Inductive Or Magnetic Sensor (e.g., Hall Effect Sensor) Patents (Class 73/514.31)
  • Patent number: 10323958
    Abstract: An assembly has a base structure, a rotatable structure, a first magnet coupled to the base structure, a second magnet coupled to the rotatable structure, and a magnetic field sensor. The magnetic field sensor can identify at least one condition (i.e., position) of the assembly.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: June 18, 2019
    Assignee: Allegro MicroSystems, LLC
    Inventors: Stefan Kranz, Stephan Schurt, Andreas P. Friedrich, Yannick Vuillermet
  • Patent number: 10161956
    Abstract: An accelerometer includes an upper stator, a lower stator, and a proof mass assembly disposed between the upper and the lower stator. At least one of the upper stator or the lower stator includes an excitation ring, a magnet coupled to the excitation ring, and an asymmetric pole piece coupled to a top surface of the magnet. The asymmetric pole piece covers at least a portion of the top surface of the magnet such that a center of magnetic flux associated with the at least one of the upper stator or the lower stator is aligned with a center of mass of the proof mass assembly.
    Type: Grant
    Filed: April 25, 2016
    Date of Patent: December 25, 2018
    Assignee: Honeywell International Inc.
    Inventor: Paul W. Dwyer
  • Patent number: 9784759
    Abstract: A thermally insensitive open-loop hung mass accelerometer utilizes a transverse geometry to attach the body/flexures/proof mass so that thermal expansion effects due to thermal gradients across the accelerometer or bulk temperatures changes of one flexure relative to the other cause minimal or no axial displacement of the proof mass. In this geometry, multiple flexures may be stacked to achieve the required stiffness, thus reducing manufacturing costs and any tolerancing issues, without affecting thermal sensitivity. The accelerometer is suitably designed to exhibit a radial symmetry. The accelerometer is suitably designed to use low CTE materials for at least the proof mass and body and a low thermal expansion differential Eddy current sensor head.
    Type: Grant
    Filed: November 16, 2015
    Date of Patent: October 10, 2017
    Assignee: Raytheon Company
    Inventor: Christopher A. Cox
  • Patent number: 9625535
    Abstract: In embodiments, three magnetic field sensing elements are arranged equidistantly from each other to define a plane and a central axis perpendicular to the plane. The magnetic field sensing elements are configured to generate a respective output signal representing proximity of a magnetic target that is proximate to the central axis and capable of moving relative to the central axis. A processor circuit is coupled to receive output signals from each of the sensors and configured to calculate a position of the magnetic target relative to the plane.
    Type: Grant
    Filed: August 7, 2013
    Date of Patent: April 18, 2017
    Assignee: Allegro MicroSystems, LLC
    Inventors: Bryan Cadugan, Jim Rice
  • Patent number: 9599634
    Abstract: Inertial measurement units attached to a non-rigid body may measure a common motion event when the body changes direction of travel. Acceleration measurements made by the inertial measurement units of the event are used to determine a common reference direction which in turn can be used to derive, individually for each inertial measurement unit, a new orientation intended to be a better representation of the actual orientation of the inertial measurement unit.
    Type: Grant
    Filed: December 3, 2013
    Date of Patent: March 21, 2017
    Assignee: VIBRADO TECHNOLOGIES, INC.
    Inventors: Quinn A. Jacobson, Cynthia Kuo
  • Patent number: 9322839
    Abstract: An inertial sensor having a body with an excitation coil and a first sensing coil extending along a first axis. A suspended mass includes a magnetic-field concentrator, in a position corresponding to the excitation coil, and configured for displacing by inertia in a plane along the first axis. A supply and sensing circuit is electrically coupled to the excitation coil and to the first sensing coil, and is configured for generating a time-variable flow of electric current that flows in the excitation coil so as to generate a magnetic field that interacts with the magnetic-field concentrator to induce a voltage/current in the sensing coil. The integrated circuit is configured for measuring a value of the voltage/current induced in the first sensing coil so as to detect a quantity associated to the displacement of the suspended mass along the first axis.
    Type: Grant
    Filed: April 1, 2013
    Date of Patent: April 26, 2016
    Assignee: STMICROELECTRONICS S.R.L.
    Inventors: Giulio Ricotti, Alberto Pagani, Fulvio Vittorio Fontana, Ubaldo Mastromatteo
  • Patent number: 9297824
    Abstract: An accelerometer includes a mass, suspended by a beam, and associated conductive paths. Each conductive path is subjected to a magnetic field, such that, when a time varying signal is applied to the conductive paths, a characteristic resonant frequency is produced, and when the mass experiences an acceleration, a respective change in the resonant frequency is produced that may be interpreted as acceleration data. Embodiments include methods of manufacturing an accelerometer and systems and devices incorporating the accelerometer.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: March 29, 2016
    Assignee: INTEL CORPORATION
    Inventors: Qing Ma, Valluri Rao, Feras Eid, Kevin Lin, Weng Hong Teh, Johanna Swan, Robert Sankman
  • Patent number: 9254992
    Abstract: A MEMS gyro is provided, having a movable portion, a non-movable portion, and a magnetic sensing structure that comprises a magnetic source disposed at the movable portion, a magnetic sensing element positioned at the non-movable portion. The movable portion is capable of moving in response to external angular velocity or an external accelerator such that the magnetic field sensed by the magnetic sensing element is in relation to the movement of the movable portion, therefore, the angular velocity or the accelerator. A method of making the MEMS gyro device is disclosed herein.
    Type: Grant
    Filed: April 15, 2013
    Date of Patent: February 9, 2016
    Inventor: Tao Ju
  • Patent number: 9250261
    Abstract: Techniques and mechanisms to provide for metering acceleration. In an embodiment, a microelectromechanical accelerometer includes a magnet, a mass, and a first support beam portion and second support beam portion for suspension of the mass. Resonance frequency characteristics of the first support beam portion and second support beam portion, based on the magnet and a current conducted by the first support beam portion and second support beam portion, are indicative of acceleration of the mass. In another embodiment, the accelerometer further includes a first wire portion and a second wire portion which are each coupled to the mass and further coupled to a respective anchor for exchanging a signal with the first wire portion and the second wire portion. The first wire portion and the second wire portion provide for biasing of the mass.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: February 2, 2016
    Assignee: Intel Corporation
    Inventors: Kevin L. Lin, Feras Eid, Qing Ma
  • Patent number: 9047907
    Abstract: An electronic device is disclosed comprising an acceleration sensor operable to generate an acceleration signal, and a free fall detector operable to detect a free fall event in response to the acceleration signal. A frequency response of the acceleration signal is measured, and the free fall detector is disabled when a magnitude of the frequency response within one of a plurality of frequency bands exceeds a threshold, wherein each frequency band corresponds to one of a plurality of normal operating modes.
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: June 2, 2015
    Assignee: Western Digital Technologies, Inc.
    Inventors: Jonathan V. Nguyen, Toviah N. Hirschberg, Hien T. Chu
  • Publication number: 20150122023
    Abstract: A micromechanical sensor device, having a first unhoused sensor unit, and at least one second unhoused sensor unit, the sensor units being functionally connected to one another, the sensor units being essentially vertically configured one over the other so that a sensor unit having a larger footprint completely covers a sensor unit having a smaller footprint.
    Type: Application
    Filed: November 6, 2014
    Publication date: May 7, 2015
    Inventors: Jens FREY, Arnd KAELBERER, Jochen REINMUTH, Johannes CLASSEN
  • Publication number: 20150082886
    Abstract: According to one embodiment, an inertial sensor includes a base portion, a weight portion, a connection portion, and a first sensing element unit. The connection portion connects the weight portion and the base portion and is capable of being deformed in accordance with a change in relative position of the weight portion with respect to the position of the base portion. The first sensing element unit is provided on a first portion of the connection portion and includes a first magnetic layer, a second magnetic layer, and a nonmagnetic first intermediate layer. The nonmagnetic first intermediate layer is provided between the first magnetic layer and the second magnetic layer.
    Type: Application
    Filed: August 15, 2014
    Publication date: March 26, 2015
    Inventors: Hideaki FUKUZAWA, Michiko HARA, Yoshihiko FUJI, Yoshihiro HIGASHI, Shiori KAJI, Akio HORI, Tomohiko NAGATA, Akiko YUZAWA, Akira KIKITSU
  • Patent number: 8939028
    Abstract: Embodiments relate to integrated sensors and sensing methods. Embodiments relate to integrated sensor layouts. Embodiments are configured to maximize a ratio of sensor spacing over a die area. While being generally applicable to many different types of sensors, particular advantages can be presented for magnetoresistive (xMR) sensors.
    Type: Grant
    Filed: May 10, 2012
    Date of Patent: January 27, 2015
    Assignee: Infineon Technologies AG
    Inventor: Udo Ausserlechner
  • Patent number: 8890512
    Abstract: A device for visually indicating a change in the operational state of a proximity sensor. The device includes a transparent housing having a cavity and a magnet device for generating a magnetic field. In addition, a sleeve is attached to the housing. The magnet device is concealed within the sleeve in a first position to indicate a first operational state. When a target is positioned adjacent the sensor end, magnetic attraction occurs between the target and the magnet device due to the magnetic field to cause movement of the magnet device to a second position within the cavity wherein the magnetic field does not act on the proximity sensor to change the operational state from the first operational state to a second operational state. Further, the magnet device is visible in the second position to indicate the second operational state.
    Type: Grant
    Filed: June 8, 2011
    Date of Patent: November 18, 2014
    Assignee: Pentair Flow Services AG
    Inventors: Leo Minervini, Kevin Connell
  • Patent number: 8860406
    Abstract: A magnetic encoder including an object to be detected, a casing opposite to the object, a magnet and a magnetic sensor accommodated in the casing is provided. The casing of the magnetic encoder has an opposite wall opposite to the object. The opposite wall has a thickened portion and a thin portion integrally formed with the thickened portion. The thin portion has a smaller thickness than the thickened portion. The magnetic sensor is situated at the thin portion.
    Type: Grant
    Filed: November 14, 2012
    Date of Patent: October 14, 2014
    Assignee: Fanuc Corporation
    Inventors: Shunichi Odaka, Isao Kariya
  • Patent number: 8829924
    Abstract: This invention relates to methods and apparatus for measuring physical properties using microwave cavity sensors. In operation, a number of microwave cavity sensors are interrogated by a remote wireless unit in order to determine the current resonant frequency for the sensor. The current values for various parameters measured by the sensors, such as temperature, stress/stain, or the like, are determined by comparing the current resonant frequency to a first resonant frequency of the sensor, and thus, detect any change in the value of the selected parameter. In particular, the present invention is directed toward extending the range over which such measurements may be performed, using these types of sensors.
    Type: Grant
    Filed: August 20, 2012
    Date of Patent: September 9, 2014
    Assignee: Smart Autonomous Solutions, Inc.
    Inventor: Naftaly Ramrajkar
  • Publication number: 20140150553
    Abstract: A sensor device includes a first CMOS chip and a second CMOS chip with a first moving-gate transducer formed in the first CMOS chip for implementing a first 3-axis inertial sensor and a second moving-gate transducer formed in the second CMOS chip for implementing a second 3-axis inertial sensor. An ASIC for evaluating the outputs of the first 3-axis inertial sensor and the second 3-axis inertial sensor is distributed between the first CMOS chip and the second CMOS chip.
    Type: Application
    Filed: December 2, 2013
    Publication date: June 5, 2014
    Applicant: Robert Bosch GmbH
    Inventors: Ando Feyh, Po-Jui Chen
  • Patent number: 8742750
    Abstract: A speed pick-up ring includes a main body having a plurality of targets and defining a plurality of notches. Each notch is disposed between adjacent targets. Each notch includes a base wall, a first sidewall and an oppositely disposed second sidewall. The base wall includes a convex portion. A fluid device includes a housing and a variable reluctance speed sensor engaged to the housing. The fluid device further includes a speed pick-up ring disposed within the housing. The speed pick-up ring includes a main body having a plurality of targets and defining a plurality of notches. Each notch is disposed between adjacent targets. Each notch includes a base wall, a first sidewall that is generally concave and an oppositely disposed second sidewall that is generally concave. The base wall includes a convex portion.
    Type: Grant
    Filed: June 13, 2008
    Date of Patent: June 3, 2014
    Assignee: Eaton Corporation
    Inventors: John Ryan Kess, John Charles Walters
  • Publication number: 20140026663
    Abstract: A device and method measure an acceleration of a moving body. The device contains a solid body having a moving part and an internal cavity capable of allowing for a free movement of the moving part. The internal cavity has at least one wall forming a sloping track, the sloping track having a surface allowing for the free movement of the moving part on the sloping track between an initial position at rest and a distant position spaced from the initial position situated at an end of the internal cavity and reachable by the moving part during a variation in acceleration. The moving part moving from the initial position to the distant position in the internal cavity under an effect of the acceleration of the moving body. At least one detector is provide and is capable of detecting a presence of the moving part at the distant position.
    Type: Application
    Filed: May 30, 2011
    Publication date: January 30, 2014
    Applicant: SIEMENS S.A.S.
    Inventor: Yves Clarissou
  • Patent number: 8604777
    Abstract: An integrated circuit (IC) current sensor that self-calibrates to adjust its signal gain when employed in a current divider configuration is presented. The current sensor includes an integrated current conductor, a magnetic field transducer, a controllable gain stage and a calibration controller. The integrated current conductor is adapted to receive a portion of a calibration current. The calibration current corresponds to a full scale current. The magnetic field transducer, responsive to the calibration current portion, provides a magnetic field signal having a magnitude proportional to a magnetic field generated by the calibration current portion. The controllable gain stage is configured to amplify the magnetic field signal with an adjustable gain to provide an amplified magnetic field signal.
    Type: Grant
    Filed: July 13, 2011
    Date of Patent: December 10, 2013
    Assignee: Allegro Microsystems, LLC
    Inventors: Michael C. Doogue, Shaun D. Milano
  • Publication number: 20130255381
    Abstract: An inertial sensor having a body with an excitation coil and a first sensing coil extending along a first axis. A suspended mass includes a magnetic-field concentrator, in a position corresponding to the excitation coil, and configured for displacing by inertia in a plane along the first axis. A supply and sensing circuit is electrically coupled to the excitation coil and to the first sensing coil, and is configured for generating a time-variable flow of electric current that flows in the excitation coil so as to generate a magnetic field that interacts with the magnetic-field concentrator to induce a voltage/current in the sensing coil. The integrated circuit is configured for measuring a value of the voltage/current induced in the first sensing coil so as to detect a quantity associated to the displacement of the suspended mass along the first axis.
    Type: Application
    Filed: April 1, 2013
    Publication date: October 3, 2013
    Applicant: STMicroelectronics S.r.I
    Inventors: Giulio Ricotti, Alberto Pagani, Fulvio Vittorio Fontana, Ubaldo Mastromatteo
  • Patent number: 8535185
    Abstract: A device (120) for acquiring and providing information which can be associated with a football player, said device comprising: an acceleration sensor (129) for detecting accelerations acting on the devices; a memory unit (121) for storing measured acceleration values with associated time stamps and an ID associated with the device (120); and a radio unit (128) for receiving a first radio signal (150) with a first time stamp, wherein the first radio signal represents a deformation of a ball, and for transmitting a second radio signal (160) including the ID associated with the device (120) in case that a check of the values in the memory unit shows that an acceleration was detected by the device at the corresponding time.
    Type: Grant
    Filed: November 17, 2009
    Date of Patent: September 17, 2013
    Assignee: Cairos Technologies AG
    Inventor: Walter Englert
  • Publication number: 20120326422
    Abstract: Sensors for detecting rapid deceleration/acceleration events are disclosed herein. A sensor configured in accordance with one embodiment of the disclosure includes a magnetically operable device proximate to a magnet. The sensor also includes a biasing member operably coupled to a magnetic shield. The biasing member controls the movement of the magnetic shield between a first position that shields the magnetically operable device from the magnet, and a second position that exposes the magnetically operable device to the magnet. In a deceleration/acceleration event, the magnetic shield overcomes the biasing member and moves from the first position to the second position, thereby causing the magnetically operable device to be exposed to the magnet.
    Type: Application
    Filed: June 27, 2011
    Publication date: December 27, 2012
    Applicant: AmSafe,Inc.
    Inventor: Andre Baca
  • Patent number: 8334159
    Abstract: A micro-electro-mechanical system (MEMS) pressure sensor includes a silicon spacer defining an opening, a silicon membrane layer mounted above the spacer, a silicon sensor layer mounted above the silicon membrane layer, and a capacitance sensing circuit. The silicon membrane layer forms a diaphragm opposite of the spacer opening, and a stationary perimeter around the diaphragm and opposite the spacer. The silicon sensor layer includes an electrode located above the diaphragm of the silicon membrane layer. The capacitance sensing circuit is coupled to the electrode and the silicon membrane layer. The electrode and the silicon membrane layer move in response to a pressure applied to the diaphragm. The movement of the silicon membrane layer causes it to deform, thereby changing the capacitance between the electrode and the silicon membrane layer by an amount proportional to the change in the pressure.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: December 18, 2012
    Assignee: Advanced NuMicro Systems, Inc.
    Inventor: Yee-Chung Fu
  • Patent number: 8302285
    Abstract: In a sensing unit according to the present invention, a spring portion having a support portion and a movable portion is conductive. A signal of a sensor portion provided on the movable portion of the spring portion is transmitted via the spring portion. Hence, the sensing unit according to the present invention has a simple constitution with a small number of components, and a wire does not necessarily have to be provided for each sensor portion. As a result, a reduction in manufacturing cost, simplification of the manufacturing process, and so on are achieved.
    Type: Grant
    Filed: March 4, 2010
    Date of Patent: November 6, 2012
    Assignees: Headway Technologies, Inc., SAE Magnetics (H.K.) Ltd.
    Inventors: Yoshitaka Sasaki, Tatsushi Shimizu, Takehiro Horinaka, Kazuo Ishizaki, Shigeki Tanemura
  • Publication number: 20120255357
    Abstract: A sensor package has integrated magnetic and acceleration sensor package structures, where a first wafer is bonded to a second wafer with a cavity defined between them. The magnetic sensor is bonded to the bottom of the first wafer and the acceleration sensor is provided within the cavity. Circuitry to drive the accelerometer and interface with the magnetic sensor is provided on the first wafer.
    Type: Application
    Filed: April 9, 2012
    Publication date: October 11, 2012
    Inventors: Dongmin Chen, Haidong Liu, Zhiwei Duan
  • Patent number: 8230577
    Abstract: In a sensing unit according to the present invention, a spring portion having a support portion and a movable portion is conductive. A signal of a sensor portion provided on the movable portion of the spring portion is transmitted via the spring portion. Hence, the sensing unit according to the present invention has a simple constitution with a small number of components, and a wire does not necessarily have to be provided for each sensor portion. As a result, a reduction in manufacturing cost, simplification of the manufacturing process, and so on are achieved.
    Type: Grant
    Filed: March 4, 2010
    Date of Patent: July 31, 2012
    Assignees: Headway Technologies, Inc., SAE Magnetics (H.K.) Ltd.
    Inventors: Yoshitaka Sasaki, Tatsushi Shimizu, Takehiro Horinaka, Kazuo Ishizaki, Shigeki Tanemura
  • Patent number: 8215169
    Abstract: Two opposing substrate layers each having one or more recesses filled with magnetic material guide the flow of flux through a coil in a MEMS device layer to provide for closed-loop operation. Flux flows from one pole piece through the coil to a second pole piece. A method of making using lithographic etching techniques is also provided.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: July 10, 2012
    Assignee: Honeywell International Inc.
    Inventor: Ryan Roehnelt
  • Patent number: 8181493
    Abstract: A three-axis linear position sensor apparatus may include (a) a reference device adapted as a magnetic field generating element, (b) a receiver pad adapted to measure a magnetic field generated by the reference device, and (c) a signal-conditioning and signal-processing electronics adapted to determine a three-axis linear position of the reference device based on the magnetic field measured by the receiver pad.
    Type: Grant
    Filed: July 27, 2006
    Date of Patent: May 22, 2012
    Assignee: NCTEngineering GmbH
    Inventor: Lutz May
  • Patent number: 8166818
    Abstract: A translational, Micro-Electro-Mechanical System (MEMS) accelerometer device with precisely formed pole pieces to guide magnetic flux through a coil in a MEMS device layer. An example device includes a device layer, a magnetic return path component attached to a first side of the device layer, and a magnet unit attached to a second side of the device layer. The device layer includes a proof mass with electrically conductive trace and frame components. The magnet unit includes two magnetically conductive posts (formed of a ferrous material) located proximate to the trace, a base section formed of the same material as the posts, a non-magnetically conductive post (formed of a glass substrate) connected between the conductive posts, and a magnet attached to the non-magnetically conductive post within a cavity formed in the base section between the two magnetically conductive posts.
    Type: Grant
    Filed: May 26, 2009
    Date of Patent: May 1, 2012
    Assignee: Honeywell International Inc.
    Inventors: Paul W. Dwyer, Ryan Roehnelt
  • Publication number: 20120073371
    Abstract: In various embodiments, a microelectromechanical system may include a mass element; a substrate; a signal generator; and a fixing structure configured to fix the mass element to the substrate; wherein the mass element is fixed in such a way that, upon an acceleration of the microelectromechanical system, the mass element can be moved relative to the substrate in at least two spatial directions, and wherein a signal is generated by the movement of the mass element by means of the signal generator.
    Type: Application
    Filed: September 23, 2011
    Publication date: March 29, 2012
    Applicant: INFINEON TECHNOLOGIES AG
    Inventor: Horst Theuss
  • Patent number: 8122767
    Abstract: Microelectromechanical (MEMS) accelerometer and acceleration sensing methods. A MEMS accelerometer includes a housing, a proof mass suspended within the housing by at least one torsional flexure, and a torsional magnetic rebalancing component. In an example embodiment, the torsional magnetic rebalancing component includes at least one planar coil on the proof mass that extends on both sides of an axis of rotation of the proof mass about the at least one torsional flexure and at least one magnet oriented such that a north-south axis of the at least one magnet is oriented approximately orthogonal to the rotational axis of the proof mass. A method includes sensing a change in capacitance of a pickoff in the MEMS accelerometer and rebalancing the MEMS accelerometer by sending a current through the planar coil.
    Type: Grant
    Filed: October 8, 2008
    Date of Patent: February 28, 2012
    Assignee: Honeywell International Inc.
    Inventors: Paul W. Dwyer, Steve Becka, Matt Reddy
  • Patent number: 8104345
    Abstract: A miniature sensor for detecting acceleration and deceleration processes has at least one bar-like spring element which is formed by a nanowire, which is connected by one end to the detector substrate and projects from the latter and which preferably carries at its free end a coating emitting a permanent magnetic stray field, or a nanoparticle of this type, wherein the nanowire and magnetic stray field coating, or mass, together form the inertial mass. A magnetic field detection layer composed, for example, of magnetoresistive material, is disposed at least in the region near the connected end of the nanowire. The substrate is preferably provided with such a layer which preferably, for its part, as sensor component forms a constituent part of a magnetic field detection unit.
    Type: Grant
    Filed: August 6, 2007
    Date of Patent: January 31, 2012
    Assignee: Austrian Research Centers GmbH-Arc
    Inventors: Hubert Br├╝ckl, Michael Kast
  • Publication number: 20110307213
    Abstract: A system for determining motion information including attitude and angular rate of a dynamic object. The system includes a magnetic-field sensing device to measure in the body coordinate frame of reference an intensity and/or direction of a magnetic field in three substantially orthogonal directions; an acceleration-sensing device adapted to measure total acceleration of the object in the body coordinate frame of reference; and a processor adapted to calculate attitude and angular rate by combining total acceleration measurement data and magnetic field measurement data with the kinematic model in a filter.
    Type: Application
    Filed: July 28, 2011
    Publication date: December 15, 2011
    Inventors: Yang Zhao, Dong An
  • Patent number: 8065915
    Abstract: Microelectromechanical (MEMS) accelerometer and acceleration sensing methods. A MEMS accelerometer includes a proof mass suspended by at least one hinge type flexure, at least one planar coil located on the proof mass, and at least one magnet positioned such that a magnetic flux field passes through the at least one planar coil at an angle between approximately 30 degrees and approximately 60 degrees relative to the coil plane. In an example embodiment, the angle is approximately 45 degrees. The at least one magnet may include a first annular magnet positioned on a first side of the proof mass and a second annular magnet positioned on a second side of the proof mass. A method includes sensing a capacitance of a pickoff in the MEMS accelerometer and rebalancing the MEMS accelerometer by sending a current through the planar coil.
    Type: Grant
    Filed: October 8, 2008
    Date of Patent: November 29, 2011
    Assignee: Honeywell International Inc.
    Inventor: Paul W. Dwyer
  • Publication number: 20110287878
    Abstract: A device (120) for acquiring and providing information which can be associated with a football player, said device comprising: an acceleration sensor (129) for detecting accelerations acting on the devices; a memory unit (121) for storing measured acceleration values with associated time stamps and an ID associated with the device (120); and a radio unit (128) for receiving a first radio signal (150) with a first time stamp, wherein the first radio signal represents a deformation of a ball, and for transmitting a second radio signal (160) including the ID associated with the device (120) in case that a check of the values in the memory unit shows that an acceleration was detected by the device at the corresponding time.
    Type: Application
    Filed: November 17, 2009
    Publication date: November 24, 2011
    Inventor: Walter Englert
  • Publication number: 20110219875
    Abstract: A MEMS or NEMS device for detecting a force following a given direction, comprising a support (4) and at least one seismic mass (2) capable of moving under the effect of the force to be measured in the direction of said force, and means (10) for detecting the movement of said seismic mass (2), said seismic mass being articulated relative to the support by at least one pivot link, and means capable of varying the distance between the axis (Z) of the pivot link and the center of gravity (G) of the exertion of the force on said seismic mass.
    Type: Application
    Filed: March 11, 2011
    Publication date: September 15, 2011
    Applicant: Comm. a l'energie atomique et aux energies altern.
    Inventors: Arnaud WALTHER, Guillaume JOURDAN, Philippe ROBERT
  • Patent number: 7997136
    Abstract: Microelectromechanical (MEMS) accelerometer and acceleration sensing methods. A MEMS accelerometer includes a proof mass, a planar coil on the proof mass, a magnet, a first pole piece positioned proximate a first side of the proof mass, and a second pole piece positioned proximate a second side of the proof mass. A magnetic flux field passes from the magnet, through the first pole piece, through the planar coil at an angle between approximately 30 degrees and approximately 60 degrees relative to the coil plane, and into the second pole piece. The first pole piece may extend into a first recessed area of a first housing layer and the second pole piece may extend into a second recessed area of a second housing layer. A method includes sensing a capacitance of a pickoff in the MEMS accelerometer and rebalancing the MEMS accelerometer by sending a current through the planar coil.
    Type: Grant
    Filed: October 8, 2008
    Date of Patent: August 16, 2011
    Assignee: Honeywell International Inc.
    Inventors: Paul W. Dwyer, Ryan Roehnelt
  • Patent number: 7975550
    Abstract: There is provided a micromachined sensor for measuring a vibration, based on silicone micromachining technology, in which a conductor having elasticity is connected to masses moving due to a force generated by the vibration and the vibration is measured by using induced electromotive force generated due to the conductor moving in a magnetic field.
    Type: Grant
    Filed: April 29, 2008
    Date of Patent: July 12, 2011
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Myung Lae Lee, Chang Han Je, Sung Sik Lee, Sung Hae Jung, Chang Auck Choi, Gunn Hwang
  • Publication number: 20110140692
    Abstract: A method for determining the sensitivity of a sensor provides the following steps: a) first and second deflection voltages are applied to first and second electrode systems of the sensor, respectively, and first and second electrostatic forces are exerted on an elastically suspended seismic mass of the sensor by the first and second electrode systems, respectively, and a restoring force is exerted on the mass as a result of the elasticity of the mass, and a force equilibrium is established among the first and second electrostatic forces and the restoring force, and the mass assumes a deflection position characteristic of the force equilibrium, and an output signal characteristic of the force equilibrium and of the deflection position is measured; and b) the sensitivity of the sensor is computed on the basis of the first and second deflection voltages.
    Type: Application
    Filed: November 9, 2010
    Publication date: June 16, 2011
    Inventors: Johannes Classen, Arnd Kaelberer, Hans-Joerg Faisst, Axel Franke, Mirko Hattass, Holger Rank, Robert Sattler, Alexander Buhmann, Ramona Maas, Marian Keck
  • Patent number: 7958782
    Abstract: Devices (1) are provided with sensor arrangements (2) comprising field generators (10) for generating magnetic fields and first/second/third elements (R1-R4, S1-S4, T1-T4) for detecting first/second/third components of the magnetic fields in a plane and movable objects (14) for, in response to changing the first/second/third accelerations of the moveable objects (14) in first/second/third directions, changing the first/second/third components of the magnetic fields in the plane. The first (second, third) field detector (11, 12, 13) is more sensitive to the first (second, third) acceleration than to the other accelerations. Such devices (1) have a good sensitivity and a good linearity. The elements (R1-R4, S1-S4, T1-T4) form part of bridges. The first elements (R1-R4) may be in round or rectangular form and the second and third elements (S1-S4, T1-T4) may be in the form of sun beams leaving a sun.
    Type: Grant
    Filed: April 6, 2006
    Date of Patent: June 14, 2011
    Assignee: NXP B.V.
    Inventor: Kim Phan Le
  • Publication number: 20110100124
    Abstract: This application is directed to a shock sensor mounted in an electronic device. The shock sensor includes both active and passive shock detection methods that allow a technician to determine whether the electronic device was subjected to a shock event that exceeded an impact threshold level. The shock sensor may include shock detection contacts that form an electrical circuit that remains open in the absence of a shock event that exceeds an impact threshold level. In response to a significant shock event, a movable component or substance of the shock sensor may move from a first position to a second position, thereby closing the electrical circuit formed by the shock detection contacts. The change in circuit may be detected and used to provide active indication of whether the electronic device has been subjected to a substantial shock event. In addition, the shock sensor may be observed to passively determine whether the electronic device has been subjected to a substantial shock event.
    Type: Application
    Filed: January 7, 2011
    Publication date: May 5, 2011
    Applicant: Apple Inc.
    Inventors: Stephen P. Zadesky, Fletcher R. Rothkopf
  • Patent number: 7932716
    Abstract: Rotation angle sensor and rotation angle sensor system for determining the angle of rotation of a shaft which can rotate at its shaft end, having a housing, having a shaft mount which is mounted on the housing such that it can rotate, having at least one signal transducer arranged on the shaft mount and having at least one signal receiver which is arranged on the housing and interacts with the signal transducer, wherein the shaft mount is designed in a manner such that the housing is attached only by means of the shaft mount at the shaft end.
    Type: Grant
    Filed: September 30, 2006
    Date of Patent: April 26, 2011
    Assignee: Valeo Schalter und Sensoren GmbH
    Inventor: Christian Ruetz
  • Patent number: 7926348
    Abstract: Systems and methods for minimizing vibration rectification error in magnetic circuit accelerometers. The systems include an accelerometer with an excitation ring that has a top piece with a lower portion inner diameter and a bottom piece having a diameter smaller than the lower portion inner diameter of the top piece. The accelerometer also includes a proof mass, a magnet mounted to the bottom piece of the excitation ring, a pole piece mounted to the magnet, and a coil attached to the proof mass that extends into a gap between the top piece of the excitation ring and the pole piece. The methods include placing a pole piece in a pole piece to lap surface fixture, placing an excitation ring top piece on an outer portion of the pole piece to lap surface fixture, and placing an excitation ring bottom piece in a lower portion of the excitation ring top piece.
    Type: Grant
    Filed: March 18, 2008
    Date of Patent: April 19, 2011
    Assignee: Honeywell International Inc.
    Inventor: Paul W. Dwyer
  • Patent number: 7886595
    Abstract: A motion sensor includes a substrate at least having one micromechanical acceleration sensor and a magnetoresistive circuit. The micromechanical acceleration sensor and the magnetoresistive circuit are constructed on the same substrate.
    Type: Grant
    Filed: March 6, 2007
    Date of Patent: February 15, 2011
    Assignee: Robert Bosch GmbH
    Inventors: Frank Fischer, Markus Sonnemann
  • Patent number: 7886600
    Abstract: A motion sensor which can easily and accurately detect bearing, attitude and acceleration in any of three-dimensional directions and a portable telephone using the same. The motion sensor comprises three magnetic sensing parts for detecting magnetic field strength in 3-axis directions orthogonal to one another, and three acceleration sensing parts for detecting accelerations in the 3-axis directions. Each of the acceleration sensing parts has a magnet body constituted to be able to displace depending on acceleration, and a magnet displacement detection head for detecting a displacement of the magnet body. The three magnetic sensing parts and the three magnet displacement detection heads are all made of the same type of magnetic detection elements which operate based on common operation principles. The three magnetic sensing parts and the three acceleration sensing parts are integrated into one modular package together with one electronic circuit for controlling these six magnetic detection elements.
    Type: Grant
    Filed: June 1, 2006
    Date of Patent: February 15, 2011
    Assignees: Aichi Steel Corporation, Softbank Mobile Corp.
    Inventors: Yoshinobu Honkura, Michiharu Yamamoto, Masaki Mori, Eiji Kako, Toshiro Matsumura, Jun Yamazaki, Hirohisa Kusuda, Yasuhiro Nishide, Daisuke Tsujino
  • Publication number: 20110005318
    Abstract: An in-plane, closed-loop Micro Electro-Mechanical Systems (MEMS) accelerometer device with improved performance. An example MEMS device includes one or more components for generating a magnetic flux field perpendicular to a major plane of the device. The device includes substrates, a proof mass, spring elements that flexibly connect the proof mass to the substrate and constrain the proof mass to translate within the major plane of the device which corresponds to a major surface of the proof mass, a plurality of conductive traces located at a position on the proof mass proximate the magnetic flux field, a plurality of conductive springs, each of the springs are electrically connected to a corresponding one of the conductive traces, and a plurality of anchor pads connected to the substrate and one of the conductive springs.
    Type: Application
    Filed: June 15, 2010
    Publication date: January 13, 2011
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Paul W. Dwyer, John Strehlow
  • Patent number: 7859252
    Abstract: A rotational angle detecting device has a pair of permanent magnets and an angle sensor. Electrical connecting terminals are connected to the angle sensor and further connected to conductors. The conductors have seconds ends opposite to the first ends and serving as connector terminals of the connector. In one embodiment, the rotational angle detecting device includes a first resin-molded portion and a second resin-molded portion. The first resin-molded portion includes at least the electrical connecting terminals, a part of the angle sensor and the first ends of the conductors embedded within a first resin. The second resin-molded portion includes portions of the conductors embedded within a second resin. In another embodiment, capacitors are connected to the connector conductors. The angle sensor has a magnetic detecting element positioned substantially perpendicularly to the rotational axis of the rotary section.
    Type: Grant
    Filed: June 28, 2007
    Date of Patent: December 28, 2010
    Assignee: Aisan Kogyo Kabushiki Kaisha
    Inventor: Tsutomu Ikeda
  • Publication number: 20100242601
    Abstract: A translational, Micro-Electro-Mechanical System (MEMS) accelerometer device with precisely formed pole pieces to guide magnetic flux through a coil in a MEMS device layer. An example device includes a device layer, a magnetic return path component attached to a first side of the device layer, and a magnet unit attached to a second side of the device layer. The device layer includes a proof mass with electrically conductive trace and frame components. The magnet unit includes two magnetically conductive posts (formed of a ferrous material) located proximate to the trace, a base section formed of the same material as the posts, a non-magnetically conductive post (formed of a glass substrate) connected between the conductive posts, and a magnet attached to the non-magnetically conductive post within a cavity formed in the base section between the two magnetically conductive posts.
    Type: Application
    Filed: May 26, 2009
    Publication date: September 30, 2010
    Applicant: Honeywell International Inc.
    Inventors: Paul W. Dwyer, Ryan Roehnelt
  • Patent number: RE44582
    Abstract: In a magnetic data processing device, an input part sequentially inputs magnetic data outputted from a two-dimensional or three-dimensional magnetic sensor. The magnetic data is two-dimensional or three-dimensional vector data that is a linear combination of a set of fundamental vectors. The magnetic data processing device stores a plurality of the inputted magnetic data as a data set of statistical population in order to update an old offset of the magnetic data with a new offset. An offset derivation part derives the new offset based on the old offset and the data set of statistical population under a constraint condition that the new offset be obtained as the sum of the old offset and a correction vector.
    Type: Grant
    Filed: May 11, 2011
    Date of Patent: November 5, 2013
    Assignee: Yamaha Corporation
    Inventor: Ibuki Handa