaharu Nishio, Masahiro Asai, Makoto Hishiki
  • Patent number: 8721856
    Abstract: A gas sensor control system for a gas sensor having a first, a second, and a third cell. The second cell produces a second cell electric current indicating the concentration of oxygen in gas in which the amount of oxygen has already been controlled by the first cell. The third cell produces a third cell electric current indicating the concentration of a preselected component of the gas in which the amount of oxygen has already been controlled by the first cell. A second cell circuit converts the second cell electric current into a voltage as a second cell current-measured value. A current adjuster produces a flow of an adjustment current as a function of the second cell current-measured value so that a third cell circuit converts the third cell electric current minus the adjustment current into a voltage as representing the concentration of the preselected component of the gas.
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: May 13, 2014
    Assignees: Denso Corporation, Nippon Soken, Inc.
    Inventors: Satoshi Hada, Takayuki Ishikawa, Katsuhide Akimoto
  • Patent number: 8721970
    Abstract: A portable, relatively low power gas detector incorporates a single pellistor-type sensor for sensing an explosive gas of interest. Outputs from the sensor are corrected in accordance with ambient temperature and humidity and pre-stored correction factors based on characteristics exhibited by a plurality of similar sensors.
    Type: Grant
    Filed: January 20, 2009
    Date of Patent: May 13, 2014
    Assignee: Life Safety Distribution AG
    Inventors: Martin Willett, Martin Jones
  • Patent number: 8720186
    Abstract: A control apparatus (100) for a gas sensor (10) which includes a cell (2) composed of a solid electrolyte body and a pair of electrodes provided thereon. The control apparatus includes voltage application means (70) for applying a single pulse voltage to the cell over a constant energization time T; first-output-value obtaining means 70 for obtaining a first output value Vri1 from the cell when a first time t1 shorter than the constant energization time has elapsed; second-output-value obtaining means (70) for obtaining a second output value Vri2 from the cell when a second time t2 shorter than the constant energization time but longer than the first time has elapsed; and deterioration-degree detection means 70 for detecting the degree of deterioration of the cell on the basis of a difference ?Vri between the second output value and the first output value.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: May 13, 2014
    Assignee: NGK Spark Plug Co., Ltd.
    Inventor: Seiji Maeda
  • Patent number: 8715474
    Abstract: A gas sensor element has a first cell, a second cell, and a solid electrolyte layer having proton conductivity commonly used by the first cell and the second cell. The first cell has a first cathode and a first anode exposed to the target detection gas containing hydrogen atoms. The second cell has a second anode, a second cathode, and a shield layer with which the second anode is covered. A voltage is supplied to the first and second cells. A gas concentration of the target detection gas is calculated on the basis of a difference between a current of the first cell and a current of the second cell because the current in the first cell is a sum of proton conductivity current and an electron conductivity current. The current in the second cell is an electron conductive current only.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: May 6, 2014
    Assignee: Denso Corporation
    Inventors: Keigo Mizutani, Takehiro Watarai, Norikazu Kajiyama
  • Patent number: 8707759
    Abstract: A flue gas sensor of a combustion device is disclosed. The flue gas sensor may include a housing and a gas detector disposed within the housing, wherein the gas detector detects or measures at least one gas in a flue gas stream of the combustion device. The housing may also include a water barrier member through which the at least one gas comes into contact with the gas detector.
    Type: Grant
    Filed: March 4, 2011
    Date of Patent: April 29, 2014
    Assignee: Carrier Corporation
    Inventors: Marc W. Roland, Daniel J. Dempsey
  • Patent number: 8702962
    Abstract: A gas sensor comprises a substrate layer; a pair of interdigitated metal electrodes, said electrodes include upper surfaces, the electrodes selected from the group consisting of Pt, Pd, Au, Ir, Ag, Ru, Rh, In, Os, and their alloys. A first layer of solid electrolyte staying in between electrode fingers and partially on said upper surfaces of said electrodes, said first layer selected from NASICON, LISICON, KSICON and ??-Alumina. A second layer of metal carbonate(s) as an auxiliary electrolyte engaging said upper surfaces of the electrodes and the first solid electrolyte. The metal carbonates selected from the group consisting of the following ions Na+, K+, Li+, Ag+, H+, Pb2+, Sr2+, Ba2+, and any combination thereof.
    Type: Grant
    Filed: August 20, 2008
    Date of Patent: April 22, 2014
    Assignee: The United States of America as Represented by the Administrator of National Aeronautics and Space Administration
    Inventors: Gary W. Hunter, Jennifer C. Xu
  • Patent number: 8702937
    Abstract: A gas sensor control apparatus is provided which controls an operation of a gas sensor made up of a solid electrolyte body and a pair of electrodes to output a signal indicating the concentration of a given gas component contained in gas. The gas sensor control apparatus includes a constant current circuit that is connected electrically to one of the electrodes of the gas sensor and supplies a constant current thereto and a controller. The controller supplies a constant current to the gas sensor so that it flows from one of the electrodes to the other in a selected direction, thereby changing a response time the gas sensor takes to react to a change in concentration of the gas component. This results in an increased accuracy, for example, in controlling an air-fuel ratio of a mixture to an internal combustion engine in an engine control system.
    Type: Grant
    Filed: August 18, 2011
    Date of Patent: April 22, 2014
    Assignee: Denso Corporation
    Inventors: Mikiyasu Matsuoka, Yasuhiro Kawakatsu, Shingo Nakata, Takao Mishima
  • Patent number: 8702936
    Abstract: A device for determining the CO concentration in a gas containing hydrogen is provided, including a detection electrode in contact with the gas, and a counter electrode, each being in contact with an electrolyte; a current source to deliver a current with a predetermined intensity between the detection electrode and the counter electrode so as to generate, at the detection electrode, an electric potential fluctuating between two threshold values due to the adsorption and desorption of the CO at the detection electrode; a device for measuring the potential; and a calculating device to determine the CO concentration, connected to the current source and to the device for measuring the potential, for calculating a characteristic parameter of the fluctuations of the potential, and for determining the CO concentration from the calculated characteristic parameter and the intensity of the applied current.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: April 22, 2014
    Assignee: Commissariat a l'energie atomique et aux energies alternatives
    Inventors: Olivier Lemaire, Alejandro Franco, Nicolas Guillet
  • Patent number: 8702934
    Abstract: A gas sensor including a gas sensor element that extends in an axial direction and has a detection section at a front-end side thereof, and an electrode pad at a rear-end side thereof; a connection terminal that is electrically connected to the electrode pad; and an insulated separator that extends along the axial direction and has an inserting hole into which the connection terminal is inserted. An element side section is arranged within the inserting hole and is connected the electrode pad, and an external circuit side section extends further to the outside in a diametrical direction than an outer surface of the separator through one or more first bending sections from the element side section.
    Type: Grant
    Filed: January 18, 2011
    Date of Patent: April 22, 2014
    Assignee: NGK Spark Plug Co., Ltd.
    Inventors: Masao Tsuzuki, Tomohiro Tajima, Tomoki Fujii, Hisaharu Nishio, Takaya Yoshikawa, Kunihiko Yonezu
  • Publication number: 20140102170
    Abstract: Provided are a method of reliably assembling a gas sensor. A plurality of annular mounting members are repeatedly subjected to following steps: bringing a sensor element into an upper-side held state in which the element is held such that an upper end thereof extends vertically with a lower end thereof being inserted into a recess; fitting a through hole of an annular mounting member with the upper end of the element brought in to the upper-side clamped state; and switching from the upper-side held state to a lower-side held state in which the element is held such that the lower end thereof extends vertically, to thereby cause the annular mounting member to reach a predetermined annularly mounting position. Then, the resultant intermediate assembly product is sandwiched by a centering device to minimize the outside diameter thereof, and thereafter, a tubular body is annularly mounted to the intermediate assembly product.
    Type: Application
    Filed: December 23, 2013
    Publication date: April 17, 2014
    Applicant: NGK INSULATORS, LTD.
    Inventor: Kenji KATO
  • Patent number: 8695399
    Abstract: The present detector for detecting sulfur components includes a storage portion for storing SOx and NOx in the exhaust gas passing through an exhaust passage, in which the more an amount of stored SOx increases, the more an amount of NOx that can be stored decreases, estimates the amount of stored SOx on the basis of an amount of NOx stored in the storage portion, and detects an integrated amount of SOx passing through the exhaust passage during a given period or an value on the basis of the integrated amount. In the present detector, the estimating of the amount of stored SOx for detecting the integrated amount of SOx or the value on the basis of the integrated amount is prohibited when a current amount of NOx that can be stored is not stored in the storage portion.
    Type: Grant
    Filed: December 9, 2009
    Date of Patent: April 15, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiromasa Nishioka, Yoshihisa Tsukamoto, Katsuhiko Oshikawa, Hiroshi Otsuki, Junichi Matsuo
  • Publication number: 20140096589
    Abstract: A microchip oxygen sensor for sensing exhaust gases from a combustion process, and related methods. The microchip oxygen sensor includes a dielectric substrate and a heater pattern affixed to the substrate. A first electrode is affixed to the substrate and has a first plurality of fingers forming a first comb. A second electrode is affixed to the substrate and has a second plurality of fingers forming a second comb. The second electrode is disposed in spaced relation to the first electrode such that the first and second combs face each other. A semiconducting layer is disposed over the first and second electrodes so as form a physical semiconductor bridge between the first and second electrodes. The semiconducting layer comprises an n-type semiconducting material or a p-type semiconducting material. A porous dielectric protective layer, advantageously containing a catalytic precious metal, may cover the semiconducting layer.
    Type: Application
    Filed: November 6, 2013
    Publication date: April 10, 2014
    Applicant: Kerdea Technologies, Inc.
    Inventor: Ken Ervin Fosaaen
  • Patent number: 8689605
    Abstract: A method of operating a process a combustion analyzer having a measurement cell is provided. The method includes exposing the measurement cell to exhaust of a combustion process where fuel and oxygen are combined in a burner to produce a flame. The measurement cell is heated to a temperature above a flashpoint of the fuel. When a condition is detected, such as a fault or abnormal situation, gas is directed to the measurement cell to form a gaseous barrier between the measurement cell and unburned fuel while the detected condition exists. Once the condition abates, the gas flow is disengaged and process combustion gas measurements are provided.
    Type: Grant
    Filed: February 8, 2013
    Date of Patent: April 8, 2014
    Assignee: Rosemount Analytical Inc.
    Inventor: Edward J. Bailey
  • Patent number: 8679312
    Abstract: A gas sensor system including a gas sensor; a current control unit; a constant control unit; and a temperature acquisition unit. The gas sensor includes a measurement chamber, a pump cell and an electromotive force cell. The current control unit performs feedback control on current flowing through the pump cell in response to the voltage of the electromotive force cell and in accordance with a control constant which characterizes the feedback control. Further, the constant control unit changes the control constant of the feedback control in accordance with a value (for example, a resistance value of the electromotive force cell) corresponding to the temperature of the gas sensor.
    Type: Grant
    Filed: November 16, 2009
    Date of Patent: March 25, 2014
    Assignee: NGK Spark Plug Co., Ltd.
    Inventors: Yoshinori Inoue, Norikazu Ieda
  • Patent number: 8678813
    Abstract: A stream of exhaust gases from the combustion of hydrocarbon-containing fuels with a variable temperature can be produced by dividing the exhaust gases into two separate part-streams, cooling one part-stream and then combining the two part-streams again. The temperature of the exhaust-gas stream which has been combined again can be set to between the temperature of the combustion of the hydrocarbon-containing fuels and the temperature of the cooled exhaust-gas part-stream by corresponding throttling of the two part-streams before they are brought together again. The exhaust-gas stream produced in this way is preferably used for the defined ageing of automotive exhaust catalysts. In this context, it is particularly advantageous that the change in the temperature of the exhaust-gas stream has no influence on its air/fuel ratio.
    Type: Grant
    Filed: December 17, 2005
    Date of Patent: March 25, 2014
    Assignee: Umicore AG & Co. KG
    Inventors: Juergen Gieshoff, Hartmut Finkbeiner, Thomas Kreuzer
  • Patent number: 8673128
    Abstract: A gas sensor element includes an insulating ceramic base, a solid electrolyte body, and a heating element. The solid electrolyte body is disposed in an opening of the insulating ceramic base and has a measuring electrode affixed to one of major surfaces thereof and a reference electrode affixed to the other major surface. The measuring electrode is exposed to gas to be measured. The reference electrode is exposed to a reference gas. The heating element works to activate the solid electrolyte body and is mounted on one of opposed surfaces of the insulating ceramic base on the same side as the major surface of the solid electrolyte body on which the reference electrode is disposed. Specifically, the insulating ceramic base is located between the solid electrolyte body and the heating element, thereby ensuring a desired degree of electric insulation between the heating element and the reference electrode.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: March 18, 2014
    Assignee: Denso Corporation
    Inventors: Masami Saitou, Namitsugu Fujii, Norikazu Kajiyama
  • Patent number: 8671740
    Abstract: The sensor element, which can detect the concentration of a specified gas, is held with a housing with a front end thereof exposed. A protective cover includes an inner cover and an outer cover, and secured to the housing. A ratio ?1/?2 is set to a range from 0.6 to 0.9, where ?1 represents an outer diameter of a portion where an inner gas aperture is formed in the inner cover, and ?2 represents an inner diameter of a portion where an outer gas aperture is formed in the outer cover.
    Type: Grant
    Filed: May 17, 2011
    Date of Patent: March 18, 2014
    Assignee: NGK Insulators, Ltd.
    Inventors: Takayuki Sekiya, Kei Kosaka, Shodai Hirata
  • Publication number: 20140047899
    Abstract: A device for determining a composition of fuel in a combustion chamber of a power station is provided. The device includes a measuring device for measuring an actual concentration distribution of a substance in a combustion chamber' an analysis device for analyzing the actual concentration distribution, taking into account a combustion stochiometry; and an evaluation device for determining a composition of fuel based upon the analyzing.
    Type: Application
    Filed: October 25, 2013
    Publication date: February 20, 2014
    Inventors: Bernhard Meerbeck, Rainer Speh
  • Publication number: 20140033796
    Abstract: A system and/or method for quantifying the presence of one or more components in vehicle exhaust, and more particularly to a non-contact, sampling system and method for quantifying the presence of one or more components in exhaust emissions of commercial and/or heavy-duty vehicles that emit exhaust at an elevated level, under actual operating conditions.
    Type: Application
    Filed: January 8, 2013
    Publication date: February 6, 2014
    Applicant: Envirotest Systems Holdings Corp.
    Inventor: Donald H. Stedman
  • Patent number: 8635899
    Abstract: A method of operating a process a combustion analyzer having a measurement cell is provided. The method includes exposing the measurement cell to exhaust of a combustion process where fuel and oxygen are combined in a burner to produce a flame. The measurement cell is heated to a temperature above a flashpoint of the fuel. When a condition is detected, such as a fault or abnormal situation, gas is directed to the measurement cell to form a gaseous barrier between the measurement cell and unburned fuel while the detected condition exists. Once the condition abates, the gas flow is disengaged and process combustion gas measurements are provided.
    Type: Grant
    Filed: July 15, 2009
    Date of Patent: January 28, 2014
    Assignee: Rosemount Analytical Inc.
    Inventor: Edward J. Bailey
  • Patent number: 8632668
    Abstract: A deterioration signal generation device for an oxygen sensor having a power supply different than a power supply connected to an external device, including a connection unit for electrically connecting the ground lines of the respective power supplies; a first acquisition unit for electrically connecting to a first output line at a reference potential side and to a second output line at a sensor potential side of the oxygen sensor, to obtain first and second potentials, respectively; an operation unit that calculates a first differential value between the first and second potentials; a processing unit that performs an operation on the first differential value; a second acquisition unit that acquires a third potential of a first input line at a reference potential side of the external device; and an output unit that generates the deterioration signal by superposing the second differential value on the third potential.
    Type: Grant
    Filed: November 19, 2012
    Date of Patent: January 21, 2014
    Assignee: NGK Spark Plug Co., Ltd.
    Inventor: Seiji Maeda
  • Patent number: 8632667
    Abstract: A deterioration signal generation device for an oxygen sensor having a power supply different than a power supply connected to an external device, including a connection unit for electrically connecting the ground lines of the respective power supplies; a first acquisition unit for electrically connecting to a first output line at a reference potential side and to a second output line at a sensor potential side of the oxygen sensor, to obtain first and second potentials, respectively; an operation unit that calculates a first differential value between the first and second potentials; a processing unit that performs an operation on the first differential value; a second acquisition unit that acquires a third potential of a first input line at a reference potential side of the external device; and an output unit that generates the deterioration signal by superposing the second differential value on the third potential.
    Type: Grant
    Filed: January 19, 2011
    Date of Patent: January 21, 2014
    Assignee: NGK Spark Plug Co., Ltd.
    Inventor: Seiji Maeda
  • Patent number: 8631786
    Abstract: Methods systems and device for detecting humidity in air through use of an ammonia sensor included in the exhaust of an engine, such as a diesel engine are provided. In one example, a method for an engine having an exhaust with an ammonia sensor includes adjusting an operating parameter in response to ambient humidity, the ambient humidity based on a first ammonia sensor reading at a first exhaust air-fuel-ratio and a second ammonia sensor reading at a second exhaust air-fuel-ratio.
    Type: Grant
    Filed: June 10, 2013
    Date of Patent: January 21, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Michiel J. Van Nieuwstadt, Dave Charles Weber
  • Patent number: 8627706
    Abstract: A gas-measuring probe for determining a physical characteristic of a measuring gas, in particular the concentration of a gas component or the temperature or pressure of the measuring gas, which includes a sensor element accommodated in a housing, at least one connection cable for the sensor element having an electrical conductor, which is enclosed by an insulation sheath and contacts the sensor element, and a cable channel sealing the housing end, which has at least one axial cable feedthrough through which the connection cable is guided out of the housing. To achieve long-lasting sealing at the cable-exit end of the housing even at higher temperatures, the insulation sheath of the connection cable is at least regionally welded to the cable wall of the cable feedthrough. To this end, a tube made of a material that fuses with the insulation sheath and the cable channel when heated is slipped over the cable section of the connection cable lying inside the cable channel.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: January 14, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Bernhard Wild, Rainer Maier, Gregor Jaehnig, Peter Dettling, Stefan Heinzelmann, Bernd Rattay, Bastian Buchholz, Juergen Moratz
  • Publication number: 20140007650
    Abstract: An amount of aggregation of particulate matter is estimated with a high degree of accuracy.
    Type: Application
    Filed: March 16, 2011
    Publication date: January 9, 2014
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shinichi Mitani, Hiroshi Nomura, Eiji Murase
  • Publication number: 20140007850
    Abstract: A gas sensor assembly for sensing a pressure of a gas including a housing, a carrier, an electronic chip, a cap and a biasing apparatus. The housing has a wall defining cavity with a port open to the gas. The carrier is mounted to the wall in the cavity. The electronic chip is secured to the carrier on an opposed side from the port and includes a diaphragm portion exposed to the port. The cap is mounted to the chip on an opposed side from the carrier. The biasing apparatus is located between the cap and the wall of the housing, with the biasing apparatus being configured to bias the cap toward the chip whereby gas pressure acting against the diaphragm is opposed by the biasing apparatus.
    Type: Application
    Filed: July 9, 2012
    Publication date: January 9, 2014
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Freeman C. Gates, Fadi M. Naddaf, William R. Goodwin
  • Patent number: 8623186
    Abstract: A gas sensor control apparatus includes a heater regulating section to control the supply of electricity to a heater included in a gas sensor, an impedance sensing section to sense an impedance of a cell of the gas sensor, and an impedance condition examining section to examine whether the sensed impedance is greater than or equal to a predetermined abnormality judging threshold. The control apparatus further includes a voltage condition examining section to examine whether a maximum effective voltage is applied to the heater, when the impedance is above the predetermined abnormality judging threshold, a duration measuring section to examine whether an application time duration of the maximum effective voltage becomes equal to or longer than a predetermined heater overheat preventing time, and a voltage decreasing section to decrease the heater application voltage to such a lower effective voltage as to hold the temperature of the cell higher than or equal to 500° C.
    Type: Grant
    Filed: November 5, 2009
    Date of Patent: January 7, 2014
    Assignee: NGK Spark Plug Co., Ltd.
    Inventors: Akiyoshi Kato, Keiji Suzuki
  • Patent number: 8623188
    Abstract: A gas sensor including a plate-shaped laminate disposed in a housing and fixed thereto via an element passage member and formed by laminating a gas sensor element and a heating element. The gas sensor element includes a plate-shaped solid electrolyte member, and a pair of detection electrodes formed on front and back surfaces thereof and constituting, in cooperation with the solid electrolyte member, a detection section for detecting the concentration of a specific gas. Insulating substrates mainly composed of alumina are provided on opposite sides of the laminate in the laminating direction. Coating layers mainly composed of a first material higher in toughness than alumina are formed on at least portions of outer surfaces of the insulating substrates in the laminating direction, the portions facing the element passage member. The coating layers are not formed on surfaces of the laminate parallel to the laminating direction.
    Type: Grant
    Filed: October 25, 2011
    Date of Patent: January 7, 2014
    Assignee: NGK Spark Plug Co., Ltd.
    Inventors: Ai Igarashi, Noboru Furuta
  • Patent number: 8623187
    Abstract: A gas sensor including a sensor element constituted by an oxygen-ion conductive solid electrolyte as a main component and detecting a predetermined gas component in a measurement gas includes: an external communication part having an opening opened to the outside, and introducing the measurement gas from the outside under a predetermined diffusion resistance; an internal space communicating with the external communication part; a first electrode formed on a surface of the internal space; a second electrode formed in a space different from the internal space; and a pumping cell operable to pump out oxygen existing in the internal space when a predetermined voltage is applied between the first electrode and the second electrode. The thickness of the external communication part is 50% or more and 100% or less of the thickness of the internal space.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: January 7, 2014
    Assignee: NGK Insulators, Ltd.
    Inventors: Sumiko Horisaka, Hiroki Fujita, Mika Murakami, Takashi Ito
  • Patent number: 8617372
    Abstract: An array-type sensor that senses NH3 includes non-Nernstian sensing elements constructed from metal and/or metal-oxide electrodes on an O2 ion conducting substrate. In one example sensor, one electrode may be made of platinum, another electrode may be made of manganese (III) oxide (Mn2O3), and another electrode may be made of tungsten trioxide (WO3). Some sensing elements may further include an electrode made of La0.6Sr0.4Co0.2Fe0.8O3 and another electrode made of LaCr0.95Mg0.05O3.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: December 31, 2013
    Assignee: UT-Battelle, LLC
    Inventors: David Lawrence West, Frederick Charles Montgomery, Timothy R. Armstrong, Robert J. Warmack
  • Publication number: 20130333443
    Abstract: The present invention is intended to be able to determine an appropriate purge time in a hydrogen flame ionization type exhaust gas analyzer and a system incorporating the analyzer which includes: a collector electrode for capturing ions generated from exhaust gas by hydrogen flame; an acquisition circuit adapted to acquire ion current caused by the ions captured by the collector electrode; and an abnormality determining part for determining an abnormality in the case where a difference between a first output value of the acquisition circuit in the case where there flows no ion current caused by the exhaust gas to the collector electrode and a second output value of the acquisition circuit in the case where zero gas is introduced into the hydrogen flame is equal to a predetermined value.
    Type: Application
    Filed: June 13, 2013
    Publication date: December 19, 2013
    Inventors: Masaru MIYAI, Hiroshi NAKAMURA, Masahiro NISHIKAWA
  • Publication number: 20130327123
    Abstract: A terminal connection portion has a plate shape extending in an axial direction and has a constant width dimension. A terminal front end edge thereof has a convex shape at a front end side in the axial direction and has a circular-arc shape with a radius from 0.5 times to 0.8 times the width dimension, and is arranged in the center between a first pad side edge and a second pad side edge, on an electrode pad. A brazing material portion has a form spreading to a front end side in the axial direction away from the terminal connection portion. A brazing material front end edge which is a front end edge of the brazing material portion has a convex and circular-arc shape at the front end side in the axial direction, and is configured to be apart from a pad front end edge.
    Type: Application
    Filed: June 11, 2013
    Publication date: December 12, 2013
    Inventors: Masahito SUZUKI, Tomohiro KUWAYAMA
  • Publication number: 20130312488
    Abstract: A smoke detection system includes at least one smoke detector which is installed in a first partial region of a region to be monitored by way of the smoke detection system. The smoke detection system further includes at least one fluid injection device which is configured to inject a fluid into the region to be monitored by way of the smoke detection system in a direction of at least one smoke detector such that in an emergency case, when smoke is present in a second partial region of the region to be monitored the smoke is transported to the at least one smoke detector.
    Type: Application
    Filed: May 22, 2013
    Publication date: November 28, 2013
    Inventors: Fabian KRAUS, Benjamin Martens
  • Publication number: 20130317757
    Abstract: Disclosed is an exhaust sampling system including a plurality of exhaust sampling system zones. The zones are, at least, a sampling conduit, a fill circuit, and a read circuit. A controller is programmed to predict a minimum dilution ratio to avoid condensation in one of the exhaust sampling system zones. The controller is further programmed to run a test procedure in which a sample of exhaust is diluted with a make-up gas at a selected minimum dilution ratio that is greater than or equal to the predicted minimum dilution ratio. Further disclosed are methods of predicting whether condensation occurs during a test procedure.
    Type: Application
    Filed: May 23, 2012
    Publication date: November 28, 2013
    Inventors: William Martin Silvis, James Williamson, Gerald Marek, Douglas Edward Miller, JR.
  • Publication number: 20130312489
    Abstract: The present invention provides an exhaust gas analyzing system having a function of navigating an adjusting procedure of a gas analyzer, and the system includes an analyzer for analyzing exhaust gas and a manager for managing or controlling the analyzer, and the manager includes a procedure display part for selectively displaying adjustment items necessary for adjustment of the analyzer in a predetermined order in a predetermined area of one screen, and a detail input screen display part for displaying a detail input screen of the selected adjustment item.
    Type: Application
    Filed: May 23, 2013
    Publication date: November 28, 2013
    Applicant: HORIBA, Ltd.
    Inventors: Koji WATANABE, Tetsu YOSHIOKA
  • Publication number: 20130312486
    Abstract: An exhaust gas analyzing apparatus includes analyzer main bodies, exhaust gas introducing parts for guiding the exhaust gas from an exhaust pipe, through which the exhaust gas passes, to the analyzer main body, heaters for heating the analyzer main bodies and the exhaust gas introducing parts, respectively, and a temperature regulating mechanism for controlling the heaters to regulate temperatures of the analyzer main bodies and the exhaust gas introducing parts, and a first mode which has the temperature regulating mechanism regulate the temperatures of the analyzer main body and the exhaust gas introducing part to an analyzable temperature that is a predetermined temperature allowing a start of analysis of the exhaust gas, or a second mode which has the temperature regulating mechanism regulate the temperature of the analyzer main body to the analyzable temperature and turning off the heater for the exhaust gas introducing part can be selected.
    Type: Application
    Filed: May 21, 2013
    Publication date: November 28, 2013
    Inventors: Hiroyoshi NAKAGAWA, Koji WATANABE
  • Publication number: 20130312487
    Abstract: An exhaust gas analyzing system makes it possible to determine appropriate maintenance timing of sampling pumps in the system, including sampling pumps and provided in a main flow path in order to sample exhaust gas sent from an introduction port, analysis parts provided on the upstream side or downstream side of the sampling pumps and in the main flow path, flow meters provided on the upstream side or downstream side of the analysis parts in the main flow path, and pump abnormality determination parts and for determining abnormality of the sampling pumps by comparing pump flow rates obtained by the flow meters to a predetermined abnormal flow rate.
    Type: Application
    Filed: May 22, 2013
    Publication date: November 28, 2013
    Applicant: HORIBA, Ltd.
    Inventors: Masaru Miyai, Manabu Ito, Masahiro Nishikawa
  • Patent number: 8591712
    Abstract: There is provided a gas sensor element, including a solid electrolyte layer, a pair of sensor electrodes arranged on a front side of the solid electrolyte layer, a pair of sensor leads arranged on a rear side of the solid electrolyte layer and connected to the respective sensor electrodes; and insulating layers, one of which is arranged between one of the sensor leads and the solid electrolyte layer and the other of which is arranged between the other sensor lead and the solid electrolyte layer. The sensor electrodes have rear end portions located on the insulating layers and overlapping front end portions of the sensor leads, respectively. The sensor leads are denser than the sensor electrodes and have front ends located in the same positions as or positions rear of front ends of the insulating layers, respectively. There is also provided a gas sensor with such a gas sensor element.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: November 26, 2013
    Assignee: NGK Spark Plug Co., Ltd.
    Inventors: Hiroyuki Hayashi, Masaki Mizutani, Takayuki Kitou
  • Patent number: 8586394
    Abstract: A method of making a sub-miniature “micro-chip” oxygen sensor is provided where multiple sensor elements are applied to a dielectric ceramic substrate consisting of a heater pattern, followed by a dielectric layer. Intermeshing electrodes are then applied either over the heater pattern/dielectric layers or on the opposite side of the substrate. The space between the intermeshing electrodes is filled with an n-type or p-type high temperature semiconductor which is covered by a porous protection layer. After singulation (dicing), the sensor element is assembled having conductors applied to the contact pads on the element and is packaged in an assembly for introduction to the exhaust stream of a combustion process. A large step-wise change in the resistance of the element takes place as a result of changes in oxygen content in the exhaust whereby one can determine if the exhaust is rich or lean for use in an engine management or combustion management systems for emissions control.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: November 19, 2013
    Assignee: Kerdea Technologies, Inc.
    Inventor: Ken E. Fosaaen
  • Publication number: 20130298638
    Abstract: A combustible gas detection device includes an energization control circuit which controls the switching of the energization state of a heat generation resistor every predetermined time period such that the heat generation resistor alternately has resistances corresponding to two predetermined temperatures, a temperature measurement resistor disposed on the same substrate on which the heat generation resistor is disposed, where its resistance changes with the environmental temperature, a gas concentration computation section which calculates the combustible gas concentration by using a voltage generated across the heat generation resistor which is detected when electricity is supplied to the heat generation resistor and the environmental temperature based on a voltage change caused by a change in the resistance of the temperature measurement resistor.
    Type: Application
    Filed: February 9, 2012
    Publication date: November 14, 2013
    Applicant: NGK SPARK PLUG CO., LTD.
    Inventors: Masaya Watanabe, Shoji Kitanoya, Daisuke Ichikawa, Masahiro Yamashita
  • Patent number: 8578756
    Abstract: In a PM detection sensor with a sensor element having a pair of detection electrodes formed on a substrate, quantity of PM accumulated in the detection electrode is calculated on the basis of a resistance change between the detection electrodes. A series circuit composed of a temperature detection resistance and a capacitor connected in series is formed on a conductive path in the sensor element. A microcomputer in an ECU instructs a power source to supply a DC voltage to the resistance and the capacitor to make a first state in which no current flows in the resistance when a quantity of PM accumulated in the sensor element is detected. The microcomputer instructs the power source to supply an AC voltage to the resistance and the capacitor to make a second state in which a current flows in the resistance when a temperature of the sensor element is detected.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: November 12, 2013
    Assignee: Denso Corporation
    Inventor: Toshiyuki Suzuki