Semiconductor Patents (Class 73/31.06)
  • Patent number: 7434450
    Abstract: An air-fuel ratio sensor that outputs a sensor signal used for the feedback control of an air-fuel ratio is provided. It is determined whether an element crack is present by applying a reverse voltage to the air-fuel ratio sensor. The value of the sensor signal output from the air-fuel ratio sensor is corrected during a time period “A”. The time period “A” consists of a reverse-voltage application time period in which the reverse voltage is applied, and a return time period “T” after application of the reverse voltage ends. The return time period “T” is set based on sensor impedance correlated with the internal resistance of the air-fuel ratio sensor. The return time period “T” decreases as the sensor impedance decreases.
    Type: Grant
    Filed: June 8, 2006
    Date of Patent: October 14, 2008
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kenji Tashiro, Yasushi Iwazaki, Masanobu Kanamaru, Hiroshi Sawada, Masaya Kawaji, Takashi Matsui
  • Publication number: 20080237654
    Abstract: A device for detecting a gas or gas mixture having at least one first gas sensor designed as an SGFET and at least—one second, additional gas sensor designed as a Lundström-FET. The gas sensors are connected to a processing device designed to analyze the measurement signals from both types of gas sensors in order to detect the gas or gas mixture.
    Type: Application
    Filed: March 4, 2005
    Publication date: October 2, 2008
    Applicant: Micronas GmbH
    Inventors: Mirko Lehmann, Heinz-Peter Frerichs, Christoph Wilbertz
  • Publication number: 20080190175
    Abstract: A method of producing a structure by three-dimensionally processing a flat member includes a preparing, a first forming and a second forming. In the preparing, a substrate is prepared. In the first forming, an etching mask is formed on the substrate. The etching mask has at least two openings, and areas of the two openings are different from each other. In the second forming, at least a part of a three-dimension surface shape of the structure is formed on a surface of the substrate by a dry-etching on the substrate in accordance with the area of the opening of the etching mask.
    Type: Application
    Filed: July 10, 2007
    Publication date: August 14, 2008
    Applicant: DENSO CORPORATION
    Inventors: Hiroyuki Wado, Kazuhiko Kanoh
  • Patent number: 7406856
    Abstract: A metal oxide semiconductor gas sensor and a method for production thereof. The sensor comprises a sensor-active metal oxide thin layer applied to a substrate, in contact with at least one electrode. The sensor-active metal oxide thin layer comprises a chromium/titanium oxide (CTO) layer with a thickness of about 10 nm to about 1 ?m. The chromium and titantium layers are applied over each other using thin layer technology and are subsequently tempered.
    Type: Grant
    Filed: September 2, 2002
    Date of Patent: August 5, 2008
    Assignee: Fraunhofer-Gesellschaft zur Forderung der Angewandten Forschung e.V.
    Inventors: Harald Bottner, Jurgen Wollenstein, Gerd Kuhner
  • Patent number: 7389675
    Abstract: A miniaturized Schottky diode hydrogen and hydrocarbon sensor and the method of making same is disclosed and claimed. The sensor comprises a catalytic metal layer, such as palladium, a silicon carbide substrate layer and a thin barrier layer in between the catalytic and substrate layers made of palladium oxide (PdOx). This highly stable device provides sensitive gas detection at temperatures ranging from at least 450 to 600° C. The barrier layer prevents reactions between the catalytic metal layer and the substrate layer. Conventional semiconductor fabrication techniques are used to fabricate the small-sized sensors. The use of a thicker palladium oxide barrier layer for other semiconductor structures such as a capacitor and transistor structures is also disclosed.
    Type: Grant
    Filed: May 12, 2006
    Date of Patent: June 24, 2008
    Assignee: The United States of America as represented by the National Aeronautics and Space Administration
    Inventors: Gary W. Hunter, Jennifer C. Xu, Dorothy Lukco
  • Patent number: 7389671
    Abstract: A device and method of making same. The device or hydrogen detector has a non-conducting substrate with a metal film capable of absorbing hydrogen to form a stable metal hydride. The metal film is on the threshold of percolation and is connected to mechanism for sensing a change in electrical resistance in response to the presence of hydrogen in contact with the metal film which causes an increase in conductivity.
    Type: Grant
    Filed: November 7, 2006
    Date of Patent: June 24, 2008
    Assignee: UChicago Argonne, LLC
    Inventors: Tao Xu, Michael P. Zach, Zhili Xiao
  • Publication number: 20080134759
    Abstract: The invention concerns a sensor for detecting and/or measuring concentration of electric charges contained in an atmosphere. The sensor comprises a field-effect transistor structure including a bridge, which forms a gate and is suspended above an active layer located between drain and source regions. A gate voltage having a specific value is applied on the bridge. A so-called air gap region is included between the bridge and the active layer or an insulating layer deposited on said active layer, and has a specific height. An electric field (E), defined as the ratio between the gate voltage and air gap height, is generated in the air gap. The electric field generated in the air gap has a value not less than a specific threshold, sufficiently important for the electric field (E) to influence the distribution of electric charges contained in the atmosphere and present in the air gap, and to enable high sensitivity of the sensor to be achieved through accumulation of the electric charges on the active layer.
    Type: Application
    Filed: July 7, 2005
    Publication date: June 12, 2008
    Applicant: UNIVERSITE DE RENNES 1
    Inventors: Tayeb Mohammed-Brahim, Anne-Claire Saluan, France Le Bihan, Hichan Kotb, Farida Bendriaa, Olivier Bonnaud
  • Patent number: 7367217
    Abstract: A multi-gas sensor device for the detection of dissolved hydrocarbon gases in oil-filled electrical equipment. The device comprising a semiconductor substrate, one or more catalytic metal gate-electrodes deposited on the surface of the semiconductor substrate operable for sensing various gases, and an ohmic contact deposited on the surface of the semiconductor substrate. The semiconductor substrate comprises one of GaN, SiC, AlN, InN, AlGaN, InGaN and AlInGaN. A method for sensing gas in an oil-filled reservoir of electrical equipment, comprising providing a sensor device, immersing the sensor device in the oil-filled reservoir, allowing the gases emitted from the oil to interact with the one or more catalytic metal gate-electrodes, altering the gas as it contacts the catalytic metal gate-electrodes and altering the sensitivity of the sensor.
    Type: Grant
    Filed: March 8, 2007
    Date of Patent: May 6, 2008
    Assignee: General Electric Company
    Inventors: Edward B. Stokes, Peter M. Sandvik, Vinayak Tilak, Jeffrey B. Fedison, Elena Babes-Dornea, Renyan Qin, James W. Rose, Stanton E. Weaver
  • Patent number: 7350396
    Abstract: A pulse-type gas concentration measurement system and a method of pulse-type gas concentration measurement in a specific environment. When the sensor is located at a specific position, a variable pulse-modulated voltage is sent to the sensor, so that the sensor outputs a first signal to the processing device. The processing device compares the first signal to the chemical matter characteristics signals to determine the composition and concentration of respective constituents in the gas, and determines a detection voltage according to the first signal. Then, a square-wave pulse with the detection voltage is sent intermittently to the sensor, so that the sensor outputs a second signal to the processing device. The processing device compares the second signal to the chemical matter characteristics signal to determine the concentration variation of each respective constituent of the gas.
    Type: Grant
    Filed: December 24, 2003
    Date of Patent: April 1, 2008
    Assignee: Industrial Technology Research Institute
    Inventors: Yih-Shiaw Huang, Miao-Ju Chueh, I-Cherng Chen, Tung-Sheng Shih
  • Patent number: 7341694
    Abstract: In an ammonia sensor (1), lead portions (7) and (9) are provided on an insulating substrate (5); a pair of comb-shaped electrodes (11) and (13) are connected to the lead portions (7) and (9), respectively; a sensitive layer (15) is provided on the comb-shaped electrodes (11) and (13); and a protective layer (17) is provided on the sensitive layer (15). Particularly, the sensitive layer (15) is formed of a gas-sensitive raw material predominantly containing ZrO2 and containing at least W in an amount of 2 to 40 wt. % as reduced to WO3.
    Type: Grant
    Filed: September 25, 2003
    Date of Patent: March 11, 2008
    Assignee: NGK Spark Plug Co., Ltd.
    Inventors: Hiroyuki Nishiyama, Shiro Kakimoto, Ryuji Inoue, Hitoshi Yokoi, Noboru Ishida, Takafumi Oshima, Satoshi Sugaya, Koichi Imaeda, Tadashi Hattori, Atsushi Satsuma
  • Patent number: 7334452
    Abstract: Methods for monitoring a fluid composition include placing a mechanical resonator in the fluid composition and oscillating the resonator. The resonator can be a tuning fork resonator having tines oscillated in opposite directions and in opposite phases. A variable frequency input signal can be varied over a predetermined frequency range and oscillate the mechanical resonator at less than 1 MHz. A frequency-dependent resonator response curve can be stored in a computer memory and fitted to a model curve to monitor the fluid. The resonator can be coated with a protective coating. The resonator can be treated with a functionality designed to change a resonance frequency of the resonator after being exposed to a selected target chemical and the resonance frequency monitored to detect presence of the target chemical.
    Type: Grant
    Filed: July 23, 2002
    Date of Patent: February 26, 2008
    Assignee: Visyx Technologies, Inc.
    Inventors: Leonid Matsiev, James Bennett, Eric McFarland
  • Patent number: 7296458
    Abstract: A (MEMS)-based gas sensor assembly for detecting a fluorine-containing species in a gas containing same, e.g., an effluent of a semiconductor processing tool undergoing etch cleaning with HF, NF3, etc. Such gas sensor assembly in a preferred embodiment comprises a free-standing silicon carbide support structure having a layer of a gas sensing material, preferably nickel or nickel alloy, coated thereon. Such gas sensor assembly is preferably fabricated by micro-molding techniques employing sacrificial molds that are subsequently removable for forming structure layers.
    Type: Grant
    Filed: February 23, 2004
    Date of Patent: November 20, 2007
    Assignee: Advanced Technology Materials, Inc
    Inventors: Frank Dimeo, Jr., Philip S. H. Chen, Ing-Shin Chen, Jeffrey W. Neuner, James Welch
  • Patent number: 7296460
    Abstract: A gas detector and process for detecting a fluorine-containing species in a gas containing same, e.g., an effluent of a semiconductor processing tool undergoing etch cleaning with HF, NF3, etc. The detector in a preferred structural arrangement employs a microelectromechanical system (MEMS)-based device structure and/or a free-standing metal element that functions as a sensing component and optionally as a heat source when elevated temperature sensing is required. The free-standing metal element can be fabricated directly onto a standard chip carrier/device package so that the package becomes a platform of the detector.
    Type: Grant
    Filed: February 14, 2005
    Date of Patent: November 20, 2007
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Frank Dimeo, Jr., Philip S. H. Chen, Jeffrey W. Neuner, James Welch, Michele Stawasz, Thomas H. Baum, Mackenzie E. King, Ing-Shin Chen, Jeffrey F. Roeder
  • Patent number: 7287412
    Abstract: A hydrogen sensor and/or switch fabricated from an array of nanowires or a nanoparticle thick film composed of metal or metal alloys. The sensor and/or switch demonstrates a wide operating temperature range and shortened response time due to fabrication materials and methods. The nanowires or nanoparticle thick films demonstrate an increase in conductivity in the presence of hydrogen.
    Type: Grant
    Filed: May 26, 2004
    Date of Patent: October 30, 2007
    Assignee: Nano-Proprietary, Inc.
    Inventors: Kwok Ng, Greg Monty, Yunjun Li, Zvi Yaniv, Prabhu Soundarrajan
  • Patent number: 7276745
    Abstract: The present invention provides a gas sensor having excellent humidity resistance even if used in a high temperature and high humidity atmosphere. According to the present invention, a gas sensor is comprised of: a silicon substrate; a metal-oxide semiconductor portion comprised mainly of SnO2 and formed on the substrate; and a catalytic portion comprised of Pd and dispersed on a surface of the metal-oxide semiconductor portion, wherein the metal-oxide semiconductor portion and the catalytic portion constitute a gas sensing portion. Furthermore, an insulating portion comprised mainly of SiO2 is formed dispersedly on a surface of the gas sensing portion.
    Type: Grant
    Filed: February 21, 2006
    Date of Patent: October 2, 2007
    Assignee: NGK Spark Plug Co., Ltd.
    Inventors: Shinichi Nakagawa, Yoshihiro Nakano, Masahito Kida, Takio Kojima
  • Patent number: 7254986
    Abstract: A multi-gas sensor device for the detection of dissolved hydrocarbon gases in oil-filled electrical equipment. The device comprising a semiconductor substrate, one or more catalytic metal gate-electrodes deposited on the surface of the semiconductor substrate operable for sensing various gases, and an ohmic contact deposited on the surface of the semiconductor substrate. The semiconductor substrate comprises one of GaN, SiC, AlN, lnN, AlGaN, InGaN and AlInGaN. A method for sensing gas in an oil-filled reservoir of electrical equipment, comprising providing a sensor device, immersing the sensor device in the oil-filled reservoir, allowing the gases emitted from the oil to interact with the one or more catalytic metal gate-electrodes, altering the gas as it contacts the catalytic metal gate-electrodes and altering the sensitivity of the sensor.
    Type: Grant
    Filed: December 13, 2002
    Date of Patent: August 14, 2007
    Assignee: General Electric Company
    Inventors: Edward B. Stokes, Peter M. Sandvik, Vinayak Tilak, Jeffrey B. Fedison, Elena Babes-Dornea, Renyan Qin, James W. Rose, Stanton E. Weaver
  • Patent number: 7236095
    Abstract: A method of detecting a predetermined alarm condition in a combustion emission gas. The method comprises exposing to the gas a semiconductor gas sensor having a p-type mixed metal oxide semiconducting material of the first, second and/or third order transition metal series, the semiconducting material being responsive both to a change in concentration of a reducing gas in the surrounding atmosphere and to a change in concentration of oxygen in the surrounding atmosphere to exhibit a change in its electrical resistance. The resistance is monitored and an alarm signal is output if the resistance exceeds a predetermined value corresponding to the alarm condition.
    Type: Grant
    Filed: October 8, 2003
    Date of Patent: June 26, 2007
    Assignee: City Technology Limited
    Inventors: Peter John Smith, Keith Francis Edwin Pratt
  • Patent number: 7231810
    Abstract: The invention relates to a high sensitive semiconductor type hydrogen sensor, an alarm of hydrogen which incorporates this sensor and a method of sensing hydrogen concentrations by using this sensor.
    Type: Grant
    Filed: August 24, 2005
    Date of Patent: June 19, 2007
    Assignee: Humboldt-Universitaet zu Berlin
    Inventors: Werner Moritz, Jan Szeponik
  • Patent number: 7228724
    Abstract: A gas detector for detecting a fluoro gas species in a gaseous environment containing same, e.g., an effluent from a semiconductor processing tool that employs corrosive fluoro species such as HF, NF3, etc. for etch cleaning. The gas detector preferably employs an elongated nickel-containing gas sensor element that can be vertically mounted on a fluoro-resistant support structure. Since the nickel-containing gas sensor element is sensitive to the fluoro species and is also electrically conductive, it can function both as a sensing component and a heat source when elevated temperature sensing is required. Vertical mounting of such elongated gas sensor element on the support structure significantly improves the signal strength, reduces the response time, minimizes the footprint of the gas detector, and provides structural flexibility for accommodating thermal expansion/contraction of the elongated gas sensor element.
    Type: Grant
    Filed: January 16, 2004
    Date of Patent: June 12, 2007
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Philip S. H. Chen, Ing-Shin Chen, Frank Dimeo, Jr., Jeffrey W. Neuner, James Welch, Jeffrey F. Roeder
  • Patent number: 7210332
    Abstract: A sensor and methods for making and using the same in which a mechanical resonator is employed, comprising a resonator portion for resonating in a fluid without the substantial generation of acoustic waves; and an electrical connection between the resonator portion for oscillating and a source of an input signal; wherein the portion for resonating, the electrical connection or both includes a base material and a performance-tuning material that is different from the base material.
    Type: Grant
    Filed: March 19, 2004
    Date of Patent: May 1, 2007
    Assignee: Symyx Technologies, Inc.
    Inventors: Oleg Kolosov, Leonid Matsiev, David Padowitz
  • Patent number: 7191638
    Abstract: A device for determining and/or monitoring at least one physical parameter of a medium, having at least one mechanically oscillatable unit and at least one drive-/receive unit. The drive-/receive unit excites the oscillatable unit to oscillate, or, it receives the oscillations of the oscillatable unit, as the case may be. The invention includes that in the drive-/receive unit at least one piezo-drive is provided, which has at least one exterior surface. The exterior surface is composed of at least two segments of different polarization, wherein the directions of polarization are directed essentially opposite to one another. The mechanically oscillatable unit is directly or indirectly connected with the exterior surface, so that the mechanically oscillatable unit is excited to a movement, or so that the movement of the mechanically oscillatable unit is received. The movement always has at least two different force components.
    Type: Grant
    Filed: December 19, 2003
    Date of Patent: March 20, 2007
    Assignee: Endress + Hauser GmbH + Co. KG
    Inventor: Sergej Lopatin
  • Patent number: 7171841
    Abstract: A device and method of making same. The device or hydrogen detector has a non-conducting substrate with a metal film capable of absorbing hydrogen to form a stable metal hydride. The metal film is being on the threshold of percolation and is connected to mechanism for sensing a change in electrical resistance in response to the presence of hydrogen in contact with the metal film which causes an increase in conductivity.
    Type: Grant
    Filed: December 1, 2004
    Date of Patent: February 6, 2007
    Assignee: UChicago Argonne, LLC
    Inventors: Tao Xu, Michael P. Zach, Zhili Xiao
  • Patent number: 7140229
    Abstract: The present invention relates to a gas-monitoring assembly and method for selectively determining the presence of a target gas in a gaseous environment that potentially comprises one or more interfering gases. Such gas-monitoring assembly and method specifically employ one or more gas sensors one or more getters arranged and constructed to reduce cross-interference caused by potential presence of the interfering gases in such gaseous environment to be monitored. The gas-monitoring assembly and method of the present invention are capable of monitoring a gaseous environment with respect to potential presence of multiple target gases that may interfere with one another.
    Type: Grant
    Filed: June 29, 2004
    Date of Patent: November 28, 2006
    Assignee: MST Technology GmbH
    Inventors: Stefan Stromereder, Peter Koller
  • Patent number: 7140230
    Abstract: The present invention provides an odor measuring apparatus capable of assuredly detecting and evaluating such odors that cannot be detected by a measurement apparatus using conventional odor sensors. In an embodiment of the present invention, a gas sample to be measured is introduced into the column 10 of a gas chromatograph 1 to temporally separate it into odor components, which are then introduced into a mass spectrometer (MS) 2 and an odor discriminator 3 in parallel. The data processor 51 creates a chromatogram and/or a mass spectrum from the detection signals generated by the detector 24 of the MS 2, and also calculates the similarity of each odor component to standard odors and/or the degree of contribution from the detection signals generated by the detection circuit 33 of the odor discriminator 3. The processor 51 displays a similarity radar chart or similar graphic information on the display 53, where each peak present on the chromatogram is associated with the information.
    Type: Grant
    Filed: March 30, 2005
    Date of Patent: November 28, 2006
    Assignee: Shimadzu Corporation
    Inventors: Jun-ichi Kita, Kunihiko Ohkubo
  • Patent number: 7134319
    Abstract: An acoustic wave sensor apparatus is disclosed, which generally includes a piezoelectric substrate having a surface thereon. One or more interdigital transducers and a passivation layer can be formed upon the piezoelectric substrate. Additionally, an absorbent material can be formed upon the acoustic path (IDTs, electrodes, etc), such that the interdigital transducers respond to a plurality of acoustic waves propagating across the surface of the piezoelectric substrate, thereby providing data indicative of humidity in the vicinity of the piezoelectric substrate, along with the passivation layer and the interdigital transducers. Additionally, one or more heaters can be formed upon a side of the piezoelectric substrate opposite the side of the piezoelectric substrate upon which the interdigital transducers, the passivation and the absorbent material are located. The heater can be preferably configured from a material such as platinum.
    Type: Grant
    Filed: August 12, 2004
    Date of Patent: November 14, 2006
    Assignee: Honeywell International Inc.
    Inventor: James Z. Liu
  • Patent number: 7117743
    Abstract: A transducer-based sensor system, including a transducer array having a plurality of transducers, a selector coupled with the transducer array and an output processing subsystem. Defined between each transducer and the output processing subsystem is an output transmission path associated with the individual transducer. The selector is configured to apply control signals to the transducer array to cause the array to have at least one selected transducer and at least one unselected transducer. The system is configured so that, for a selected transducer, the output transmission path for that transducer is enabled, so as to permit output signals to be transmitted from the selected transducer to the output processing subsystem. The system is further configured to isolate any unselected transducers, by disabling the output transmission path for such transducers, to thereby prevent transmission of output signals to the output processing subsystem.
    Type: Grant
    Filed: July 31, 2003
    Date of Patent: October 10, 2006
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventor: Daniel R. Blakley
  • Patent number: 7116421
    Abstract: A hydrogen sensor, useful for trace hydrogen gas detection. The sensor involves providing a gas sample, generating modulated optical excitation sources, bringing the optical excitation source to the side of a metalized thin pyroelectric film, and detecting via a lock-in amplifier circuit the coherent differential signal resulting from thermoreflectance and thermoabsorptance changes in the film when exposed to hydrogen gas.
    Type: Grant
    Filed: March 11, 2003
    Date of Patent: October 3, 2006
    Inventors: Jose Agustin Garcia, Andreas Mandelis, Chinhua Wang
  • Patent number: 7100425
    Abstract: A hydrogen sensor 1 includes detection elements 4A, 4B, 4C formed from hydrogen-absorbing alloys which exhibit different hydrogen-absorbing pressures at a given temperature; a strain gauge 6 which detects changes in volume upon absorbing of hydrogen by the detection elements 4A, 4B, 4C; a micro-heater 2 which controls the temperatures of all the detection elements 4A, 4B, 4C to approximate equal values; and a substrate 3.
    Type: Grant
    Filed: September 15, 2004
    Date of Patent: September 5, 2006
    Assignee: Honda Motor Co., Ltd.
    Inventors: Toshiaki Shimada, Yoshio Nuiya
  • Patent number: 7096716
    Abstract: A fluid sensor device includes a number of components integrated onto a substrate, such as a semiconductor substrate. The integrated components include analyte-detection transducers, signal processing circuitry for manipulating the signals from the transducers, an elevated interconnect scheme, and thermal regulation capability. The substrate is compatible with the use of integrated circuit fabrication techniques. The interconnect scheme enables dense vias that extend generally perpendicular to the surface of the substrate. The transducers are formed on a planarized side of the interconnect scheme opposite to the substrate. Inkjet printing techniques may be used in locating the transducer materials. Alternatively, the transducers may be photosensitive polymers that polymerize when exposed to light.
    Type: Grant
    Filed: November 3, 2004
    Date of Patent: August 29, 2006
    Assignee: Avago Technologies ECBU IP (Singapore) Pte. Ltd.
    Inventor: Jeremy A. Theil
  • Patent number: 7073370
    Abstract: A method and apparatus for measuring properties of a liquid composition includes a mechanical resonator, such as a cantilever, connected to a measurement circuit. The mechanical resonator can be covered with a coating to impart additional special detection propertied to the resonator, and multiple resonators can be attached together as a single sensor to obtain multiple frequency responses. The invention is particularly suitable for combinatorial chemistry applications, which require rapid analysis of chemical properties for screening. In one embodiment, the resonator is operated at a frequency of less than 1 MHz.
    Type: Grant
    Filed: October 15, 2003
    Date of Patent: July 11, 2006
    Assignee: Symyx Technologies
    Inventors: Leonid Matsiev, James Bennett, Eric McFarland
  • Patent number: 7053425
    Abstract: A gas sensor device including a semiconductor substrate; one or more catalytic gate-electrodes deposited on a surface of the semiconductor substrate; one or more ohmic contacts deposited on the surface of the semiconductor substrate and a passivation layer deposited on at least a portion of the surface; wherein the semiconductor substrate includes a material selected from the group consisting of silicon carbide, diamond, Group III nitrides, alloys of Group III nitrides, zinc oxide, and any combinations thereof.
    Type: Grant
    Filed: November 12, 2003
    Date of Patent: May 30, 2006
    Assignee: General Electric Company
    Inventors: Peter Micah Sandvik, Vinayak Tilak, Jesse Tucker, Stanton Earl Weaver, David Mulford Shaddock, Jonathan Lloyd Male, John Patrick Lemmon, Mark Allen Woodmansee, Venkatesan Manivannan, Deborah Ann Haitko
  • Patent number: 7017389
    Abstract: Sensors are provided which are selective for a specific gas. The sensors include a substrate, electrodes, and a thin film metal oxide. Methods for choosing the metal oxide to be utilized in the sensor with selectivity for the specific gas are also provided, as are methods for determining the presence of a specific gas in a gaseous mixture.
    Type: Grant
    Filed: April 21, 2003
    Date of Patent: March 28, 2006
    Assignee: The Research Foundation of SUNY at Stony Brook
    Inventor: Pelagia-Irene Gouma
  • Patent number: 6993955
    Abstract: Semiconductor gas sensors with improved selectivity to target gases are provided by having a semiconductor gas-sensing layer and a layer thereon of microporous ceramic oxide having catalytic activity.
    Type: Grant
    Filed: November 23, 2000
    Date of Patent: February 7, 2006
    Assignee: City Technology Limited
    Inventors: Charles Edmund King, Peter John Smith
  • Patent number: 6960476
    Abstract: Disclosed herein is a method and apparatus for analyzing, sensing and measuring the concentrations of various gases, including NOx, hydrocarbons, carbon monoxide and oxygen, in a multi-component gas system using chemical sensors and chemical sensor arrays. The sensors and sensor arrays use chemo/electro-active materials to analyze and detect the presence of gases.
    Type: Grant
    Filed: October 15, 2001
    Date of Patent: November 1, 2005
    Assignee: E. I. du Pont de Nemours and Company
    Inventor: Patricia A. Morris
  • Patent number: 6957565
    Abstract: A method for measuring properties of a fluid that includes oscillating a tuning fork resonator in a fluid. The invention is particularly suitable for in-line monitoring of various physical and electrical properties of fluids flowing in a conduit.
    Type: Grant
    Filed: October 15, 2003
    Date of Patent: October 25, 2005
    Assignee: SYMYX Technologies, Inc.
    Inventors: Leonid Matsiev, James Bennett, Eric McFarland
  • Patent number: 6948388
    Abstract: A sensing system includes a ring oscillator that emits electromagnetic radiation at a characteristic frequency. The ring oscillator comprises an odd number plurality of inverters that are electrically connected in series. The sensing system also comprises a temperature stabilized voltage source that is used to supply voltage to the inverters of the ring oscillator. A sensing load for sensing a change in a preselected environmental condition is operably connected to the ring oscillator. When the load senses the preselected environmental condition, the sensing load alters the characteristic frequency of the ring oscillator and hence the electromagnetic radiation as emitted by the ring oscillator. A pick-up antenna receives the electromagnetic radiation as emitted by the ring oscillator and detection electronics, operably coupled to the pick-up antenna, measure the frequency of the electromagnetic radiation as received by the pick-up antenna.
    Type: Grant
    Filed: December 18, 2003
    Date of Patent: September 27, 2005
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Stanley R. Clayton, Stephen D. Russell, Mark R. Roser, Richard L. Waters
  • Patent number: 6945089
    Abstract: In a mass-sensitive sensor consisting of an acoustic surface wave component on the basis of shear waves, the sensor includes a substrate with an active surface carrying two different layers, one which is a parylene layer of a thickness of between 0.2 and <1.6 ?m, which has been produced on the substrate by a vacuum-based deposition method and is capable of generating Love waves and the second layer forms a utilization layer, which interacts with an analyte disposed in a medium contacting the utilization layer.
    Type: Grant
    Filed: April 1, 2002
    Date of Patent: September 20, 2005
    Assignee: Forschungszentrum Karlsruhe GmbH
    Inventors: Nicole Barie, Ulrich Stahl, Michael Rapp
  • Patent number: 6935158
    Abstract: Hydrogen gas sensors employ an epitaxial layer of the thermodynamically stable form of aluminum nitride (AlN) as the “insulator” in an MIS structure having a thin metal gate electrode suitable for catalytic dissociate of hydrogen, such as palladium, on a semiconductor substrate. The AlN is deposited by a low temperature technique known as Plasma Source Molecular Beam Epitaxy (PSMBE). When silicon (Si) is used the semiconducting substrate, the electrical behavior of the device is that of a normal nonlinear MIS capacitor. When a silicon carbide (SiC) is used, the electrical behavior of the device is that of a rectifying diode. Preferred structures are Pd/AlN/Si and Pd/AlN/SiC wherein the SiC is preferably 6H—SiC.
    Type: Grant
    Filed: March 16, 2001
    Date of Patent: August 30, 2005
    Assignee: Wayne State University
    Inventors: Flaminia Serina, Gregory W. Auner, Ka Yuen Simon Ng, Ratna Naik
  • Patent number: 6904786
    Abstract: A method and apparatus for measuring properties of a liquid composition includes a mechanical resonator, such as a cantilever, connected to a measurement circuit. The mechanical resonator's response over the frequency range depends on various characteristics of the liquid being tested, such as the temperature, viscosity, and other physical properties. The invention is particularly suitable for combinatorial chemistry applications, which require rapid analysis of chemical properties for screening.
    Type: Grant
    Filed: October 7, 2002
    Date of Patent: June 14, 2005
    Assignee: Symyx Technologies, Inc.
    Inventors: Leonid Matsiev, James Bennett, Eric McFarland
  • Patent number: 6906392
    Abstract: A micromechanical component includes a substrate and a cover layer deposited on the substrate, underneath the cover layer, a region of porous material being provided which mechanically supports and thermally insulates the cover layer. On the cover layer, a heating device is provided to heat the cover layer above the region; and above the region, a detector is provided to measure an electric property of a heated medium provided above the region on the cover layer.
    Type: Grant
    Filed: July 6, 2002
    Date of Patent: June 14, 2005
    Assignee: paragon
    Inventors: Hubert Benzel, Heribert Weber, Michael Bauer, Hans Artmann, Thorsten Pannek, Frank Schaefer, Christian Krummel
  • Patent number: 6897960
    Abstract: A hydrogen gas detector for detection of hydrogen gas in a gaseous environment. The detector comprises a light/heat source, an optical detector, and an optical barrier between the source and detector. The optical barrier responds to the presence of hydrogen by responsively changing from a first optical state to a different second optical state, whereby transmission of light from the light/heat source through the optical barrier is altered by the presence of hydrogen and the altered transmission is sensed by the optical detector to provide an indication of the presence of hydrogen gas in the gaseous environment.
    Type: Grant
    Filed: May 2, 2002
    Date of Patent: May 24, 2005
    Inventors: Frank DiMeo, Jr., Mackenzie E. King
  • Patent number: 6895805
    Abstract: A hydrogen gas indicator system that provides various substrate materials (4) that support hydrogen gas sensor (1) materials with discrete indicia (7) that provide information separate from any change in the physical properties of the hydrogen gas sensor itself.
    Type: Grant
    Filed: December 5, 2001
    Date of Patent: May 24, 2005
    Inventor: William Hoagland
  • Patent number: 6885279
    Abstract: A carbon monoxide (CO) detection unit incorporates a sensor which is a film or layer of NixCo1-xOy where x is from 0.1 to 0.9, e.g., spinel. The CO is detected by measuring the change in the electrical properties of the sensor. The detector can measure CO concentrations below 100 ppm and is capable of operating at room temperature and can be applied to domestic, industrial, medical and vehicular use.
    Type: Grant
    Filed: July 29, 2002
    Date of Patent: April 26, 2005
    Assignee: Catalytic Electrodes Limited
    Inventors: Alfred Chan Chung Tseung, Darren Paul Lapham, Xuekang Shan, Ian Colbeck
  • Patent number: 6849239
    Abstract: Disclosed herein is a method and apparatus for analyzing, sensing and measuring information related to the concentrations of various gases, including NOx, hydrocarbons, carbon monoxide and oxygen, in a multi-component gas system using chemical sensors and chemical sensor arrays. The sensors and sensor arrays use chemo/electro-active materials to analyze and detect the presence of gases.
    Type: Grant
    Filed: April 5, 2002
    Date of Patent: February 1, 2005
    Assignee: E. I. du Pont de Nemours and Company
    Inventor: Patricia A. Morris
  • Patent number: 6834530
    Abstract: The present invention proposes an odor measuring apparatus capable of determining the similarity of the odor of an unknown sample with high objectivity and performing measurements with sensitivity similar to that of the human nose. According to a mode of the invention, an m-dimensional space is created from detection signals of m pieces of odor sensors, and a standard odor vector S1 representing the result of measurement of a standard odor and another vector Sx representing the result of measurement of an unknown sample are drawn in the space. Then, from the angle &thgr; between the two vectors, a degree of similarity is determined within the range from 0 to 100%, where the degree of similarity is corrected taking account of the difference in sensitivity between the odor sensor and the human nose.
    Type: Grant
    Filed: February 19, 2003
    Date of Patent: December 28, 2004
    Assignee: Shimadzu Corporation
    Inventors: Jun-ichi Kita, Yoshiharu Iwasaki, Yoshihiro Aoyama, Hisamitsu Akamaru, Hirokazu Taniguchi
  • Publication number: 20040216513
    Abstract: A gas sensor includes a sensor element having a specific function, and a housing containing the sensor element therein and including a thread section, and a sealing surface which forms a sealing section together with an installation section at a position deeper than the thread section in a direction in which the sensor element is inserted. When the housing is screwed into the installation section, the release torque of the housing at 850° C. (1123 K) is 9 N·m or more, and an estimated value of a gap formed between the sealing surface and the installation section at 850° C. (1123 K) that is calculated according to a specific equation is 31 &mgr;m or less.
    Type: Application
    Filed: May 26, 2004
    Publication date: November 4, 2004
    Applicant: NGK Insulators, Ltd.
    Inventors: Hiroshi Kurachi, Nobukazu Ikoma, Sang Jae Lee
  • Publication number: 20040194535
    Abstract: The invention provides a sensor array with different nanodisk sensors that may be fabricated by direct site-specific dip-pen nanopatterning (DPN) using precursor inks. The good flow characteristics and strong affinity of the sols to measurement electrodes enable intimate ohmic contact. The measurable, reproducible and proportionate changes in the resistance of the sensors when exposed to trace quantities of oxidative and reducing gases constitute the basis for nanodisk gas sensors. The nanodisk sensors show rapid response and ultra-fast recovery for the detection of nitrogen dioxide and acetic acid vapor. Based on the principles of pattern recognition of the olfactory system, an electronic nose that can “smell” different gaseous species is provided with the multiple nanodisk sensor array.
    Type: Application
    Filed: February 18, 2004
    Publication date: October 7, 2004
    Inventors: Ming Su, Vinayak P. Dravid
  • Patent number: 6763699
    Abstract: Gas sensor devices are provided having an atomically flat silicon carbide top surface that, in turn, provides for a uniform, and reproducible surface thereof.
    Type: Grant
    Filed: February 6, 2003
    Date of Patent: July 20, 2004
    Assignee: The United States of America as represented by the Administrator of Natural Aeronautics and Space Administration
    Inventors: Gary W. Hunter, Philip G. Neudeck
  • Patent number: 6739177
    Abstract: Correction of a fuel injection amount in an internal combustion engine during purge of evaporative fuel is performed on the basis of an output from an intake-oxygen concentration sensor disposed in an intake passage of the internal combustion engine. If the amplitude of fluctuations in engine speed becomes equal to or greater than a predetermined value, it is determined that there is an anomaly in engine output. In addition, if an anomaly in engine output is detected during purge and if no anomaly in engine output is detected during stoppage of purge, an ECU determines that an anomaly has occurred in the intake-oxygen concentration sensor, cancels correction of the fuel injection amount based on an output from the intake-oxygen concentration sensor during purge, and corrects the fuel injection amount on the basis of outputs from exhaust-gas air-fuel ratio sensors.
    Type: Grant
    Filed: March 5, 2002
    Date of Patent: May 25, 2004
    Assignees: Toyota Jidosha Kabushiki Kaisha, Nippon Soken, Inc.
    Inventors: Fumihiko Sato, Takuji Matsubara, Mamoru Yoshioka, Yoshihiko Hyoudo, Takayuki Takeuchi, Naohisa Oyama, Shigeki Daido
  • Patent number: 6739180
    Abstract: An intelligent gas identification system and method of gas identification in a specific environment. The intelligent gas identification system has a sensor, a pulse power supply module, and a processing device in which a plurality of chemical matter characteristics signals is stored. When the sensor is disposed in the specific environment, the pulse power supply module sends a variable pulse-amplitude-modulated voltage to the sensor, so that the sensor outputs a signal to the processing device. The processing device compares the outgoing signal to the chemical matter characteristics signals to determine an identification result for the gas.
    Type: Grant
    Filed: March 10, 2003
    Date of Patent: May 25, 2004
    Assignee: Industrial Technology Research Institute
    Inventors: Yi-Shiao Huang, I-Cherng Chen, Chien-Hsiung Tai, Wen-Yuan Tsai