Of Tubing, Vessel, Or Cylindrical Object Patents (Class 73/622)
  • Patent number: 9068938
    Abstract: (A) first data for defect amount estimation for the guided wave of a first frequency is obtained, the data indicating a relationship among amplitude of the reflected wave, a defect cross-sectional area and a defect width. (B) second data for defect amount estimation for the guided wave of a second frequency is obtained, the data indicating a relationship among amplitude of the reflected wave, a defect cross-sectional area and a defect width. (C) a guided wave of the first frequency is generated, and amplitude of a reflected wave is detected as first amplitude. (D) a guided wave of the second frequency is generated, and amplitude of a reflected wave is detected as second amplitude. (E) on a basis of the first and second data and the first and second amplitude, a defect cross-sectional area and a defect width of the defect part are estimated.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: June 30, 2015
    Assignee: IHI Inspection and Instrumentation Co., Ltd.
    Inventors: Koki Daikoku, Masato Yoshizaki, Shuichi Sato
  • Patent number: 9046469
    Abstract: An ultrasonic testing method is provided to measure a thickness of an object in a simple and highly accurate manner when crystal grains that form a metal solidification structure of a directionally-solidified material cast or the like have a statistical variation. An ultrasonic probe 102 causes a longitudinal ultrasonic wave to be incident on a test object 101 in a direction perpendicular to a surface 101A of the test object 101. As a velocity of the longitudinal ultrasonic wave, the average of velocities of longitudinal ultrasonic waves propagating in directions of crystal orientations <100>, <110>, and <210> is used. The thickness of the test object 101 is measured on the basis of the velocity of the ultrasonic wave and a time period for the propagation of the ultrasonic wave.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: June 2, 2015
    Assignee: Mitsubishi Hitachi Power Systems, Ltd.
    Inventors: Naoyuki Kono, Atsushi Baba, Yoshinori Musha
  • Patent number: 9038472
    Abstract: A testing method using a guided wave generates a guided wave to propagate through a subject as a testing target in a longitudinal direction of the subject, detects a reflected wave of the guided wave and examines the subject on the basis of the reflected wave. The testing method includes the steps of (A) obtaining data for defect amount estimation beforehand indicating a relationship between a defect amount of the subject and a magnitude of a reflected wave, (B) generating a guided wave so as to propagate through the subject, and detecting a reflected wave of the guided wave, and (C) estimating a defect amount of the subject on the basis of the data for defect amount estimation obtained at (A) and the magnitude of the guided wave detected at (B).
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: May 26, 2015
    Assignee: IHI Inspection and Instrumentation Co., Ltd.
    Inventors: Koki Daikoku, Masato Yoshizaki, Shuichi Sato
  • Patent number: 9032802
    Abstract: A phased array system and the inspection method which is configured to inspect the weld seam of an HSAW for all standard types of flaws located both near pipe's internal and external surfaces in one scan pass, diminishing the need of making mechanical adjustment for the probes during the one pass of scan. The configuration includes the usage of at least one linear PA probe for Lamination inspection right above HAZ zone, at least one pair of PA probes for longitudinal defects inspection and holes detection and at least two pairs of PA probes for transversal defect inspections.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: May 19, 2015
    Assignee: OLYMPUS NDT
    Inventors: Christophe Imbert, Jinchi Zhang, Benoit Lepage
  • Patent number: 9027405
    Abstract: A method and system for ultrasonic inspection of an axle is disclosed. An ultrasonic probe and wedge are placed on the radial surface of an outboard journal of the axle and an ultrasonic scan is directed toward the inboard journal, wherein the devices mounted on the inboard journal remain mounted during the ultrasonic scan.
    Type: Grant
    Filed: November 20, 2012
    Date of Patent: May 12, 2015
    Assignee: General Electric Company
    Inventors: Anand Hasmukh Desai, Garrett John Vidak, Thomas William Lute, Jr.
  • Patent number: 8997574
    Abstract: Ultrasonic transducers and methods for detecting oblique flaws in cylindrically-shaped objects using pulse-echo testing are provided. By mounting one or more transducers on a rotary tester for testing manufactured objects such as tubes and bars, offsetting each transducer horizontally from its position if it were to emit a beam that is perpendicular to the object's outer surface, and actuating the transducer so as to emit an angled beam, oblique surface flaws and internal flaws may be reliably detected without reducing inspection speed, significantly adding to transducer cross-talk, or requiring significant additional hardware or processing.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: April 7, 2015
    Assignee: Magnetic Analysis Corporation
    Inventor: John Venczel
  • Patent number: 8978476
    Abstract: An ultrasonic signal coupling assembly including ultrasonic transducers attached to one or more ultrasonic couplers configured to be coupled to an exterior surface of a pipe. A height of the ultrasonic coupler or couplers is greater than a thickness of the pipe by a factor of about five or more, and a length of the ultrasonic coupler or couplers is greater than the height of the ultrasonic coupler or couplers.
    Type: Grant
    Filed: November 5, 2012
    Date of Patent: March 17, 2015
    Assignee: General Electric Company
    Inventors: Xiaolei Shirley Ao, Oleg Alexander Khrakovsky, Yue Ma
  • Patent number: 8972206
    Abstract: A system for use in determining a location of a defect in an object is provided. The system includes an ultrasonic phased array configured to provide a sector scan of the object, a display, and a processor. The processor is programmed to provide a volume-corrected view of a sector of an ultrasonic inspection of the object on the display, wherein the object has a first surface defined by a first radius and a second surface defined by a second radius that is shorter than the first radius, receive gate parameters of a gate used to measure a location of a reflection of a beam emitted from the ultrasonic phased array, wherein the reflection is indicative of a defect on the first surface or the second surface, and calculate a location of the defect using the gate.
    Type: Grant
    Filed: January 26, 2012
    Date of Patent: March 3, 2015
    Assignee: General Electric Company
    Inventors: Chad Martin Shaffer, Peter Renzel, Jerome Poirier, Michael Maria Berke, Douglas Paul Lutz, Rai Mohan Dasarathan, Anandamurugan S
  • Patent number: 8966984
    Abstract: An apparatus testing axle shafts including i) at least one ultrasonic probe to analyze, in a selected angular sector, selected portions of a wall exhibiting known variable internal and external radius profiles of a tubular axle shaft and thus acquire analysis data, ii) a controller to determine, as a function of the profiles and possible loading and environment of the shaft, at least one first and at least one second selected site on the external or internal surface of the wall where each probe is to be placed manually, to analyze at least one first and at least one second selected portion of the wall respectively in at least one first and at least one second selected angular sector oriented in first and second opposing longitudinal or transverse directions, and thus acquiring analysis data for various relative angular positions of the shaft in relation to the probe, and iii) a processor to create from these acquired analysis data maps representing the transverse or longitudinal orientations and the positions
    Type: Grant
    Filed: June 16, 2008
    Date of Patent: March 3, 2015
    Assignee: Vallourec Tubes France
    Inventors: Frederic Lesage, Alexandre Noel, Renato Nogueira de Paula
  • Patent number: 8931344
    Abstract: Methods and apparatus for inspecting a flaws in tubular disclosed herein include but are not limited to inspection stations comprising one or more chutes adapted to receive a tubular, an inspection assembly adapted to ultrasonically inspect a tubular in the one or more chutes, and one or more rotators for apply directional forces on the tubular to advance and rotate the tubular in the one or more chutes. The inspection assembly is adapted to ultrasonically inspect tubulars while the tubulars are under a rotational force in the chute. The inspection assembly may be further adapted to identify the end of a tubular in a first chute and index the position of the inspection assembly over a second chute to inspect a tubular loaded in the second chute.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: January 13, 2015
    Inventor: Richard J. Girndt
  • Patent number: 8857263
    Abstract: An ultrasonic probe and a method for the nondestructive testing of a test specimen are described, which are activatable individually or in groups as phased array for the emission or reception of ultrasonic plate waves in a predefinable propagation direction in the test specimen wall to be tested. At least one ultrasonic transducer segment with at least two segment parts emits an ultrasonic plate wave field into the test specimen and which are activatable jointly and simultaneously as a phased array. The at least two segment parts are arranged along a common plane so that the ultrasonic wave fields provided from or received by the at least two segments mutually overlap and each have a main propagation direction which encloses an acute angle ? in a projection of the plane.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: October 14, 2014
    Assignee: Fraunhofer-Gesellschaft zur Forderung der Angewandten Forschung E.V.
    Inventors: Norbert Both, Frank Niese
  • Patent number: 8820163
    Abstract: A nondestructive inspection apparatus includes a pair of guided wave sensors disposed on an outer surface of a piping and a guided wave inspection device connected to the pair of guided wave sensors which, outputs a transmitting signal for propagating a guided wave to the guided wave sensors, and obtains a receiving signal by receiving a propagated signal by the guided wave sensors. An inspection-result storage device stores the guided wave as a digitized signal of the received wave and an inspection-result diagnostic device performs arithmetic processing of judging whether or not a signal associated with a defect exists.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: September 2, 2014
    Assignee: Hitachi-GE Nuclear Energy, Ltd.
    Inventors: Masahiro Miki, Yoshiaki Nagashima, Masao Endou, Kojiro Kodaira, Mitsuru Odakura
  • Patent number: 8800373
    Abstract: A transducer assembly includes an acoustic sensor element and an acoustic waveguide. The acoustic waveguide includes a rotatable acoustic coupler, a tube, and a foot. The foot has a mounting surface that is mountable on a fluid conduit. A circuit assembly couples to acoustic sensor element and provides a diagnostic output.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: August 12, 2014
    Assignee: Rosemount Inc.
    Inventor: Lowell A. Kleven
  • Patent number: 8783111
    Abstract: Provided are an ultrasonic testing probe and an ultrasonic testing apparatus capable of reducing the time required for flaw detection while maintaining the flaw-detection capability, irrespective of the shape of the inner surface of a tested object. A first probe (21) and a second probe (22) are provided, in each of which a plurality of oscillators that transmit ultrasonic waves to a tested object (T) and detect the ultrasonic waves reflected from the tested object (T) are arrayed. The first probe (21) is disposed closer to a flaw in the tested object (T) than the second probe (22) is. The first probe (21) generates longitudinal ultrasonic waves that propagate on an inner surface (T5) of the tested object (T) opposite to an outer surface (T2) thereof where the first probe (21) and the second probe (22) are disposed and transverse ultrasonic waves that propagate from the outer surface (T2) toward an inside of the tested object (T).
    Type: Grant
    Filed: August 12, 2010
    Date of Patent: July 22, 2014
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Hirotoshi Matsumoto, Masatsugu Shimizu, Kiyotaka Aoki, Shinichi Tsuji
  • Patent number: 8776604
    Abstract: An ultrasonic probe for detecting a flaw by ultrasonic waves in a tubular test object includes a plurality of transducers arranged along an annular curved surface, wherein the annular curved surface is obtained by cutting a predetermined spheroid with two parallel planes facing to each other that do not pass through a center of the spheroid and do not sandwich the center of the spheroid, said two parallel planes being orthogonal to a rotational axis of the spheroid. A shape of said annular curved surface is determined so that when transducers appropriately selected from said plurality of transducers are caused to transmit and receive ultrasonic waves, respective internal refraction angles ?? of the ultrasonic waves are approximately equivalent regardless of propagation directions of the ultrasonic waves.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: July 15, 2014
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventor: Masaki Yamano
  • Patent number: 8746070
    Abstract: A method and apparatus for phased array ultrasound testing of piping that complies with present-day codes but allows more thorough flaw detection capability. A tapered wedge with a concave face is calibrated by submerging the wedge under sonic coupling fluid, thereby allowing sonic coupling of the concave wedge face to a flat reference plate with minimal error. The flaw detector is configured to display A-scan and S-scan data concurrently and to sweep between 30-70 degrees. A-scan data corresponding with conventional preferred inspection incidence angle is selected, and reject levels are set to 0% to meet current inspection standards. S-scan data allows for detection of flaws that might otherwise be undetectable using only A-scan data. A palette adjustment feature remaps the colors assigned to lower intensity return values so that they are not displayed on the S-scan, thereby de-cluttering sectorial data without filtering A-scan data.
    Type: Grant
    Filed: April 5, 2012
    Date of Patent: June 10, 2014
    Assignee: Tejas Testing & Inspection, Inc.
    Inventors: William Carol Tippit, Jr., C. Michael Lewis
  • Patent number: 8739630
    Abstract: The invention relates to a nondestructive ultrasonic test method in which at least one ultrasonic pulse is emitted into a workpiece under test by means of at least one ultrasonic transmitter (3), the ultrasonic pulse is reflected on boundary surfaces within the workpiece, the reflected ultrasound is received by at least one ultrasonic receiver (2), and the associated signals are evaluated, the ultrasound penetrating a damping block (4) that is arranged between the workpiece and the transmitter or receiver.
    Type: Grant
    Filed: September 7, 2009
    Date of Patent: June 3, 2014
    Assignee: GE Sensing & Inspection Technology
    Inventors: York Oberdoerfer, Michael Berke, Wolf-Dietrich Kleinert, Jerome Poirier, Sascha Schieke
  • Publication number: 20140144238
    Abstract: An ultrasonic sensor assembly for a test pipe includes a sensor array. The sensor array includes a plurality of sensor elements for detecting a characteristic of the test pipe and included a flexible backing material on which the plurality of sensor elements are supported. The sensor array is adjustable in length to form an adjusted length. An excess portion is removed from the sensor array to form the adjusted length. This adjusted length of the sensor array substantially matches a perimeter distance around an outer surface of the test pipe. An associated method of positioning the ultrasonic sensor assembly on the test pipe is also provided.
    Type: Application
    Filed: November 28, 2012
    Publication date: May 29, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventor: Wei Luo
  • Publication number: 20140137649
    Abstract: A method and system for ultrasonic inspection of an axle is disclosed. An ultrasonic probe and wedge are placed on the radial surface of an outboard journal of the axle and an ultrasonic scan is directed toward the inboard journal, wherein the devices mounted on the inboard journal remain mounted during the ultrasonic scan.
    Type: Application
    Filed: November 20, 2012
    Publication date: May 22, 2014
    Applicant: General Electric Company
    Inventors: Anand Hasmukh Desai, Garrett John Vidak, Thomas William Lute, JR.
  • Patent number: 8667847
    Abstract: An ultrasonic testing apparatus for a pipe end portion, which enables accurate ultrasonic testing, comprises an ultrasonic probe disposed under the pipe end portion. The probe 1 transmits ultrasonic waves to the pipe end portion and receives the ultrasonic waves therefrom. A probe holder houses the probe which is disposed under the pipe end portion to face the pipe end portion and follows the pipe rotation. The probe holder comprises a coupling medium reserver part that surrounds a space between the probe and the pipe end portion to contain a coupling medium therein and comprises a coupling medium reserver part body into which the coupling medium is supplied. An annular bellows part, which communicates with the reserver part body, can expand and contract vertically and an annular spacer, which is attached to the upper side of the bellows part and an upper surface thereof has a flat horizontal surface.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: March 11, 2014
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Kenji Fujiwara, Hiroshi Kubota, Tomoyuki Obata, Masaki Yamano
  • Publication number: 20140060195
    Abstract: An ultrasonic testing equipment of the present invention includes: an ultrasonic probe having a plurality of transducers arranged along a predetermined annular curved surface; a transmission/reception control unit that causes at least two transducers selected from the plurality of the transducers to transmit the ultrasonic waves to and receive the same from the tubular test object and a ultrasonic testing waveform display unit which displays ultrasonic testing waveforms received by the selected transducers radially corresponding to the propagation directions of the ultrasonic waves transmitted from and received by the selected transducers.
    Type: Application
    Filed: August 21, 2013
    Publication date: March 6, 2014
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Masaki YAMANO, Hiroshi Shikada, Kenji Fujiwara
  • Publication number: 20140026667
    Abstract: Apparatus for determining a thickness of a wall of a pipe, featuring a signal processing module configured to respond to signaling containing information about traveling stress waves transmitted to and reflected back from a wall of a pipe by a sensor band that includes a series, ring or array having multiple transducers circumferentially arranged and mounted around, and attached to or clamped onto, an outside wall of the pipe; determine a profile of a thickness of the wall of the pipe corresponding to circumferential locations of the multiple transducers based on the signaling received from the sensor band, and the provides corresponding signaling containing information about the profile of the thickness of the wall of the pipe; and another module configured to receive the corresponding signaling and provide a visual indication of either data or a graph of the thickness of the wall of the pipe.
    Type: Application
    Filed: July 30, 2013
    Publication date: January 30, 2014
    Applicant: CiDRA Corporate Services Inc.
    Inventors: Christian Victor O'KEEFE, Robert J. MARON, Mark R. FERNALD, Timothy J. BAILEY, Alex M. Van der Spek, Michael A. DAVIS, John V. VIEGA
  • Publication number: 20140026666
    Abstract: Apparatus for determining a thickness of a wall of a pipe, featuring a signal processing module configured to respond to signaling containing information about traveling stress waves transmitted to and reflected back from a wall of a pipe by a sensor band that includes a series, ring or array having multiple transducers circumferentially arranged and mounted around, and attached to or clamped onto, an outside wall of the pipe; and determine a profile of a thickness of the wall of the pipe corresponding to circumferential locations of the multiple transducers based on the signaling received from the sensor band; and one or more orientation or rotation sensors, each responding to its orientation in relation to its displacement on the pipe and to provide an orientation signal containing information about the same.
    Type: Application
    Filed: July 29, 2013
    Publication date: January 30, 2014
    Applicant: CIDRA CORPORATE SERVICES INC.
    Inventors: Christian Victor O'KEEFE, Robert J. MARON, Mark R. FERNALD, Timothy J. BAILEY, Alex M. Van der Spek, Michael A. DAVIS, John V. VIEGA
  • Patent number: 8627724
    Abstract: A non-intrusive sensor for in-situ measurement of recession rate of heat shield ablatives. An ultrasonic wave source is carried in the housing. A microphone is also carried in the housing, for collecting the reflected ultrasonic waves from an interface surface of the ablative material. A time phasing control circuit is also included for time-phasing the ultrasonic wave source so that the waves reflected from the interface surface of the ablative material focus on the microphone, to maximize the acoustic pressure detected by the microphone and to mitigate acoustic velocity variation effects through the material through a de-coupling process that involves a software algorithm. A software circuit for computing the location off of which the ultrasonic waves scattered to focus back at the microphone is also included, so that the recession rate of the heat shield ablative may be monitored in real-time through the scan-focus approach.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: January 14, 2014
    Assignee: Alliant Techsystems Inc.
    Inventors: George Papadopoulos, Nicholas Tiliakos, Gabriel Benel, Clint Thomson
  • Patent number: 8601876
    Abstract: The invention may be embodied as a fingerprint scanner having an ultrasonic wave detector, a platen, an ultrasonic wave generator located between the detector and the platen. The invention may be embodied as a method of scanning a finger. One such method includes providing a platen, a detector and a generator, the generator being placed between the platen and the detector. A finger may be provided on the platen, and an ultrasound wave pulse may be sent from the generator toward the finger. The wave pulse may be reflected from the finger, and received at the detector. The received wave pulse may be used to produce an image of the finger.
    Type: Grant
    Filed: June 16, 2010
    Date of Patent: December 10, 2013
    Assignee: Qualcomm Incorporated
    Inventors: John K. Schneider, Jack C. Kitchens, James T. Baker
  • Patent number: 8590381
    Abstract: Equipment of the invention provides ultrasonic flaw detection equipment using a volume focusing flaw detection method, the ultrasonic flaw detection equipment described below. That is, this equipment performs internal flaw detection of a material being tested, the material having a virtually circular cross-sectional shape, and transducers 1 . . . 1 are arranged in an arc along a circle exhibited by the material being tested. Array probes 10 . . . 10 are disposed so as to surround the material being tested. An exciting unit enables flaw detection of the material being tested to be performed by vertical and oblique flaw detection methods.
    Type: Grant
    Filed: March 17, 2009
    Date of Patent: November 26, 2013
    Assignee: Krautkramer Japan, Co., Ltd.
    Inventors: Junichi Murai, Dominique Braconnier
  • Patent number: 8590383
    Abstract: An ultrasonic probe carrier includes a base, a first side arm having a first end thereof attached to the base and a second end thereof extending outwardly from the base on one side of a tube, and a second side arm having a first end thereof attached to the base and a second end thereof extending outwardly from the base on an opposite side of the tube, at least a portion of the first and second side arms being biased towards each other to removably secure the carrier around at least a portion of a circumference of the tube. An ultrasonic probe is attached to the base, and the carrier and ultrasonic probe are rotatable around the tube to scan at least one of: the circumference of the tube and a weld disposed around the circumference of the tube.
    Type: Grant
    Filed: June 24, 2008
    Date of Patent: November 26, 2013
    Assignee: ALSTOM Technology Ltd
    Inventors: Jacques L. Brignac, Robert E. Lucas
  • Patent number: 8578580
    Abstract: According to the present invention, penetrators can be adequately determined as flaws. In particular, a welded zone of a pipe is subjected to ultrasonic flaw detection at least in a pipe axial direction, and the quality of the pipe is evaluated using observed values in units of a predetermined area in a pipe thickness direction and the pipe axial direction. The length of one side of the predetermined area is an ultrasound beam width or more and a pipe thickness or less. The quality of the pipe can be evaluated while shifting the predetermined area in the pipe axial direction by using an average value of the observed values within the predetermined area. The length of one side of the predetermined area can be made an ultrasound beam width or more and a pipe thickness or less.
    Type: Grant
    Filed: May 18, 2007
    Date of Patent: November 12, 2013
    Assignee: JFE Steel Corporation
    Inventors: Yukinori Iizuka, Kazuhito Kenmochi, Hiroyasu Yokoyama, Tomohiro Inoue, Shigeto Sakashita
  • Publication number: 20130283918
    Abstract: A method of using a 1.5D array ultrasonic probe as a component of an inspection system intended for different diameter cylindrical parts without mechanical adjustments of the probe is presented. In particular, the method is presented as a way to improve the near surface resolution over an extended range of cylindrical parts diameter and inspection depths/tubes wall thickness with respect to usual 1D arrays of fixed curvature along the elevation axis. The method relies on a customizable concentric firing pattern of the acoustic pulses with respect to the cylindrical part surface, and on adjustment of the aperture size of the said array. The intended effect is to sharpen and minimize the extent of the front wall echo and to optimize the response from an eventual flaw in the inspected range.
    Type: Application
    Filed: March 29, 2013
    Publication date: October 31, 2013
    Inventors: Jason Habermehl, Jinchi Zhang
  • Patent number: 8544329
    Abstract: An ultrasonic testing equipment includes an ultrasonic probe having a plurality of transducers arranged along a predetermined annular curved surface, a transmission/reception control unit that causes at least two transducers of the plurality of transducers to transmit the ultrasonic waves to and receive the same from a tubular test object and a ultrasonic testing waveform display unit which displays ultrasonic testing waveforms received by the selected transducers radially corresponding to the propagation directions of the ultrasonic waves transmitted from and received by the selected transducers. The waveform display unit displays the waveforms radially with a point of time corresponding to an echo on an incident point of the ultrasonic wave to the test object contained in the waveform as a beginning point and displays circles indicating points of time corresponding to the echo on the internal surface and/or the external surface of the test object around the beginning point.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: October 1, 2013
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Masaki Yamano, Hiroshi Shikada, Kenji Fujiwara
  • Patent number: 8495915
    Abstract: A circumferential angle of incidence ?i of an ultrasonic wave transmitted from an ultrasonic probe 1 upon a tubular test object P and an axial angle of incidence ?i of the ultrasonic wave transmitted from the ultrasonic probe 1 upon the tubular test object P are set based on a ratio of thickness to outer diameter t/D of the tubular test object P so that an internal refraction angle ?k calculated from the circumferential angle of incidence ?i, the axial angle of incidence ?i, and the ratio of thickness to outer diameter t/D of the tubular test object may be not less than 35° and not more than 60°.
    Type: Grant
    Filed: August 28, 2006
    Date of Patent: July 30, 2013
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventor: Masaki Yamano
  • Patent number: 8490492
    Abstract: The invention relates to a process for the destruction-free testing of metallic pipes, in particular seamlessly produced steel pipes, in which method the entire length of the pipe is scanned following the circumference precisely and in this case, in addition to the wall thickness (WD) and the external diameter (Da) being determined, the inner and outer surfaces of the pipe are examined for faults, the faults determined in this process are compared with a predefined permissible reference fault depth RFT (RFT=fault threshold of×% of the nominal wall thickness), the pipes are sent to reworking means if the fault threshold is exceeded, and a requisite minimum wall thickness (WDmin) has to be present in the reworked region after the processing has been carried out.
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: July 23, 2013
    Assignee: V & M Deutschland GmbH
    Inventors: Andreas Groos, Stefan Nitsche
  • Patent number: 8490490
    Abstract: The ultrasonic testing method includes the steps of arranging an ultrasonic probe having a plurality of transducers so as to face a tubular test object P, and causing the transducers appropriately selected from the plurality of transducers to transmit and receive ultrasonic waves so that the ultrasonic waves are propagated in the tubular test object in a plurality of different propagation directions, wherein a ultrasonic testing condition by the ultrasonic probe is set so that respective external refraction angles ?r of the ultrasonic waves in the plurality of propagation directions are approximately equivalent and/or respective internal refraction angles ?k of the ultrasonic waves in the plurality of propagation directions are approximately equivalent.
    Type: Grant
    Filed: August 28, 2006
    Date of Patent: July 23, 2013
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventor: Masaki Yamano
  • Patent number: 8485036
    Abstract: Inspection of circumferential sections of pipe or other conduit using an ultrasonic scanning apparatus is provided, wherein axial drift of the ultrasonic scanning apparatus is prevented using a guide track assembly. The guide track assembly is rigidly coupled to the ultrasonic scanning apparatus in the axial direction, but allows rotational motion of the ultrasonic scanning apparatus directly along the outer surface of the conduit using a drive chain that is driven by a circumferential drive. Secure rotational motion without drift between the guide track assembly and the ultrasonic scanning apparatus is maintained by the rigid coupling and by a spring-loaded wheel housing assembly that maintains contact of wheels that travel along the guide track. The ultrasonic scanning apparatus includes a transducer with spring-loaded gimbaling that maintains optimal proximity with the conduit surface. The transducer is translated axially along linear journals that extend along the conduit with a linear actuator.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: July 16, 2013
    Assignee: GE-Hitachi Nuclear Energy Americas LLC
    Inventors: Thomas H. Crumpton, Edmund S. Mercier
  • Patent number: 8478563
    Abstract: A device for the dimensional characterization of an object comprising a cylindrical surface which is symmetrical about a longitudinal axle. The device comprises at least six probes used to emit six pulsed waves, each probe being respectively oriented towards a separate measuring point of the cylindrical surface, and to collect the pulsed waves reflected at each measuring point. The device calculates a position of each measuring point, and calculates a characteristic curve of the cylindrical surface by interpolation from the corresponding position of each of the points.
    Type: Grant
    Filed: May 19, 2005
    Date of Patent: July 2, 2013
    Assignee: Socomate International
    Inventor: Philippe Coperet
  • Publication number: 20130160309
    Abstract: A system and method for measuring a pipe is provided. The system includes a frame rotatably receiving the pipe, a carriage movably positionable along the frame, a guide floatingly positionable about the carriage, at least one sensor for measuring a position of the pipe, and a measurement unit operatively linked to the sensor for collecting measurements therefrom. The guide has a mouth that receivingly engages the pipe and axially aligns therewith. The pipe is measured with the sensor(s) while moving at least one of the pipe, the carriage and the guide.
    Type: Application
    Filed: November 30, 2012
    Publication date: June 27, 2013
    Applicant: NATIONAL OILWELL VARCO, L.P.
    Inventor: National Oilwell Varco, L.P.
  • Patent number: 8397575
    Abstract: Ultrasonic transducers and methods for detecting oblique flaws in cylindrically-shaped objects using pulse-echo testing are provided. By mounting one or more transducers on a rotary tester for testing manufactured objects such as tubes and bars, offsetting each transducer horizontally from its position if it were to emit a beam that is perpendicular to the object's outer surface, and actuating the transducer so as to emit an angled beam, oblique surface flaws and internal flaws may be reliably detected without reducing inspection speed, significantly adding to transducer cross-talk, or requiring significant additional hardware or processing.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: March 19, 2013
    Assignee: Magnetic Analysis Corporation
    Inventor: John Venczel
  • Patent number: 8393217
    Abstract: The present invention has a structure capable of detecting the scattered-type penetrator having oxides each with the size of several ?m sparsely and widely dispersed. Specifically, the structure includes a wave transmission unit 6 for transmitting an ultrasonic wave to the welded surface of the welded portion 2 in a pipe axial direction of the pipe 1 such that the beam width of a transmission beam 8 is brought into a range from 0.5 mm to 2.5 mm, and a wave reception unit 7 for receiving at least a portion of the reflection wave (reception beam 9) at the welded surface. The wave transmission unit 6 and the wave reception unit 7 include transmission/reception units formed of different groups of transducer elements on at least one or more array probes 5 arranged in the circumferential direction of the pipe.
    Type: Grant
    Filed: May 18, 2007
    Date of Patent: March 12, 2013
    Assignee: JFE Steel Corporation
    Inventors: Yukinori Iizuka, Kazuhito Kenmochi, Hiroyasu Yokoyama, Tomohiro Inoue, Shigeto Sakashita
  • Patent number: 8393218
    Abstract: An ultrasonic testing apparatus 100 comprises an ultrasonic probe 1 including n (n?2) number of transducers arranged along a predetermined direction, disposed so as to face a test object P, and a transmission/reception control device 2 for selecting m (n>m?1) number of transducers from among the n number of transducers, transmitting ultrasonic waves from the selected m number of transducers toward the test object, receiving the ultrasonic waves therefrom, and switched m number of transducers to b selected successively. If an angle that the arrangement direction of the transducers makes with the surface of the test object which ultrasonic waves enter is ?, and the effective beam width of each selected m number of transducers with respect to a target flaw is W1, the transmission/reception control device switches m number of transducers to be selected successively by a switching pitch length P satisfying the formula: P?W1·cos ?.
    Type: Grant
    Filed: November 18, 2009
    Date of Patent: March 12, 2013
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Masaki Yamano, Masami Ikeda, Kenji Fujiwara, Hiroshi Kubota
  • Patent number: 8387462
    Abstract: Provided are an ultrasonic testing method and an ultrasonic testing apparatus capable of accurately detecting flaws present in a weld zone of a test object, such as a welded pipe, regardless of the position of the flaws. An ultrasonic testing apparatus 100 includes an ultrasonic probe 1 which is provided with n (n?2) transducers 11 arranged along a direction orthogonal to the weld line of a weld zone P1 of a test object P and is arranged so as to face the weld zone, and transmission/reception control means 2 which selects m (n>m?1) transducers from the n transducers, causes the selected transducers to transmit and receive ultrasonic waves to and from the weld zone, and switches the selected transducers one after another.
    Type: Grant
    Filed: November 18, 2009
    Date of Patent: March 5, 2013
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Masaki Yamano, Hiroyuki Okubo, Takumi Horikiri
  • Patent number: 8375795
    Abstract: The invention relates to a method for the non-destructive ultrasound inspection of a high-pressure line as a testing piece by means of the pulse-echo method, where the high-pressure line is conveyed to a near-field range of at least one ultrasonic transducer and an ultrasonic pulse is emitted with a perpendicular sound incidence on the high-pressure line in such a way that the high-pressure line is completely captured in its cross section by the near-field sound emission caused by the ultrasonic transducer, and the reflected ultrasonic pulse(s) is/are received by the ultrasonic transducer and/or, optionally, further ultrasonic transducers, the associated echo delay times are recorded and, optionally, evaluated.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: February 19, 2013
    Assignee: GE Sensing & Inspection Technologies GmbH
    Inventors: Dieter Lingenberg, Reinhard Prause
  • Patent number: 8365602
    Abstract: A weld seam tracking device for tracking weld seams on pipes or the like uses NDT/NDI sensor(s) in conjunction with an NDT/NDI operation, such as an ultrasonic phased array (PA) inspection. Processing of the weld seam tracking data is integrated or combined with the existing data processing element of the existing NDT/NDI inspection devices. Wide scanning areas of phased array probes allow weld seam tracking and inspection to be performed using a single set of probe and data processing elements to achieve both fault scanning and seam tracking with a single run of the PA scan.
    Type: Grant
    Filed: October 9, 2009
    Date of Patent: February 5, 2013
    Assignee: Olympus NDT, Inc.
    Inventors: Christophe Claude Imbert, Jinchi Zhang
  • Patent number: 8365603
    Abstract: Device forming an operating tool, for the non-destructive testing of iron and steel products, intended to extract information on possible imperfections in the product, from feedback signals that are captured by transmitting ultrasound sensors, receiving ultrasound sensors forming an arrangement with a selected geometry, assembled to couple in an ultrasound way with the product via the intermediary of a liquid medium, with relative rotation/translation movement between the pipe and the arrangement of transducers, said operating tool being characterized in that it comprises: a converter (891; 892) capable of selectively isolating a digital representation of possible echoes in designated time windows, as a function of the relative rotation/translation movement, said representation comprising the amplitude and time of flight of at least one echo, and of generating a parallelepipedic 3D graph, a transformer unit (930) capable of generating a 3D image (901; 902) of possible imperfections in the pipe from the 3D gra
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: February 5, 2013
    Assignee: V & M France
    Inventors: Frederic Lesage, Nidia Alejandra Segura Rodriguez, Bernard Bisiaux
  • Publication number: 20130019686
    Abstract: A method and apparatus for collecting ultrasonic test data from a railway wheel with an ultrasonic testing apparatus is described. The railway wheel is supported by two drive rollers, each having an indentation which engages with and rotates the wheel. An indexing transducer moves across the rotating wheel, collecting ultrasonic test data while a fixed transducer correlates a reference position on the wheel to the collected test data. To maintain the accuracy of the reference position to the collected test data, it is desirable to maintain the rotational stability of the wheel, minimizing any dynamic instability caused by dimensional tolerances in the wheel. To mitigate instabilities resulting from dimensional tolerances, the indentation of the drive rollers, which engage and drive the flange of the wheel, is adjustable by the flexing design of the drive rollers to maintain frictional contact between the wheel and the drive roller.
    Type: Application
    Filed: July 19, 2011
    Publication date: January 24, 2013
    Applicant: AMSTED Rail Company, Inc.
    Inventors: John R. Oliver, John D. Oliver
  • Patent number: 8358126
    Abstract: A method of testing for defects in the bottom of an above ground storage tank, the tank bottom having a lip extending outwardly from the tank wall around the circumference of the tank. A special magnetostrictive sensor is designed to be placed on this lip. The sensor is placed over a strip of magnetostrictive material, which generally conforms in length and width to the bottom of the probe, with a couplant being applied between the strip and the lip surface. The sensor is then operated in pulse echo mode to receive signals from defects in the bottom of the tank. It is incrementally moved around the circumference of the tank.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: January 22, 2013
    Assignee: Southwest Research Institute
    Inventors: Glenn M Light, Alan R Puchot, Adam C Cobb, Erika C Laiche
  • Patent number: 8354842
    Abstract: A segmented magnetostrictive patch array transducer capable of generating a high frequency shear wave in a structure such as a rod or a pipe, a structural fault diagnosing apparatus including the segmented magnetostrictive patch array transducer, and a method of operating the segmented magnetostrictive patch array transducer are shown. The segmented magnetostrictive patch array transducer includes a plurality of magnetostrictive patches attached along a circumference of a rod member; a plurality of insulators that are disposed on the magnetostrictive patches; a plurality of meander coils, each of the meander coils comprising a plurality of coil lines extending along the circumference direction of the rod member on each of the insulators, wherein a current flows through adjacent coil lines in opposite directions to one another; and a plurality of magnets that respectively form a magnetic field along the circumferential direction of the rod member on the magnetostrictive patches.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: January 15, 2013
    Assignee: SNU R&DB Foundation
    Inventors: Hoe Woong Kim, Young Eui Kwon, Yoon Young Kim
  • Publication number: 20120297882
    Abstract: An apparatus for pipeline inspection includes a body including a longitudinal axis and a sensor unit in association with the body. The sensor unit has an array of ultrasonic sensors configured to inspect a pipe wall. The sensor unit includes a skid having an outer surface intended to run adjacent or in contact with a pipe wall. The sensor unit also includes a recess, wherein the sensors are arranged in the recess at a predetermined stand off from the outer surface of the skid. The sensor unit also includes a flushing system configured to direct pipeline fluid through the recess to flush debris from the recess when the outer surface of the skid is in contact with a pipe wall.
    Type: Application
    Filed: May 18, 2012
    Publication date: November 29, 2012
    Inventors: Robert Palma, Willliam Herron
  • Patent number: 8297122
    Abstract: A method for processing ultrasonic response signals collected from a plurality of measurement locations along a weld of a test sample to determine the presence of defects in the weld may include filtering an ultrasonic response signal from each measurement location to produce a plurality of filtered response signals for each measurement location, wherein each filtered response signal corresponds to specific types of defects. Thereafter, a plurality of energy distributions may be calculated for the weld based on the plurality of filtered response signals for each measurement location. The plurality of energy distributions may be compared to corresponding baseline energy distributions to determine the presence of defects in the weld.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: October 30, 2012
    Assignee: Georgia Tech Research Corporation
    Inventors: Ifeanyi Charles Ume, Tsun-Yen Wu, Matthew Rogge
  • Publication number: 20120227499
    Abstract: The internal state of a tube system is detected and monitored by coupling multiple inspection modules to the tube system. Each inspection module injects a signal into the tube system and detects reflections of the signals. The distance between the module and the fault causing a reflection is determined by analyzing the timing between the transmitted signal and detected reflection, along with a known propagation speed of the signals. The location of faults is determined by comparing the distance calculations from two or more inspection modules. Monitoring can be performed over time to identify the development or changes of faults. Monitoring can be done while tube system is active without disrupting the flow of material through the active tube system.
    Type: Application
    Filed: November 17, 2010
    Publication date: September 13, 2012
    Inventors: Noam Amir, Tal Pechter
  • Patent number: 8265886
    Abstract: A non-destructive testing device for pipes is provided. The device extracts information on defects from signals captured by ultrasound receivers following the selective excitation of ultrasound transmitters according to a selected time rule. The receivers form an arrangement with a selected geometry, coupled in an ultrasound fashion, with relative rotation/translation movement, with the pipe. The device includes a converter that selectively isolates a digital representation of echoes in designated time windows, as a function of the movement, and by extracting an image of defects, a filter which determines presumed defect zones and properties of these, a combiner to prepare working digital inputs from an extract of images of a defect zone, a neural circuit receiving the working inputs, a digital decision and alarm stage working on the basis of the output of the neural circuit, and a sorting and marking robot.
    Type: Grant
    Filed: June 25, 2007
    Date of Patent: September 11, 2012
    Assignee: V & M France
    Inventors: Bernard Bisiaux, Frédéric Lesage, Sébastien Petit, Sylvain Deutsch