Semiconductor Patents (Class 73/754)
  • Patent number: 11415473
    Abstract: If the bridge circuit fails due to damage of the diaphragm, the damage is detected at an early stage. A pressure sensor comprises: a substrate provided with a diaphragm; a bridge circuit having four resistor devices provided at the diaphragm, the bridge circuit being applied with high-voltage-side voltage and low-voltage-side voltage, and having two output terminals; a detecting unit for detecting a first output at a first output terminal and a second output at a second output terminal, each output terminal being of the bridge circuit; and a failure detecting unit for detecting failure of the bridge circuit based on a detection result at the detecting unit.
    Type: Grant
    Filed: September 27, 2020
    Date of Patent: August 16, 2022
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventor: Kazuhiro Matsunami
  • Patent number: 11408789
    Abstract: A pressure sensor module, comprising: a pressure measuring cell; and a mounting ring. The pressure measuring cell includes a platform and a measuring membrane, whose front face extends parallel to the rear face of the platform. The mounting ring has a mounting passageway with an inner mounting surface, which defines an inner axial stop plane for mounting the pressure measuring cell, wherein the mounting ring has an outer mounting surface, and the pressure measuring cell is inserted with the rear face preceding into the mounting passageway. The rear face of the platform is adhered with the inner mounting surface, wherein the inner mounting surface has a shoulder, which extends from an inner lateral surface of the mounting ring radially inwards. The mounting surface has between the axial stop surface and the inner lateral surface an annularly surrounding recess, in order to accommodate excess adhesive in the case of the adhering of the axial stop surface with the rear face of the platform.
    Type: Grant
    Filed: May 24, 2016
    Date of Patent: August 9, 2022
    Inventors: Volkmar Rech, Sergej Lopatin, Claudia Nowak
  • Patent number: 11362012
    Abstract: In a semiconductor device, a first protection film covers an end portion of a first metal layer disposed on a semiconductor substrate, and has a first opening above the first metal layer. A second metal layer is disposed on the first metal layer in the first opening. An oxidation inhibition layer is disposed on the second metal layer in the first opening. A second protection film has a second opening and covers an end portion of the oxidation inhibition layer and the first protection film. The second protection film has an opening peripheral portion on a periphery of the second opening, and covers the end portion of the oxidation inhibition layer. An adhesion portion adheres to a portion of a lower surface of the opening peripheral portion. The adhesion portion has a higher adhesive strength with the second protection film than the oxidation inhibition layer.
    Type: Grant
    Filed: October 15, 2020
    Date of Patent: June 14, 2022
    Inventor: Yasushi Okura
  • Patent number: 11350217
    Abstract: A micromechanical sound transducer according to a first aspect includes a first bending transducer with a free end and a second bending transducer with a free end, the two bending transducers being arranged in a mutual plane, wherein the free end of the first bending transducer is separated from the free end of the second bending transducer via a slit. The second bending transducer is excited in-phase with the vertical vibration of the first bending transducer. A micromechanical sound transducer according to a second aspect includes a first bending transducer that is excited to vibrate vertically and a diaphragm element extending vertically to the first bending transducer, the diaphragm element being separated from a free end of the first bending transducer via a slit.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: May 31, 2022
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Fabian Stoppel, Bernhard Wagner, Shanshan Gu-Stoppel
  • Patent number: 11319466
    Abstract: One aspect of the present invention is an adhesive film comprising: a first adhesive layer comprising a first adhesive component, a first conductive particle that is a dendritic conductive particle, and a second conductive particle that is a conductive particle other than the first conductive particle, the second conductive particle comprising a nonconductive core body and a conductive layer provided on the core body; and a second adhesive layer comprising a second adhesive component, wherein a volume proportion of the second adhesive component in the second adhesive layer is larger than a volume proportion of the first adhesive component in the first adhesive layer.
    Type: Grant
    Filed: February 14, 2018
    Date of Patent: May 3, 2022
    Inventors: Tetsuyuki Shirakawa, Hiroyuki Izawa, Tatsuya Kumada
  • Patent number: 11255740
    Abstract: The present invention is related to a sensor. In particular, the present invention is related to a pressure sensor die and its fabrication process. The pressure sensor comprises a chamber inside which a pressure sensor die is provided. The pressure sensor die is uniformly compressed by the external pressure to be measured and can deform freely inside the chamber. The pressure sensor die is primarily constructed of single crystalline silicon and comprises a substrate and a cap connected together. A recess is formed on the cap. The recess forms a sealed cavity with the substrate. A silicon oxide layer is formed between the substrate and the cap. The substrate further comprises a plurality of piezoresistive sensing elements which are located inside the sealed cavity. The present pressure sensor is more immune to temperature effects. It is especially suitable for operating in a high temperature, high pressure environment and is capable of delivering accurate and reliable pressure measurements at low cost.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: February 22, 2022
    Assignee: Chinese Academy of Sciences Institute of Geology and Geophysics
    Inventors: Kevin Chau, Man Wong
  • Patent number: 11248975
    Abstract: A method for expanding the dynamic range of a capacitive pressure sensor and a capacitive pressure sensor having an expanded dynamic range are provided. The capacitive pressure sensor may comprise capacitive plates. At least one plate may be contoured to increase a surface area exposed to the other of the capacitive plates. The capacitive pressure sensor may comprise a diaphragm that is movably responsive to pressure. The diaphragm may have a hollowed volume within an interior of the diaphragm operative to increase a flexibility of the diaphragm in response to the pressure. The capacitive pressure sensor may be one of a plurality of capacitive pressure sensors in a pressure sensing device. The capacitive pressure sensors may have different capacitive responses and may each output a pressure measurement, whereby the device may select a pressure measurement to output based at least in part on the capacitive responses.
    Type: Grant
    Filed: March 17, 2020
    Date of Patent: February 15, 2022
    Assignee: Fluke Corporation
    Inventor: Timothy Byron Brown
  • Patent number: 11242472
    Abstract: One aspect of the present invention is an adhesive film comprising a first adhesive layer comprising a first conductive particle that is a dendritic conductive particle; and a second adhesive layer containing a second conductive particle that is a conductive particle other than the first conductive particle, the second conductive particle comprising a nonconductive core body and a conductive layer provided on the core body.
    Type: Grant
    Filed: February 14, 2018
    Date of Patent: February 8, 2022
    Inventors: Tetsuyuki Shirakawa, Hiroyuki Izawa, Takahiro Fukui, Tatsuya Kumada
  • Patent number: 11243131
    Abstract: A resonant pressure sensor includes a first substrate including a diaphragm and at least one projection disposed on the diaphragm, and at least one resonator disposed in the first substrate, at least a part of the resonator being included in the projection, and the resonator being disposed between a top of the projection and an intermediate level of the first substrate.
    Type: Grant
    Filed: August 15, 2014
    Date of Patent: February 8, 2022
    Assignee: Yokogawa Electric Corporation
    Inventors: Takashi Yoshida, Yuusaku Yoshida, Atsushi Yumoto, Yoshitaka Suzuki
  • Patent number: 11193842
    Abstract: Pressure sensor assemblies comprise a sensor body having a sensing membrane and wherein a fluid is placed in communication with the membrane to determine a fluid pressure. A support is connected with the body and includes an opening for receiving the fluid from an external source, wherein the opening is in fluid-flow communication with the membrane. The pressure sensor comprises one or more elements disposed therein configured to mitigate transmission of a fluid pressure spike to the sensing membrane. The body or the support may have a pressure mitigating element, e.g., an internal channel, for receiving the fluid from the opening and transferring it to the membrane, wherein the channel may itself be configured to provide the desired protection against fluid pressure spikes, or may be connected with another internal element to provide such protection.
    Type: Grant
    Filed: June 6, 2019
    Date of Patent: December 7, 2021
    Inventors: Martin Pfeiffer, Predrag Drljaca, Jean-Francois Le Néal, David Eric Wagner, Schahrazède Mouaziz
  • Patent number: 11112512
    Abstract: A system for collecting and managing seismic data via an external communications network comprises one or more seismic stations, each including a seismic measurement apparatus producing seismic signals, a station processor converting the signals to seismic data, a station memory securely storing the seismic data on site and a station communication interface transmitting the seismic data onto an external network. The system further comprises one or more data servers, each including a server computing device, a server communication interface receiving the seismic data from the seismic stations and a server memory storing the received seismic data. The data server can determine if the received seismic data satisfies predetermined conditions for certification and/or triggering a payout in accordance with a contract, and can thereafter transmit the appropriate data signals to another location on the external communications network.
    Type: Grant
    Filed: August 6, 2019
    Date of Patent: September 7, 2021
    Inventors: Bradley I. Meier, Evan M. Glassman
  • Patent number: 11004929
    Abstract: Various examples provide an electronic device that includes first and second resistor segments. Each of the resistor segments has a respective doped resistive region formed in a semiconductor substrate. The resistor segments are connected between first and second terminals. The first resistor segment is configured to conduct a current in a first direction, and the second resistor segment is configured to conduct the current in a second different direction. The directions may be orthogonal crystallographic directions of the semiconductor substrate.
    Type: Grant
    Filed: October 9, 2019
    Date of Patent: May 11, 2021
    Inventors: Dok Won Lee, Erika Lynn Mazotti, Mark Robert Visokay, William David French, Ricky Alan Jackson, Wai Lee
  • Patent number: 10978595
    Abstract: Disclosed is a thin-film transistor-based pressure sensor including a gate electrode; a gate dielectric layer provided on the gate electrode; a semiconductor layer provided on the gate dielectric layer; and a source electrode and a drain electrode provided on the semiconductor layer, wherein each of the source and drain electrodes has an elastic body that includes: an elastic part having a protrusion; and a conductive part provided on a surface of the elastic part and having a conductive material. According to the pressure sensor and a method of manufacturing the same of the present invention, the elastic body coated with the conductive material is patterned to serve as the source electrode and the drain electrode of the pressure sensor whereby it is possible to drive an active matrix, drive the pressure sensor with low power, and manufacture the pressure sensor through a simple process.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: April 13, 2021
    Inventors: Sanghoon Baek, Sungjune Jung, Jimin Kwon, Geunyeol Bae, Kilwon Cho
  • Patent number: 10947109
    Abstract: A method for producing a semiconductor component is proposed. The method includes providing a housing. At least one semiconductor chip is arranged in a cavity of the housing. Furthermore, an electrical contact of the semiconductor chip is connected to an electrical contact of the housing via a bond wire. The method furthermore includes applying a protective material on the electrical contact of the semiconductor chip and also on a region of the bond wire which is adjacent to the electrical contact of the semiconductor chip, and/or on the electrical contact of the housing and also on a region of the bond wire which is adjacent to the electrical contact of the housing. Moreover, the method also includes filling at least one partial region of the cavity with a gel.
    Type: Grant
    Filed: September 26, 2018
    Date of Patent: March 16, 2021
    Inventors: Mathias Vaupel, Bernhard Knott, Horst Theuss
  • Patent number: 10921206
    Abstract: Disclosed is an apparatus which has, among other things, a MEMS device with a first measurement arrangement for capturing a measurement variable (X1) based on a physical variable, which has a useful variable component (N1) and a first disturbance variable component (Z1), and a second measurement arrangement for capturing a second disturbance variable component (Z2). The apparatus furthermore has a disturbance compensation circuit which is configured to combine the second disturbance variable component (Z2) and the measurement variable (X1) with one another and to obtain a disturbance-compensated measurement variable (Xcomp). The MEMS device is arranged in a housing, wherein the MEMS device is in immediate mechanical contact with the housing by way of at least 50% of a MEMS device surface.
    Type: Grant
    Filed: August 20, 2018
    Date of Patent: February 16, 2021
    Assignee: Infineon Technologies AG
    Inventors: Benjamin Kollmitzer, Franz Michael Darrer, Philipp Greiner, Marcus Edward Hennecke, Walter Schuchter, Christoph Steiner
  • Patent number: 10901545
    Abstract: A sensor having a set of grid of bars that are in contact from their bottom at the corners with a set of protrusions that are in contact from above with a plurality of intersections, each having a sensing element, of a grid of wires disposed on a base, and a top surface layer that is disposed atop the grid of bars, so that force imparted from above onto the top surface layer is transmitted to the grid of bars and thence to the protrusions, and thence to the intersections of the grid of wires which are thereby compressed between the base and protrusions; and that the protrusions above thereby focus the imparted force directly onto the intersections. A sensor includes a computer in communication with the grid of wires which causes prompting signals to be sent to the grid of wires and reconstructs a continuous position of force on the surface from interpolation based on data signals received from the grid of wires. A method for sensing.
    Type: Grant
    Filed: December 19, 2016
    Date of Patent: January 26, 2021
    Inventors: Kenneth Perlin, Charles Hendee, Alex Grau, Gerald Seidman
  • Patent number: 10870577
    Abstract: A method of forming an acoustic transducer comprises providing a substrate and depositing a first structural layer on the substrate. The first structural layer is selectively etched to form at least one of an enclosed trench or an enclosed pillar thereon. A second structural layer is deposited on the first structural layer and includes a depression or a bump corresponding to the enclosed trench or pillar, respectively. At least the second structural layer is heated to a temperature above a glass transition temperature of the second structural layer causing the second structural layer to reflow. A diaphragm layer is deposited on the second structural layer such that the diaphragm layer includes at least one of a downward facing corrugation corresponding to the depression or an upward facing corrugation corresponding to the bump. The diaphragm layer is released, thereby forming a diaphragm suspended over the substrate.
    Type: Grant
    Filed: October 4, 2019
    Date of Patent: December 22, 2020
    Assignee: Knowles Electronics, LLC
    Inventors: Sung Bok Lee, Vahid Naderyan, Bing Yu, Michael Kuntzman, Yunfei Ma, Michael Pedersen
  • Patent number: 10744981
    Abstract: An electromechanical braking (EMB) connector for electrical communication between an interior of a brake caliper assembly and an exterior of the brake caliper assembly is disclosed. The EMB connector includes a body having a distal end for insertion into the interior of the brake caliper assembly and a proximal end for exposure on the exterior of the brake caliper assembly, with the distal end and the proximal end defining a body axis. The EMB connector also includes a load sensor connector for coupling with a load sensor disposed on the interior of the brake caliper assembly. The load sensor connector is compressible along a load sensor axis that is substantially perpendicular to the body axis. The EMB connector further includes a conductive component coupled to the load sensor connector. The conductive component enables electrical connection of the load sensor to the exterior of the brake caliper assembly.
    Type: Grant
    Filed: June 6, 2018
    Date of Patent: August 18, 2020
    Inventor: Ruben Auer
  • Patent number: 10648880
    Abstract: Provided are a pressure sensor device and a method of manufacturing the same. The pressure sensor device includes a housing including an air inlet and a fluid inlet provided in different directions, a substrate provided in an inner space of the housing and including a through-hole through which the air passes, and a pressure sensor chip mounted on the substrate to cover the through-hole in such a manner that a pressure of a fluid flowing in from the fluid inlet is applied to a top surface thereof and a bottom surface thereof is exposed to the air through the through-hole, in order to measure the pressure of the fluid relative to a pressure of the air, wherein the inner space is divided into an upper region and a lower region with respect to the substrate, and wherein the upper region is divided into a first inner region in which the pressure sensor chip is provided and a second inner region through which the air passes.
    Type: Grant
    Filed: April 11, 2016
    Date of Patent: May 12, 2020
    Inventors: Hyuk Hwi Na, Ho Seok Hwang, Ja Guen Gu, Hyang Won Kang
  • Patent number: 10598557
    Abstract: A pressure sensing device that includes a pressure sensing element that is of microscopic scale and has a pressure level dependent thermal parameter; a signal source that is configured to supply an input electrical signal to the pressure sensing element; and a monitor that is configured to (a) measure electrical output signals generated by the pressure sensing element as a result of the supply of the input electrical signal and (b) estimate a pressure level applied on the pressure sensing element based on the electrical output signals.
    Type: Grant
    Filed: July 12, 2016
    Date of Patent: March 24, 2020
    Assignee: Todos Technologies Ltd.
    Inventor: Yael Nemirovsky
  • Patent number: 10590862
    Abstract: An internal combustion engine, as a drive engine for a vehicle, including an engine braking device having a throttle element which is associated with an exhaust gas section, for damming an exhaust gas which is emitted by a combustion device, and including a measuring device by means of which the exhaust gas pressure can be measured at a defined measuring region of the exhaust gas section upstream of the throttle element as seen in the exhaust gas flow direction. According to the disclosure, it is provided that at least one further measuring device is provided, by means of which the exhaust gas pressure can be measured at the defined measuring region, for realizing a redundant exhaust gas pressure measurement, and the measurement signals which are determined by means of the measuring devices can be transmitted to a controller for controlling the throttle element.
    Type: Grant
    Filed: June 22, 2018
    Date of Patent: March 17, 2020
    Assignee: MAN TRUCK & BUS AG
    Inventors: Manfred Fesl, Sebastian Reichert
  • Patent number: 10563896
    Abstract: A manifold assembly is configured to calibrate and test one or more superheat controllers and includes a manifold frame, a manifold having a plurality of fluid conduits mounted to the manifold frame, and a plurality of superheat controller fittings mounted to the fluid conduits, each superheat controller fitting configured to have a superheat controller attached thereto.
    Type: Grant
    Filed: January 10, 2019
    Date of Patent: February 18, 2020
    Assignee: DunAn Microstaq, Inc.
    Inventors: Buu C. Chung, Wayne C. Long, Arvind Rao, Chen Yang, Joseph Nguyen, Joe A. Ojeda, Sr., Colin B. Bingle
  • Patent number: 10556791
    Abstract: Monolithic integration of microelectromechanical systems (MEMS) sensors with complementary oxide semiconductor (CMOS) electronics for pressure sensors is a very challenging task. This is primarily due to the requirement for a very high quality thin diaphragm to provide the pressure dependent MEMS deformation that can be sensed and, when seeking absolute rather than relative pressure sensors, a sealed reference cavity. Accordingly, a new manufacturing process is established based upon back-etching and bonding of a monolithic absolute silicon carbide (SiC) capacitive pressure sensor. Beneficially, the process embeds the critical features of the MEMS within a shallow trench formed within the silicon substrate and then processing the CMOS circuit. The process further benefits as it maintains that those elements of the MEMS element fabrication process that are CMOS compatible are implemented concurrently with those CMOS steps as well as the metallization steps.
    Type: Grant
    Filed: July 19, 2017
    Date of Patent: February 11, 2020
    Assignee: King Abdulaziz City for Science and Technology
    Inventors: Tariq Salim Alsaiary, Ibrahim Abdullah Alhomoudi
  • Patent number: 10551355
    Abstract: Provided are a highly reliable probe including a light reflecting layer, which is resistant to the falling off of the light reflecting layer, and an information obtaining apparatus using the same. The probe includes: an element including at least one cell, each cell including a first electrode provided on a substrate, and a vibration membrane including a second electrode provided across a gap from the first electrode; an acoustic impedance matching layer disposed above the element; and a light reflecting layer. The light reflecting layer is fixed to the substrate via an adhesive layer.
    Type: Grant
    Filed: March 22, 2016
    Date of Patent: February 4, 2020
    Inventors: Eiji Takeuchi, Yoshio Hotta
  • Patent number: 10512954
    Abstract: A method to prevent groundings of polycrystalline silicon rod holders to a reactor plate by the residual polymer in the following manner: first, providing a polycrystalline silicon reactor having a reactor plate with a plurality of silicon rod holders separated from the reactor plate with an insulation; next establishing an electrical circuit from a ground connection on the reactor plate connected to high potential test equipment to a high voltage probe; and finally completing the electrical circuit by contacting the high voltage probe to the holder. By this method any remaining polymer is physically removed as the polymer burns or is ejected by the energetic release caused by mild arcing from the holder to the reactor plate.
    Type: Grant
    Filed: May 2, 2018
    Date of Patent: December 24, 2019
    Assignees: Mitsubishi Polycrystalline Silicon America Corporation (MIPSA), MITSUBISHI MATERIALS CORPORATION
    Inventors: Mark Servos, Steve Varnes, Matthias Colomb
  • Patent number: 10481748
    Abstract: A display panel and a display apparatus are provided. The display panel includes a display area and a non-display area surrounding the display area. The display panel includes at least one semiconductor pressure sensor disposed in the non-display area. Each semiconductor pressure sensor has a planar structure and is provided with a hollow-out zone. In various embodiments of the present disclosure, the pressure detection accuracy of the pressure sensors is improved and the user experience is enhanced.
    Type: Grant
    Filed: November 15, 2017
    Date of Patent: November 19, 2019
    Inventors: Zaiwen Zhu, Jieliang Li, Yong Yuan, Feng Lu, Qijun Yao, Hongming Chen
  • Patent number: 10466229
    Abstract: A sensor assembly comprises a substrate arrangement and a sensor chip mounted to the substrate arrangement. A sensing element is integrated on or in the sensor chip and is sensitive to at least one parameter of a fluid. An access opening is provided in the substrate arrangement enabling the fluid to access the sensing element. A metallization arranged on at least a portion of the substrate arrangement seals a chamber containing the sensor chip which portion comprises one or more of a wall defining the access opening or an area facing the sensor chip.
    Type: Grant
    Filed: July 28, 2017
    Date of Patent: November 5, 2019
    Assignee: SENSIRION AG
    Inventors: Matthias Schibli, Daniel Lehmann
  • Patent number: 10422710
    Abstract: A semiconductor differential pressure sensor includes a pressure detection element, which is arranged such that its main surface is fixed on a top of a first protrusion with an adhesive while a second protrusion is fitted into its opening. Thus, the pressure detection element is held with high holding power at an exact position. Moreover, the adhesive does not flow into a first pressure introducing path, whereby blocking of the first pressure introducing path is prevented. Furthermore, by providing a recess around the first protrusion, influence of thermal deformation of a resin package on pressure detection characteristics is decreased.
    Type: Grant
    Filed: July 3, 2017
    Date of Patent: September 24, 2019
    Assignee: Mitsubishi Electric Corporation
    Inventor: Hiroyuki Kishimoto
  • Patent number: 10413740
    Abstract: A method for producing a feedthrough component of a medical electronic device, in particular an implantable device, wherein a feedthrough main body, in particular made of ceramic, is produced and is provided over a large area with a metal coating, and the metal coating is then structured, wherein the structuring is performed by at least partially removing the metal coating in layers in a number of sub-steps by means of a processing laser.
    Type: Grant
    Filed: May 1, 2017
    Date of Patent: September 17, 2019
    Assignee: BIOTRONIK SE & Co. KG
    Inventors: Daniel Kronmueller, Hermann Kalb
  • Patent number: 10375227
    Abstract: A mobile terminal is disclosed. The mobile terminal comprises: a case; an input module installed at the case, the input module acquiring a touch input of a user; and a controller generating a control signal, wherein the input module includes: a button having a plurality of holes, the plurality of holes located on the case; a capacitive sensor located in the case, the capacitive sensor acquiring a variation of a electrostatic capacitance in accordance with the touch input; and a dielectric layer located between the button and the capacitive sensor; wherein the electrostatic capacitance includes: a first electrostatic capacitance generated between the user and the capacitive sensor through the plurality of holes; and a second electrostatic capacitance generated between the button and the capacitive sensor, and wherein the controller generates the control signal when the capacitive sensor acquires the variations of the first and second electrostatic capacitances.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: August 6, 2019
    Inventors: Byungki Kim, Haengchul Kwak, Hangshin Cho, Dongchul Jin, Eunmo Yang
  • Patent number: 10246320
    Abstract: Sensor packages and methods of assembling a sensor in a sensor package are provided. A preferred embodiment comprises: a base including a sensor coupled to the base wherein the base has at least one electrical connection location and a first mechanical mating interface in the shape of an arc; an electronics package with at least one electrical connection location; and a ring coupled between the base and the electronics package wherein the ring electrically connects the at least one electrical connection location on the base and the at least one electrical connection location on the electronics package and wherein the base has a second mechanical mating interface in the shape of an arc that is reciprocal to the first mating interface.
    Type: Grant
    Filed: July 26, 2016
    Date of Patent: April 2, 2019
    Assignee: DUNAN SENSING, LLC
    Inventors: Danny (Duy) Do, Tom Nguyen, Kevin Cuong Nguyen, Claudio Martinez
  • Patent number: 10206654
    Abstract: A pressure sensor of an embodiment includes a support portion, a transformable membrane part and a sensor portion. The membrane part includes an end portion supported by the support portion, and a first area and a second area. The first area is positioned between a center of the membrane part and the end portion and has a first rigidity. The second area is positioned between the first area and the end portion, and has a second rigidity lower than the first rigidity. The sensor portion is provided at the first area and includes a first magnetic layer, a second magnetic layer and a first intermediate layer provided between the first magnetic layer and the second magnetic layer. An end-side distance between the first area and the end portion is shorter than a center-side distance between the second area and the center of the membrane part.
    Type: Grant
    Filed: September 1, 2016
    Date of Patent: February 19, 2019
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kei Masunishi, Akiko Yuzawa, Yoshihiko Fuji, Michiko Hara, Yoshihiro Higashi, Kazuaki Okamoto, Kenji Otsu
  • Patent number: 10190932
    Abstract: The present invention relates to a method for preventing gases and fluids to penetrate a surface of an object, comprising the steps of: depositing (S1) an amorphous metal (5) on a surface of an object (4); forming (S2) a continuous layer of the amorphous metal (5) on the surface of the object (4); binding (S3) the amorphous metal (5) to the surface of the object by chemical binding; and passivation (S4) of a surface of the amorphous metal (5) facing away from the surface of the object (4).
    Type: Grant
    Filed: October 28, 2013
    Date of Patent: January 29, 2019
    Assignee: INFICON GMBH
    Inventors: Per Bjorkman, Bjorgvin Hjorvarsson
  • Patent number: 10139302
    Abstract: Each of a plurality of hydraulic pressure sensors includes a lower case and an upper case fixed above the lower case. A valve body includes an upper body including a hole portion arranged to house the hydraulic pressure sensors, and a lower body including an oil passage. A pressed portion is defined in the lower case. The pressed portion is arranged to project horizontally in the lower case so as to be opposed to the upper case. The pressed portion is arranged to be pressed downward by a pressing portion of the upper body. At least one of the upper body and the lower body includes a positioning portion arranged to horizontally position each of the hydraulic pressure sensors in the hole portion.
    Type: Grant
    Filed: May 1, 2017
    Date of Patent: November 27, 2018
    Inventors: Tomoka Osawa, Hironobu Wakabayashi, Toshiaki Nakamura, Hiroshi Tatsuta
  • Patent number: 10119878
    Abstract: In an oil-pressure-sensor attachment structure according to an aspect of the invention, an oil channel body includes a lower body and an upper body arranged at an upper side of the lower body in a superposed manner. The attachment structure includes the upper body, a sensor case, and a connection member including an electrical connection portion that electrically connects an external power supply with a sensor main body. The connection member contacts the upper body from the upper side. The upper body has a through hole in an up-down direction. The sensor case includes a columnar portion that extends in the up-down direction and is inserted into the through hole, a flange portion that protrudes outward in the radial direction from the columnar portion and is arranged to face the lower side of the upper body, and a first hook portion that is hooked to the connection member.
    Type: Grant
    Filed: September 25, 2017
    Date of Patent: November 6, 2018
    Inventors: Tomoka Osawa, Hironobu Wakabayashi, Toshiaki Nakamura, Hiroshi Tatsuta, Kenichi Ozawa
  • Patent number: 10032936
    Abstract: A method for manufacturing a resistive element includes: preparing a substrate including an n-type silicon layer; doping the silicon layer with an impurity to thereby form a resistive region; heat-treating the resistive region by any of rapid thermal annealing, flash lamp annealing, and excimer laser annealing; and epitaxially growing silicon on the resistive region to thereby form a covering layer.
    Type: Grant
    Filed: May 26, 2016
    Date of Patent: July 24, 2018
    Assignee: Seiko Epson Corporation
    Inventor: Hiroyuki Shimada
  • Patent number: 9818018
    Abstract: A flexible fingerprint sensor laminate comprising: a layer of flexible substrate having a front surface and a back surface, at least a domain of electrically conductive material deposited on the front surface, a protective hard coating layer that covers the domain of electrically conductive material, and a plurality of sensor electrodes deposited preferably on the back surface and related circuitry (e.g. integrated circuit for driving and sensing). Preferably, the layer of flexible substrate is no greater than 20 ?m in thickness, the domain of electrically conductive material has a thickness no greater than 2 ?m, the protective hard coating has a thickness no greater than 1 ?m, and the laminate has a surface sheet resistance no greater than 200 Ohm per square and surface scratch resistance no less than 3 H. The laminate exhibits good scratch resistance, low sheet resistance, good flexibility and mechanical integrity. The invention also provides a biometric sensor, such as a fingerprint sensor.
    Type: Grant
    Filed: July 22, 2014
    Date of Patent: November 14, 2017
    Assignee: Nanotek Instruments, Inc.
    Inventors: Yi-jun Lin, Bor Z Jang, Shaio-Yen Lee, Aruna Zhamu
  • Patent number: 9752944
    Abstract: A microelectromechanical sensing structure having a membrane region including a membrane that undergoes deformation as a function of a pressure and a first actuator that is controlled in a first operating mode and a second operating mode, the first actuator being such that, when it operates in the second operating mode, it contacts the membrane region and deforms the membrane in a way different from when it operates in the first operating mode.
    Type: Grant
    Filed: March 12, 2015
    Date of Patent: September 5, 2017
    Inventor: Alberto Pagani
  • Patent number: 9754724
    Abstract: The present invention generally relates to a MEMS digital variable capacitor (DVC) (900) and a method for manufacture thereof. The movable plate (938) within a MEMS DVC should have the same stress level to ensure proper operation of the MEMS DVC. To obtain the same stress level, the movable plate is decoupled from CMOS ground during fabrication. The movable plate is only electrically coupled to CMOS ground after the plate has been completely formed. The coupling occurs by using the same layer (948) that forms the pull-up electrode as the layer that electrically couples the movable plate to CMOS ground. As the same layer couples the movable plate to CMOS ground and also provides the pull-up electrode for the MEMS DVC, the deposition occurs in the same processing step. By electrically coupling the movable plate to CMOS ground after formation, the stress in each of the layers of the movable plate can be substantially identical.
    Type: Grant
    Filed: June 4, 2014
    Date of Patent: September 5, 2017
    Inventors: Robertus Petrus Van Kampen, Richard L. Knipe
  • Patent number: 9689766
    Abstract: A pressure sensor, comprising: a substrate having a measuring membrane, and an electrically conductive cover layer, which has electrical contact elements and is electrically isolated from the substrate by an insulating layer. The cover layer is divided in such a manner that two independent measurements of the respective resistance between two contact elements are possible in two regions electrically isolated from one another. The regions of the cover layer serve to shield external electromagnetic influences from the sensor elements of the measuring membrane, to detect damage to the measuring membrane, as well as for determining exact temperature.
    Type: Grant
    Filed: September 24, 2013
    Date of Patent: June 27, 2017
    Assignee: Endress + Hauser GmbH + Co. KG
    Inventors: Benjamin Lemke, Rene Ziermann, Sebastian Pobering, Ralf Roder
  • Patent number: 9574959
    Abstract: Sensor packages and manners of formation are described. In an embodiment, a sensor package includes a supporting die characterized by a recess area and a support anchor protruding above the recess area. A sensor die is bonded to the support anchor such that an air gap exists between the sensor die and the recess area. The sensor die includes a sensor positioned directly above the air gap.
    Type: Grant
    Filed: October 17, 2014
    Date of Patent: February 21, 2017
    Assignee: Apple Inc.
    Inventors: Caleb C. Han, Tongbi Jiang, Jun Zhai
  • Patent number: 9527729
    Abstract: Process for fabrication of a micromechanical and/or nanomechanical structure comprising the following steps, starting from an element comprising a support substrate and a sacrificial layer: a) formation of a first layer, at least part of which is porous, b) formation on the first layer of a layer made of one (or several) materials providing the mechanical properties of the structure, called the intermediate layer, c) formation on the intermediate layer of a second layer, at least part of which is porous, d) formation of said structure in the stack composed of the first layer, the intermediate layer and the second layer, e) release of said structure by at least partial removal of the sacrificial layer.
    Type: Grant
    Filed: February 18, 2014
    Date of Patent: December 27, 2016
    Assignee: Commissariat a l'energie atomique et aux energies alternatives
    Inventor: Eric Ollier
  • Patent number: 9513182
    Abstract: A pressure sensor includes: a sensor section having one fixed end and first to four gauge resistors arranged on a diaphragm; and a support member fixing the sensor section. A first pair to fourth pair of piezoresistive elements are arranged on the diaphragm. Two piezoresistive elements of each pair have opposite resistance value change directions, and distances to the support member are equal to each other. A distances between each piezoresistive element of the third pair and the fourth pair and the support member is longer than a distance between each piezoresistive element of the first pair and the second pair and the support member. Each gauge resistor includes a combined resistance, which is provided by serially connecting two corresponding piezoresistive elements. The two corresponding piezoresistive elements have a same resistance value change direction.
    Type: Grant
    Filed: July 24, 2012
    Date of Patent: December 6, 2016
    Inventor: Naoki Kakoiyama
  • Patent number: 9476788
    Abstract: A pressure sensor has a housing having a bottom surface and side walls that form a cavity. A pressure sensor die is attached to the bottom of the cavity and covered with a layer of low modulus gel. A lid is secured to upper ends of the side walls and covers the cavity, gel and pressure sensor die. The lid has an inner surface facing the gel and an exposed outer surface, and includes protrusions extending from the inner surface along the side walls and towards the gel such that the gel near the upper ends of the side walls is displaced towards a central region of the cavity to ensure that the gel completely covers the pressure sensor die.
    Type: Grant
    Filed: April 22, 2014
    Date of Patent: October 25, 2016
    Inventors: Navas Khan Oratti Kalandar, Charles Bergere
  • Patent number: 9470598
    Abstract: Provided are a pressure detection device having a fail-safe structure for minimizing leaking out of a fluid targeted for pressure detection, and a method for producing the same. A pressure detection device is provided with: a fluid inflow member having a flow path; a pressure sensor for detecting the pressure of the fluid that has flowed into the flow path; a base plate unit having a first resin section surrounding the pressure sensor; a lid section which is bonded to the first resin section so as to cover the pressure sensor from above, and forms a sealed space in the interior of which the pressure sensor is located; a terminal unit; and a resin cover section for bonding the fluid inflow member, the base plate unit, the lid section, and the terminal unit. The lid section is bonded to the first resin section and is pushed on from above by the resin cover section.
    Type: Grant
    Filed: April 5, 2013
    Date of Patent: October 18, 2016
    Assignee: Nippon Seiki Co., Ltd.
    Inventors: Shuji Sato, Yoshihiro Kamimura, Keiji Tsurumaki, Shigeki Koide
  • Patent number: 9394158
    Abstract: A micromechanical structure includes a substrate, a micromechanical functional structure, and a conductor track arrangement. The substrate has a top side, and the micromechanical functional structure is formed in the substrate on the top side. The conductor track arrangement is formed above the top side of the substrate, and the conductor track arrangement includes at least two insulation layers of non-conductive material and a conductor track layer of conductive material located between the at least two insulation layers.
    Type: Grant
    Filed: July 24, 2013
    Date of Patent: July 19, 2016
    Assignee: Robert Bosch GmbH
    Inventor: Christoph Schelling
  • Patent number: 9358847
    Abstract: A transmitter apparatus can detect and transmit tire information, such as tire air pressure information, even when a puncture in the tire is repaired by a repairing agent. The transmitter apparatus includes a sensor detecting the state of gas in a tire cavity region as tire information; a transmitter transmitting the detected tire information; and a wall covering the sensor and transmitter. The wall forms an internal space divided from the tire cavity region and includes a communicating hole providing communication between the internal space and tire cavity region. An inside opening part of the hole in a housing surface facing the internal space has a greater opening area than an outside opening part of the hole in the housing surface facing the tire cavity region. A wall surface facing the communicating hole includes a recessed part recessed toward the housing surface including the outside opening part.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: June 7, 2016
    Inventor: Daisuke Kanenari
  • Patent number: 9352958
    Abstract: A physical quantity measurement sensor includes: a ceramic package including a plate provided with a flow port through which a fluid to be measured flows; an electronic component including a sensing element housed in the package to detect the pressure of the fluid to be measured having flown through the flow port; a terminal provided on an exterior of the package; a lid attached to a wall of the package; and a metal attachment piece used to attach the package to the mount member, the attachment piece being engaged with the mount member while holding the package.
    Type: Grant
    Filed: November 13, 2014
    Date of Patent: May 31, 2016
    Assignee: NAGANO KEIKI CO., LTD.
    Inventors: Atsushi Imai, Ryouichi Matsumura
  • Patent number: 9285404
    Abstract: A test structure includes two capacitor structures, wherein one of the capacitor structures has conductor plates spaced apart by a cavity, and the other capacitor structure does not include a cavity. Methodology entails forming the test structure and a pressure sensor on the same substrate using the same fabrication process techniques. Methodology for estimating the sensitivity of the pressure sensor includes detecting capacitances for each of the two capacitor structures and determining a ratio of the capacitances. A critical dimension of the cavity in one of the capacitor structures is estimated using the ratio, and the sensitivity of the pressure sensor is estimated using the critical dimension.
    Type: Grant
    Filed: August 15, 2013
    Date of Patent: March 15, 2016
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Chad S. Dawson, Peter T. Jones, Bruno J. Debeurre
  • Publication number: 20150128715
    Abstract: The present invention provides a pressure detection device which enables a simplified structure and reduced manufacturing costs. A pressure detection device is characterized by being provided with: a fluid inflow member; a semiconductor-type pressure sensor; a first unit member which has a first lead terminal connected to the sensor; a second unit member which has a lid member that covers the sensor and forms an enclosed space, and a second lead terminal that is connected to the first lead terminal; and a resinous cover member which combines the respective members and covers the members by resin molding with part of the second lead terminal exposed to the outside therethrough, and characterized in that the sensor and the first lead terminal are connected by wire bonding, the first lead terminal and the second lead terminal are joined by welding, and the joined portion is covered when the resinous cover member is molded.
    Type: Application
    Filed: May 10, 2013
    Publication date: May 14, 2015
    Applicant: Nippon Seiki Co., Ltd.
    Inventors: Yoshihiro Kamimura, Shuji Sato