Semiconductor Patents (Class 73/31.06)
  • Patent number: 10656114
    Abstract: A gas sensor device includes gas sensors and switches. The switches are connected to the respective gas sensors in series. The gas sensors each include: a first conductive layer; a second conductive layer; a metal oxide layer disposed between the first conductive layer and the second conductive layer; and an insulation layer covering the first conductive layer, the second conductive layer, and the metal oxide layer and having an opening from which a portion of the second conductive layer is exposed. The resistance of the gas sensor is decreased when a gas containing a hydrogen atom comes into contact with the second conductive layer.
    Type: Grant
    Filed: April 11, 2017
    Date of Patent: May 19, 2020
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Zhiqiang Wei, Kazunari Homma, Koji Katayama, Satoru Fujii
  • Patent number: 10570006
    Abstract: A MEMS IR sensor, with a cavity in a substrate underlapping an overlying layer and a temperature sensing component disposed in the overlying layer over the cavity, may be formed by forming an IR-absorbing sealing layer on the overlying layer so as to cover access holes to the cavity. The sealing layer is may include a photosensitive material, and the sealing layer may be patterned using a photolithographic process to form an IR-absorbing seal. Alternately, the sealing layer may be patterned using a mask and etch process to form the IR-absorbing seal.
    Type: Grant
    Filed: March 2, 2017
    Date of Patent: February 25, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Ricky Alan Jackson, Walter Baker Meinel, Kalin Valeriev Lazarov, Brian E. Goodlin
  • Patent number: 10564182
    Abstract: The invention relates to a measuring device and a method for determining mass and/or mechanical properties of a biological system.
    Type: Grant
    Filed: February 17, 2015
    Date of Patent: February 18, 2020
    Assignees: Universit├Ąt Basel, ETH Z├╝rich
    Inventors: David Martinez-Martin, Daniel J. Mueller, Sascha Martin, Christoph Gerber, Benjamin Bircher
  • Patent number: 10527571
    Abstract: It is disclosed herein a semiconductor device and a method of manufacturing the semiconductor device. The semiconductor device is made using partly CMOS or CMOS based processing steps, and it includes a semiconductor substrate, a dielectric region over the semiconductor substrate, a heater within the dielectric region and a patterned layer of noble metal above the dielectric region. The method includes the deposition of a photoresist material over the dielectric region, and patterning the photo-resist material to form a patterned region over the dielectric region. The steps of depositing the photo-resist material and patterning the photo-resist material may be performed in sequence using similar photolithography and etching steps to those used in a CMOS process. The resulting semiconductor device is then subjected to further processing steps which ensure that a dielectric membrane and a metal structure within the membrane are formed in the patterned region over the dielectric region.
    Type: Grant
    Filed: February 27, 2015
    Date of Patent: January 7, 2020
    Assignee: AMS SENSORS UK LIMITED
    Inventors: Florin Udrea, Syed Zeeshan Ali, Julian Gardner
  • Patent number: 10508345
    Abstract: Some embodiments of the present disclosure provide a gas sensor in an IOT. The gas sensor includes a substrate, a conductor disposed above the substrate, and a sensing film disposed over the conductor. The conductor has a top-view pattern including a plurality of openings, a minimal dimension of the opening being less than about 4 micrometer; and a perimeter enclosing the opening. Some embodiments of the present disclosure provide a method of manufacturing a gas sensor. The method includes receiving a substrate; forming a conductor, over the substrate; patterning the conductor to form a plurality of openings in the conductor by an etching operation, and forming a gas-sensing film over the conductor. The openings are arranged in a repeating pattern, and a minimal dimension of the opening being about 4 micrometer.
    Type: Grant
    Filed: October 8, 2015
    Date of Patent: December 17, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Ming-Ta Lei, Chia-Hua Chu, Hsin-Chih Chiang, Tung-Tsun Chen, Chun-Wen Cheng
  • Patent number: 10466198
    Abstract: In a gas sensor using a first FET-type sensor for a sensor unit, a gas density measurement unit measures a gas density of gas to be detected at a predetermined time on the basis of a first threshold change as a difference between a first threshold voltage applied to a first gate layer when a first source-drain current is a first threshold current while the gas to be detected is not present in the atmosphere and a second threshold voltage applied to the first gate layer when the first source-drain current is the first threshold current at the predetermined time while the gas to be detected is present in the atmosphere, and a temporal differentiation of the first threshold change.
    Type: Grant
    Filed: October 19, 2017
    Date of Patent: November 5, 2019
    Assignee: HITACHI, LTD.
    Inventors: Yoshitaka Sasago, Toshiyuki Usagawa, Hitoshi Nakamura
  • Patent number: 10418495
    Abstract: A gallium nitride-based sensor having a heater structure and a method of manufacturing the same are disclosed, the method including growing an n-type or p-type GaN layer on a substrate, growing a barrier layer on the n-type or p-type GaN layer, sequentially growing a u-GaN layer and a layer selected from among an AlxGa1-xN layer, an InxAl1-xN layer and an InxAlyGa1-x-yN layer on the barrier layer, patterning the n-type or p-type GaN layer to form an electrode, forming the electrode along the pattern formed on the n-type or p-type GaN layer, and forming a sensing material layer on the layer selected from among the AlxGa1-xN layer, the InxAl1-xN layer and the InxAlyGa1-x-yN layer, wherein a HEMT sensor or a Schottky diode sensor can be heated using an n-GaN (or p-GaN) layer, thus increasing the sensitivity of the sensor and reducing the restoration time.
    Type: Grant
    Filed: September 13, 2018
    Date of Patent: September 17, 2019
    Assignee: KOREA ADVANCED NANO FAB CENTER
    Inventors: Kyungho Park, Chuyoung Cho, Hyeong Ho Park, Yu Min Koh
  • Patent number: 10408691
    Abstract: Embodiments of the invention include a fracture ring sensor and a method of using the same to detect out of tolerance forces. Aspects of the invention include a product having a defined an out of tolerance force, a fracture ring sensor, and a mounting assembly coupling the fracture ring sensor to the product. The fracture ring sensor is patterned with a conductive trace and is manufactured to break when subjected to a predetermined amount of force. The predetermined amount of force is substantially equal to a percentage of the out of tolerance force of the product.
    Type: Grant
    Filed: November 9, 2017
    Date of Patent: September 10, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jonathan D. Bradbury, Jonathan R. Fry, Michael R. Kane
  • Patent number: 10401352
    Abstract: A processing and detection system for detecting presence of at least one gluten protein in a food sample comprises a food processor including: a reservoir containing a process liquid for processing the food sample; a body that comprises a chamber configured to receive the food sample; and a pressing surface configured to press on the reservoir to cause the process liquid to exit the reservoir and mix with the food sample, thereby generating a processed food liquid; and an exit port configured to conduct the processed food liquid out of the food processor; and a cartridge including: at least one sensor configured to receive the processed food liquid and to generate an electrical signal in response to interaction with the at least one gluten protein in the processed food liquid, and an analyzer in electrical communication with the at least one sensor for detecting the electrical signal and determining the presence of the at least one gluten protein in the food sample based on the detected electrical signal.
    Type: Grant
    Filed: November 21, 2016
    Date of Patent: September 3, 2019
    Assignee: Rite Taste, LLC
    Inventors: Mohammad E. Taslim, Mohammed Fotouhi, Mehdi Abedi, Reza Mollaaghababa, Bahram Fotouhi, Kashayar Javaherian, Edward Alvin Greenfield
  • Patent number: 10371658
    Abstract: A gas sensor includes a p-type semiconductor layer that contains copper or silver cations and contacts with detection target gas, a first electrode that is a Schottky electrode to the p-type semiconductor layer, a high-resistance layer that is provided between the p-type semiconductor layer and the first electrode such that the p-type semiconductor layer and the first electrode partly contact with each other and has resistance higher than that of each of the p-type semiconductor layer and the first electrode, and a second electrode that is an ohmic electrode to the p-type semiconductor layer.
    Type: Grant
    Filed: August 22, 2017
    Date of Patent: August 6, 2019
    Assignee: FUJITSU LIMITED
    Inventors: Satoru Momose, Osamu Tsuboi, Kazuaki Karasawa
  • Patent number: 10281418
    Abstract: A micro heater includes a heater electrode formed on a first supporting portion. A micro sensor further includes a sensor electrode formed on the first supporting portion. In the micro heater and the micro sensor an anti-etching dam is formed on the supporting portion. The dam protects the shape of the first supporting portion during etching.
    Type: Grant
    Filed: August 25, 2016
    Date of Patent: May 7, 2019
    Assignee: Point Engineering Co., Ltd.
    Inventors: Bum Mo Ahn, Seung Ho Park, Sung Hyun Byun
  • Patent number: 10203302
    Abstract: A method of manufacturing an electrochemical sensing system is provided. The method includes forming a sensor with a first sensing element disposed on a sensor, the first sensing element configured to detect a target gas, disposing a second sensing element on the sensor, the second sensing element configured to detect the target gas, and coupling a protective feature to the second sensing element, the protective feature configured to prevent non-target gases from contacting the second sensing element. The sensor is configured such that if the first sensing element generates a current exceeding a first threshold current value and the second sensing element does not exceed a second threshold current value it is determined that the first sensing element is contaminated and a restoration protocol is performed on the first sensing element.
    Type: Grant
    Filed: August 2, 2016
    Date of Patent: February 12, 2019
    Assignee: CARRIER CORPORATION
    Inventors: Matthew J. Buchholz, Lei Chen, Zhiwei Yang, Valeriy V. Miagkov
  • Patent number: 10128328
    Abstract: Crystal lattice defects are generated in a horizontal surface portion of a semiconductor substrate and hydrogen-related donors are formed in the surface portion. Information is obtained about a cumulative dopant concentration of dopants, including the hydrogen-related donors, in the surface portion. Based on the information about the cumulative dopant concentration and a dissociation rate of the hydrogen-related donors, a main temperature profile is determined for dissociating a defined portion of the hydrogen-related donors. The semiconductor substrate is subjected to a main heat treatment applying the main temperature profile to obtain, in the surface portion, a final total dopant concentration deviating from a target dopant concentration by not more than 15%.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: November 13, 2018
    Assignee: Infineon Technologies AG
    Inventors: Moriz Jelinek, Hans Weber, Hans-Joachim Schulze, Johannes Georg Laven, Werner Schustereder
  • Patent number: 10101291
    Abstract: A mobile device having a gas-sensing function including a case body, a backlight module and a gas sensor is provided. The case body has at least one through hole. The backlight module is disposed in the case body. The gas sensor is disposed in the case body. The gas sensor includes a gas-sensing material layer for sensing a gas. The gas-sensing material layer receives a visible light emitted from the backlight module and is activated by the visible light.
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: October 16, 2018
    Assignee: Winbond Electronics Corp.
    Inventor: Yu-Hsuan Ho
  • Patent number: 10024831
    Abstract: A gas sensor for measuring a concentration of carbon dioxide in a gas environment (GE) is provided. The gas sensor includes a graphene layer having a side facing towards the gas environment (GE), an electrode layer including a plurality of electrodes electrically connected to the graphene layer, and a chalcogenide layer covering at least a part of the side of the graphene layer facing towards the gas environment (GE).
    Type: Grant
    Filed: June 26, 2015
    Date of Patent: July 17, 2018
    Assignee: Infineon Technologies AG
    Inventors: Guenther Ruhl, Thomas Hirsch, Alexander Zoepfl
  • Patent number: 10002863
    Abstract: A semiconductor device is capable of accurately sensing a temperature of a semiconductor element incorporated in a semiconductor substrate. The semiconductor device includes a temperature sensor. The temperature sensor includes a first nitride semiconductor layer of p-type, a first sense electrode, and a second sense electrode. The first sense electrode and the second sense electrode are located to be capable of passing an electric current between the first sense electrode and the second sense electrode through the first nitride semiconductor layer.
    Type: Grant
    Filed: May 3, 2016
    Date of Patent: June 19, 2018
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hidemoto Tomita, Yoshitaka Nagasato, Takashi Okawa, Masakazu Kanechika, Hiroyuki Ueda
  • Patent number: 9976952
    Abstract: In general, this disclosure is directed to a flexible or stretchable sensor and a method of detecting a substance and/or electromagnetic radiation using said sensor. The sensor comprises a flexible or stretchable substrate, a pair of terminal electrodes disposed on the flexible or stretchable substrate in mutually spaced apart and opposing relation, and a sensing element applied to the flexible or stretchable substrate, between and in electrical contact with the pair of terminal electrodes, wherein the sensing element is responsive to a substance and/or electromagnetic radiation impinging thereon, and wherein when a voltage is applied across the sensor, an electrical signal is generated that is proportional to a resistance value corresponding to a sensing of the substance and/or electromagnetic radiation impinging on the sensing element.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: May 22, 2018
    Assignee: RMIT University
    Inventors: Sharath Sriram, Madhu Bhaskaran, Philipp Gutruf
  • Patent number: 9863901
    Abstract: A semiconductor gas sensor device includes a substrate, a conductive layer supported by the substrate, a non-suitable seed layer, and a porous gas sensing layer portion. The non-suitable seed layer is formed from a first material and includes a first support portion supported by the conductive layer, a second support portion supported by the conductive layer, and a suspended seed portion extending from the first support portion to the second support portion and suspended above the conductive layer. The porous gas sensing layer portion is formed from a second material and is supported directly by the non-suitable seed layer in electrical communication with the conductive layer. The first material and the second material form a non-suitable pair of materials.
    Type: Grant
    Filed: November 20, 2014
    Date of Patent: January 9, 2018
    Assignee: Robert Bosch GmbH
    Inventors: Ando Feyh, Gary O'Brien, Ashwin K. Samarao, Fabian Purkl, Gary Yama
  • Patent number: 9828696
    Abstract: Analyte filter arrays and methods for making an analyte filter array are provided. The arrays are formed using a dispersion of filter particles having selected moieties attached to the surface of the particles and a microarray having complementary moieties formed in an array on a substrate, such that each filter particle is attached to a selected region of the microarray. The moiety on the substrate may be RNA or DNA or other molecule. The substrate may be a surface of a detector array, a membrane that may be placed in registration with the detector array or a stamp used to transfer the filter array to a detector array.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: November 28, 2017
    Assignee: NANOHMICS, Inc.
    Inventors: Steve M. Savoy, Daniel R. Mitchell, Jeremy J. John, George L. Murphy
  • Patent number: 9683967
    Abstract: Methods, systems, and devices are disclosed for implementing molecular sensors. In one aspect, an ion-gas sensor device includes a pre-concentration module to collect and concentrate a gas-phase chemical for analysis; a piezoelectric fan to produce an air-flow through acoustic streaming to drive the gas-phase chemical released by the pre-concentration module to one or more downstream modules; an ionizer downstream from the piezoelectric fan to ionize the gas-phase chemical; and a gas sensor downstream from the piezoelectric fan and the ionizer to detect the ionized gas-phase chemical driven by the piezoelectric fan. The piezoelectric fan can include a stack of thin-film layers that includes a thin-film piezoelectric layer. The ion-gas sensor device is made into an ultra-portable package capable of integration with mobile communication devices, such as PDA devices or smart phones.
    Type: Grant
    Filed: January 27, 2015
    Date of Patent: June 20, 2017
    Assignee: Cornell University
    Inventors: Amit Lal, Ved Gund
  • Patent number: 9664674
    Abstract: A processing and detection system for detecting presence of at least one gluten protein in a food sample comprises a food processor including: a reservoir containing a process liquid for processing the food sample; a body that comprises a chamber configured to receive the food sample; and a pressing surface configured to press on the reservoir to cause the process liquid to exit the reservoir and mix with the food sample, thereby generating a processed food liquid; and an exit port configured to conduct the processed food liquid out of the food processor; and a cartridge including: at least one sensor configured to receive the processed food liquid and to generate an electrical signal in response to interaction with the at least one gluten protein in the processed food liquid, and an analyzer in electrical communication with the at least one sensor for detecting the electrical signal and determining the presence of the at least one gluten protein in the food sample based on the detected electrical signal.
    Type: Grant
    Filed: October 2, 2015
    Date of Patent: May 30, 2017
    Assignee: Rite Taste, LLC
    Inventors: Mohammad E. Taslim, Mohammed Fotouhi, Mehdi Abedi, Reza Mollaaghababa, Bahram Fotouhi, Kashayar Javaherian, Edward Alvin Greenfield
  • Patent number: 9606078
    Abstract: A sensor for sensing gaseous chemicals includes a substrate, a variable resistance nanocrystalline ITO thin film formed on the substrate, and electrodes electrically coupled to the thin film. A sensor array assembly includes a sensor slide and a perforated interface circuit. The interface circuit abuts and electrically couples the sensor slide. The sensor slide includes several spaced apart ITO film strips formed on a slide substrate. A common electrode is electrically coupled to a common portion of each ITO film strip providing an electrically conductive path across the common portions of each of the plurality of spaced apart ITO film strips. A discrete electrode is electrically coupled to a discrete portion of each ITO film strip. The interface circuit is configured to abut and electrically couple to the sensor slide. A conductive discrete electrode pad electrically couples each of the plurality of discrete electrodes of the sensor slide to discrete terminals on the interface circuit.
    Type: Grant
    Filed: November 11, 2007
    Date of Patent: March 28, 2017
    Assignee: University of North Florida Board of Trustees
    Inventor: Nirmalkumar G. Patel
  • Patent number: 9545594
    Abstract: A gas cleaning system for removing gaseous pollutants from a hot process gas comprises a vessel for bringing the hot process gas into contact with an absorbent material, and a separating device for separating at least a portion of the absorbent material from the hot process gas to form a separated dust material. The gas cleaning system further comprises a measuring device for measuring, directly or indirectly, a dust parameter such as a density, and/or a friction, and/or a hygroscopicity, and/or an electrical property of the separated dust material, to obtain a measurement, and a control system for controlling at least one operating parameter of the gas cleaning system based on the measurement of the measured dust parameter.
    Type: Grant
    Filed: August 14, 2014
    Date of Patent: January 17, 2017
    Assignee: General Electric Technology GmbH
    Inventors: Conni Svensson, Peter Hans Odenmo
  • Patent number: 9410912
    Abstract: A biological gas detection apparatus of an embodiment of the present invention includes: a sensor unit including plural types of gas sensors; a control unit of the sensor unit; a data recording unit; and a data analyzing unit, wherein the data recording unit includes a database on properties of sensitivities of the gas sensors for a single body of a desired gas component, a single body of an interference gas component, and a mixed gas of these that are included in the biological gas, and the data analyzing unit calculates concentration of the desired gas component based on sensitivities of the gas sensors output when detecting the biological gas and the database.
    Type: Grant
    Filed: May 18, 2012
    Date of Patent: August 9, 2016
    Assignees: NTT DOCOMO, INC., FIS Inc.
    Inventors: Yuuki Yamada, Satoshi Hiyama, Yuki Moritani, Mariko Sugimura, Kazuo Onaga, Katsuyuki Tanaka
  • Patent number: 9201035
    Abstract: A gas detecting system, device and method use a variable pulse voltage waveform to increase the temperature of a detecting unit of the gas detecting system so it reacts with gas molecules from a particular space, and outputs a sensing signal. A processing unit of the gas detecting system then performs calculations on the sensing signal, such that an analysis unit may determine the presence of a target gas in the particular space, and further the composition and concentration of the target gas within the particular space, thus providing a detection that is accurate, rapid and convenient.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: December 1, 2015
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chun-Te Chuang, Chun-Hsun Chu, I-Cherng Chen, Nai-Hao Kuo
  • Patent number: 9109994
    Abstract: Technologies are generally described for an air monitoring device, a method for forming an air monitoring device, and methods and systems for monitoring air using an air monitoring device. A method of forming an air monitor device may include placing a sorbent membrane on a material of n type conductivity. The method may further include placing an electrode on the membrane and placing a thermoelectric heater in thermal communication with the membrane. The method may further include placing the membrane, material, and electrode in a sealed container including a valve to form the air monitor device. The valve may be effective to selectively expose the membrane to an environment outside of the container.
    Type: Grant
    Filed: April 9, 2012
    Date of Patent: August 18, 2015
    Assignee: Empire Technology Development LLC
    Inventor: Vincenzo Casasanta, III
  • Patent number: 9103705
    Abstract: A combination sensor and corresponding method of measuring a plurality of environmental parameters uses a pressure sensor disposed on an integrated circuit die; a humidity sensor disposed on the integrated circuit die; and a circuit coupled to and shared by the pressure sensor and the humidity sensor to facilitate pressure and humidity sensing.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: August 11, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Dubravka Bilic, Andrew C. McNeil
  • Publication number: 20150143874
    Abstract: A sensor device comprises a sensitive element (1) and a support (2) for the sensitive element, the support having a surface (3) with an access opening (4) to the sensitive element (1). A layer of adhesive material (5) covers at least parts of the surface (3). A venting medium (6) extends over the entire surface (3) of the support (2) and the access opening (4) and is attached to the support (2) by the layer of adhesive material (5).
    Type: Application
    Filed: October 29, 2014
    Publication date: May 28, 2015
    Inventors: Werner HUNZIKER, Stephan Braun
  • Patent number: 9038437
    Abstract: The application describes methods and apparatus for chemical sensing, e.g. gas sensing, which have high sensitivity but low power operation. A sensor is described having a flexible membrane comprising a III/N heterojunction structure configured so as to form a two dimensional electron gas within said structure. A sensing material is disposed on at least part of the flexible membrane, the sensing material being sensitive to one or more target chemicals so as to undergo a change in physical properties in the presence of said one or more target chemicals. The sensing material is coupled to said heterojunction structure such that said change in physical properties of the sensing material imparts a change in stress within the heterojunction structure which modulates the resistivity of the two dimensional electron gas.
    Type: Grant
    Filed: November 1, 2012
    Date of Patent: May 26, 2015
    Assignee: Stichting IMEC Nederland
    Inventors: Peter Offermans, Roman Vitushinsky, Mercedes Crego Calama, Sywert Brongersma
  • Patent number: 9030328
    Abstract: An integrated circuit, in particular a microcontroller, for operation in an area with ionizing radiation, has at least one part of a temperature control circuit. The temperature control circuit performs a regulated increase in the circuit temperature to a predefined, essentially constant operating temperature, by increasing the electrical power consumption of the circuit by an adjustable additional electrical power. The circuit has an output facility for information about damage to the integrated circuit caused by the ionizing radiation impacting thereon, it being possible to determine the information about damage from a radiation-dose-dependent decrease in the adjustable additional electrical power.
    Type: Grant
    Filed: October 18, 2012
    Date of Patent: May 12, 2015
    Assignee: Siemens Aktiengsellschaft
    Inventor: Hans Aebersold
  • Patent number: 9027387
    Abstract: Embodiments of the subject invention relate to a gas sensor and method for sensing one or more gases. An embodiment incorporates an array of sensing electrodes maintained at similar or different temperatures, such that the sensitivity and species selectivity of the device can be fine tuned between different pairs of sensing electrodes. A specific embodiment pertains to a gas sensor array for monitoring combustion exhausts and/or chemical reaction byproducts. An embodiment of the subject device related to this invention operates at high temperatures and can withstand harsh chemical environments. Embodiments of the device are made on a single substrate. The devices can also be made on individual substrates and monitored individually as if they were part of an array on a single substrate. The device can incorporate sensing electrodes in the same environment, which allows the electrodes to be coplanar and, thus, keep manufacturing costs low.
    Type: Grant
    Filed: October 9, 2008
    Date of Patent: May 12, 2015
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Bryan M. Blackburn, Eric D. Wachsman
  • Publication number: 20150121995
    Abstract: Embodiments of the present invention provide an integrated circuit system including a first active layer fabricated on a front side of a semiconductor die and a second pre-fabricated layer on a back side of the semiconductor die and having electrical components embodied therein, wherein the electrical components include at least one discrete passive component. The integrated circuit system also includes at least one electrical path coupling the first active layer and the second pre-fabricated layer.
    Type: Application
    Filed: January 12, 2015
    Publication date: May 7, 2015
    Inventors: Alan J. O'Donnell, Santiago Iriarte, Mark J. Murphy, Colin G. Lyden, Gary Casey, Eoin Edward English
  • Patent number: 9016108
    Abstract: A nanostructure device is provided and performs dual functions as a nano-switching/sensing device. The nanostructure device includes a doped semiconducting substrate, an insulating layer disposed on the doped semiconducting substrate, an electrode formed on the insulating layer, and at least one layer of graphene formed on the electrode. The at least one layer of graphene provides an electrical connection between the electrode and the substrate and is the electroactive element in the device.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: April 28, 2015
    Assignee: The United States of America as Represented by the Administrator of National Aeronautics and Space Administration
    Inventors: Felix A Miranda, Onoufrios Theofylaktos, Nicholas J Pinto, Carl H Mueller, Javier Santos, Michael A Meador
  • Patent number: 9011779
    Abstract: Described is a personal device and methods for measuring the concentration of an analyte in a sample of gas. The device and method may utilize a chemically selective sensor element with low power consumption integrated with circuitry that enables wireless communication between the sensor and any suitable electronic readout such as a smartphone, tablet, or computer. In preferred form, the sensor circuitry relies upon the quantum capacitance effect of graphene as a transduction mechanism. Also in preferred form, the device and method employ the functionalization of the graphene-based sensor to determine the concentration of ethanol in exhaled breath.
    Type: Grant
    Filed: July 18, 2014
    Date of Patent: April 21, 2015
    Assignee: Andas Inc.
    Inventors: Timothy Clay Anglin, Jr., Timothy D. Bemer, Joseph C. Jensen
  • Patent number: 9011778
    Abstract: A hydrogen sensitive composite sensing material based on cerium oxide with or without additives to enhance sensitivity to hydrogen, reduce cross-sensitivities to interfering gases, or lower the operating temperature of the sensor, and a device incorporating these hydrogen sensitive composite materials including a support, electrodes applied to the support, and a coating of hydrogen sensitive composite material applied over the electroded surface. The sensor may have in integral heater. The sensor may have a tubular geometry with the heater being inserted within the tube. A gas sensor device may include a support, electrodes applied to the support, and a dual sensor element to cancel unwanted effects on baseline resistance such as those resulting from atmospheric temperature changes. The hydrogen sensitive composite material or other gas sensitive materials may be used in the dual element gas sensor device.
    Type: Grant
    Filed: October 12, 2007
    Date of Patent: April 21, 2015
    Assignee: NexTech Materials, Ltd.
    Inventors: Christopher T. Holt, Stephen R. Cummings, Scott L. Swartz, Lora B. Thrun
  • Patent number: 9006796
    Abstract: A method manufactures a sensor device for sensing a gaseous substance and includes a thin film transistor, which includes a source electrode, a drain electrode and a gate electrode; and an element sensitive to the gaseous substance. In particular, the method includes: forming a first metallic layer on a substrate; defining and patterning the first metallic layer for realizing the gate electrode; depositing a dielectric layer above the gate electrode; depositing a second metallic layer above the layer of dielectric material, defining and patterning the second metallic layer for realizing the source electrode and the drain electrode, and forming the sensitive element by filling a channel region of the thin film transistor with an active layer sensitive to the gaseous substance.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: April 14, 2015
    Assignee: STMicroelectronics S.r.l.
    Inventor: Luigi Giuseppe Occhipinti
  • Publication number: 20150096353
    Abstract: A layer system having a layer region whereby the layer region has a single-crystal silicon substrate with a front side and a back side, and whereby a textured surface is formed on the front side and the textured surface has a topography with different heights and a thin film layer of a metal oxide and/or an oxide ceramic is formed on the textured surface, whereby the thin film layer covers the textured surface.
    Type: Application
    Filed: October 6, 2014
    Publication date: April 9, 2015
    Inventors: Christoph WILBERTZ, Dominik ZIMMERMANN
  • Publication number: 20150096354
    Abstract: A layer system having a layer region, whereby the layer region has a single-crystal silicon substrate with a front side and a back side, and whereby a textured surface is formed on the front side and the textured surface has a topography with different heights and a thin film layer of a metal oxide and/or an oxide ceramic is formed on the textured surface, whereby the thin film layer covers the textured surface only partially.
    Type: Application
    Filed: October 6, 2014
    Publication date: April 9, 2015
    Inventors: Christoph WILBERTZ, Dominik ZIMMERMANN
  • Publication number: 20150090002
    Abstract: Provided is a gas sensor package, including: a first substrate including a gas inflow hole; and a gas sensing element mounted to the first substrate and including a gas sensing portion disposed to correspond to the gas inflow hole.
    Type: Application
    Filed: October 1, 2014
    Publication date: April 2, 2015
    Inventors: Jee Heum PAIK, Yun Mi BAE, Go Eun HWANG
  • Publication number: 20150075258
    Abstract: A gas sensor package is configured such that an output change part is provided in the gas sensor package including a gas sensor so that a resistance output mode can be changed to a voltage output mode, thereby enabling the gas sensor to have a regular initial voltage value by compensating a resistance change value to an initial gas sensing material. According to embodiments of the present application, a gas sensor package is configured such that a gas moving separation part is formed between a gas sensing element and a substrate with regard to a structure in which a gas sensing element is mounted to the substrate in a flip chip bonding method so that gas can be smoothly moved and thus gas sensing efficiency can be maximized.
    Type: Application
    Filed: September 15, 2014
    Publication date: March 19, 2015
    Inventors: Jee Heum PAIK, Ji Hun Hwang
  • Patent number: 8972204
    Abstract: Sensing particular gases in a mixture uses precise modulated heating. Sensor relative responses are compared at different temperatures and compared with known relative responses to identify gases and concentrations. Heater current sensors provide feedback control and microprocessor inputs. A processor controls complex impedances and varied frequencies in the sensors. Sensor responses at varied complex impedances and at varied frequencies are compared with known responses at those impedances and frequencies to determine existence and concentration of particular gases. Heater and sensor buses are separate or combined.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: March 3, 2015
    Assignee: Atmospheric Sensors Ltd.
    Inventors: Mike Kellaway, John Andrew Johnston
  • Publication number: 20150047417
    Abstract: The present invention relates to a core-shell nanoparticle, a method of fabricating the same and a gas sensor using the same, more particularly to a core-shell nanoparticle which includes a core including a first metal oxide and a shell including a second metal oxide, the first metal oxide and the second metal oxide being oxides of the same metal having different oxidation states, a method of fabricating the same and a gas sensor using the same.
    Type: Application
    Filed: June 6, 2014
    Publication date: February 19, 2015
    Applicants: Electronics and Telecommunications Research Institute, Pusan National University Industry-University Cooperation Foundation
    Inventors: Hyung Ju PARK, Nak Jin CHOI, Moon Youn JUNG, Dae Sik LEE, Hyuntae KANG, Kang Hyun PARK
  • Patent number: 8950240
    Abstract: An acetone gas sensor apparatus, including: a chamber, used for containing a gas sample taken from a breath of a person; and an acetone gas sensor, placed in the chamber for generating an output current in response to an acetone concentration of the gas sample, the acetone gas sensor including: a substrate; a buffer layer, deposited on the substrate; an InN epilayer, deposited on the buffer layer for providing a current path for the output current; a first conductive contact, deposited on the InN epilayer for providing a drain contact; and a second conductive contact, deposited on the InN epilayer for providing a source contact.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: February 10, 2015
    Assignee: National Tsing Hua University
    Inventors: Jer-Liang Andrew Yeh, Shang-Jr Gwo
  • Publication number: 20150033827
    Abstract: A chemical sensor (10) is described with at least one layer of a metal oxide (11) arranged between two current injecting electrodes (16,16) with the length (L) of the layer of a metal oxide between the current injecting electrodes being less than 50 microns and one or a pair of voltage sensing electrodes (17) connected to the layer of a metal oxide (11) with the electrodes (16,16?,17) forming a 3- or 4-terminal arrangement for determining the resistance changes of layer material (11) excluding series resistances such as contact resistances close to or at at least one of the current injecting electrodes (16) from the resistance measurement.
    Type: Application
    Filed: July 23, 2014
    Publication date: February 5, 2015
    Inventors: Lukas BURGI, Marc Von Waldkirch, Felix Mayer
  • Publication number: 20150020577
    Abstract: A gas sensor using a metal organic framework material can be fully integrated with related circuitry on a single substrate. In an on-chip application, the gas sensor can result in an area-efficient fully integrated gas sensor solution. In one aspect, a gas sensor can include a first gas sensing region including a first pair of electrodes, and a first gas sensitive material proximate to the first pair of electrodes, wherein the first gas sensitive material includes a first metal organic framework material.
    Type: Application
    Filed: January 30, 2013
    Publication date: January 22, 2015
    Inventors: Ryan Luebke, Mohamed Eddaoudi, Hesham Omran, Youssef Belmabkhout, Osama Shekhah, Khaled N. Salama
  • Patent number: 8932871
    Abstract: A system for a vehicle includes a first ozone sensor that generates a first sensor signal indicating a first amount of ozone in air flowing into a radiator. A second ozone sensor generates a second sensor signal indicating a second amount of ozone in air flowing out of the radiator. A control module receives the first sensor signal and the second sensor signal and determines an ozone conversion rate based on the first sensor signal and the second sensor signal.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: January 13, 2015
    Inventors: Scott H. Wittkopp, Chang H. Kim, Brian T. Heil
  • Publication number: 20150000376
    Abstract: A sensor component is described for a gas and/or liquid sensor having a substrate having at least one first printed conductor and a second printed conductor, which are fashioned such that a voltage can be applied, and having at least one sensitive semiconductor material, additionally including at least one trench a contact segment of the first printed conductor and a contact segment of the second printed conductor being situated on two inner side surfaces at a distance from one another, and the at least one sensitive semiconductor material being filled into the at least one trench in the form of at least one particle, grain, and/or crystal, at least between the first contact segment of the first printed conductor and the first contact segment of the second printed conductor. Also described is a production method for a sensor component for a gas and/or liquid sensor. In addition, also described is a method for detecting at least one material in a gaseous and/or liquid medium.
    Type: Application
    Filed: June 24, 2014
    Publication date: January 1, 2015
    Applicant: ROBERT BOSCH GMBH
    Inventors: Richard FIX, Bernd SCHUMANN
  • Publication number: 20140373600
    Abstract: Embodiments of the present disclosure include sensors, arrays of conductometric sensors, devices including conductometric sensors, methods of making conductometric sensors, methods of using conductometric gas sensors, and the like.
    Type: Application
    Filed: August 15, 2014
    Publication date: December 25, 2014
    Inventors: James Gole, William Ivey Laminack
  • Patent number: 8899098
    Abstract: A semiconductor gas sensor is provided that has a gas-sensitive gate electrode separated by a gap from a channel region and is embodied as a suspended gate field effect transistor or the gate electrode is arranged as a first plate of a capacitor with gap and a second plate of the capacitor is connected to a gate of the field effect transistor embodied as capacitively controlled and the gate electrode has a conductive carrier layer with a bearing adhesion promoter layer and a gas-sensitive layer bearing on the adhesion promoter layer, wherein the gate electrode as a gas-sensitive layer has a platinum/gold alloy with a gold proportion in a range of 1% to 20% and a polymer layer with a thickness of less than 100 nm is embodied on the surface of the platinum/gold alloy and the gap is filled with an oxygen-free gas mixture.
    Type: Grant
    Filed: November 21, 2012
    Date of Patent: December 2, 2014
    Assignee: Micronas GmbH
    Inventors: Christoph Senft, Stefan Simon, Walter Hansch
  • Publication number: 20140336952
    Abstract: Sensing particular gases in a mixture uses precise modulated heating. Sensor relative responses are compared at different temperatures and compared with known relative responses to identify gases and concentrations. Heater current sensors provide feedback control and microprocessor inputs. A processor controls complex impedances and varied frequencies in the sensors. Sensor responses at varied complex impedances and at varied frequencies are compared with known responses at those impedances and frequencies to determine existence and concentration of particular gases. Heater and sensor buses are separate or combined.
    Type: Application
    Filed: November 1, 2011
    Publication date: November 13, 2014
    Inventors: Mike Kellaway, John Andrew Johnston