Semiconductor Patents (Class 73/754)
  • Patent number: 10375227
    Abstract: A mobile terminal is disclosed. The mobile terminal comprises: a case; an input module installed at the case, the input module acquiring a touch input of a user; and a controller generating a control signal, wherein the input module includes: a button having a plurality of holes, the plurality of holes located on the case; a capacitive sensor located in the case, the capacitive sensor acquiring a variation of a electrostatic capacitance in accordance with the touch input; and a dielectric layer located between the button and the capacitive sensor; wherein the electrostatic capacitance includes: a first electrostatic capacitance generated between the user and the capacitive sensor through the plurality of holes; and a second electrostatic capacitance generated between the button and the capacitive sensor, and wherein the controller generates the control signal when the capacitive sensor acquires the variations of the first and second electrostatic capacitances.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: August 6, 2019
    Assignee: LG ELECTRONICS INC.
    Inventors: Byungki Kim, Haengchul Kwak, Hangshin Cho, Dongchul Jin, Eunmo Yang
  • Patent number: 10246320
    Abstract: Sensor packages and methods of assembling a sensor in a sensor package are provided. A preferred embodiment comprises: a base including a sensor coupled to the base wherein the base has at least one electrical connection location and a first mechanical mating interface in the shape of an arc; an electronics package with at least one electrical connection location; and a ring coupled between the base and the electronics package wherein the ring electrically connects the at least one electrical connection location on the base and the at least one electrical connection location on the electronics package and wherein the base has a second mechanical mating interface in the shape of an arc that is reciprocal to the first mating interface.
    Type: Grant
    Filed: July 26, 2016
    Date of Patent: April 2, 2019
    Assignee: DUNAN SENSING, LLC
    Inventors: Danny (Duy) Do, Tom Nguyen, Kevin Cuong Nguyen, Claudio Martinez
  • Patent number: 10206654
    Abstract: A pressure sensor of an embodiment includes a support portion, a transformable membrane part and a sensor portion. The membrane part includes an end portion supported by the support portion, and a first area and a second area. The first area is positioned between a center of the membrane part and the end portion and has a first rigidity. The second area is positioned between the first area and the end portion, and has a second rigidity lower than the first rigidity. The sensor portion is provided at the first area and includes a first magnetic layer, a second magnetic layer and a first intermediate layer provided between the first magnetic layer and the second magnetic layer. An end-side distance between the first area and the end portion is shorter than a center-side distance between the second area and the center of the membrane part.
    Type: Grant
    Filed: September 1, 2016
    Date of Patent: February 19, 2019
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kei Masunishi, Akiko Yuzawa, Yoshihiko Fuji, Michiko Hara, Yoshihiro Higashi, Kazuaki Okamoto, Kenji Otsu
  • Patent number: 10190932
    Abstract: The present invention relates to a method for preventing gases and fluids to penetrate a surface of an object, comprising the steps of: depositing (S1) an amorphous metal (5) on a surface of an object (4); forming (S2) a continuous layer of the amorphous metal (5) on the surface of the object (4); binding (S3) the amorphous metal (5) to the surface of the object by chemical binding; and passivation (S4) of a surface of the amorphous metal (5) facing away from the surface of the object (4).
    Type: Grant
    Filed: October 28, 2013
    Date of Patent: January 29, 2019
    Assignee: INFICON GMBH
    Inventors: Per Bjorkman, Bjorgvin Hjorvarsson
  • Patent number: 10139302
    Abstract: Each of a plurality of hydraulic pressure sensors includes a lower case and an upper case fixed above the lower case. A valve body includes an upper body including a hole portion arranged to house the hydraulic pressure sensors, and a lower body including an oil passage. A pressed portion is defined in the lower case. The pressed portion is arranged to project horizontally in the lower case so as to be opposed to the upper case. The pressed portion is arranged to be pressed downward by a pressing portion of the upper body. At least one of the upper body and the lower body includes a positioning portion arranged to horizontally position each of the hydraulic pressure sensors in the hole portion.
    Type: Grant
    Filed: May 1, 2017
    Date of Patent: November 27, 2018
    Assignee: NIDEC TOSOK CORPORATION
    Inventors: Tomoka Osawa, Hironobu Wakabayashi, Toshiaki Nakamura, Hiroshi Tatsuta
  • Patent number: 10119878
    Abstract: In an oil-pressure-sensor attachment structure according to an aspect of the invention, an oil channel body includes a lower body and an upper body arranged at an upper side of the lower body in a superposed manner. The attachment structure includes the upper body, a sensor case, and a connection member including an electrical connection portion that electrically connects an external power supply with a sensor main body. The connection member contacts the upper body from the upper side. The upper body has a through hole in an up-down direction. The sensor case includes a columnar portion that extends in the up-down direction and is inserted into the through hole, a flange portion that protrudes outward in the radial direction from the columnar portion and is arranged to face the lower side of the upper body, and a first hook portion that is hooked to the connection member.
    Type: Grant
    Filed: September 25, 2017
    Date of Patent: November 6, 2018
    Assignee: NIDEC TOSOK CORPORATION
    Inventors: Tomoka Osawa, Hironobu Wakabayashi, Toshiaki Nakamura, Hiroshi Tatsuta, Kenichi Ozawa
  • Patent number: 10032936
    Abstract: A method for manufacturing a resistive element includes: preparing a substrate including an n-type silicon layer; doping the silicon layer with an impurity to thereby form a resistive region; heat-treating the resistive region by any of rapid thermal annealing, flash lamp annealing, and excimer laser annealing; and epitaxially growing silicon on the resistive region to thereby form a covering layer.
    Type: Grant
    Filed: May 26, 2016
    Date of Patent: July 24, 2018
    Assignee: Seiko Epson Corporation
    Inventor: Hiroyuki Shimada
  • Patent number: 9818018
    Abstract: A flexible fingerprint sensor laminate comprising: a layer of flexible substrate having a front surface and a back surface, at least a domain of electrically conductive material deposited on the front surface, a protective hard coating layer that covers the domain of electrically conductive material, and a plurality of sensor electrodes deposited preferably on the back surface and related circuitry (e.g. integrated circuit for driving and sensing). Preferably, the layer of flexible substrate is no greater than 20 ?m in thickness, the domain of electrically conductive material has a thickness no greater than 2 ?m, the protective hard coating has a thickness no greater than 1 ?m, and the laminate has a surface sheet resistance no greater than 200 Ohm per square and surface scratch resistance no less than 3 H. The laminate exhibits good scratch resistance, low sheet resistance, good flexibility and mechanical integrity. The invention also provides a biometric sensor, such as a fingerprint sensor.
    Type: Grant
    Filed: July 22, 2014
    Date of Patent: November 14, 2017
    Assignee: Nanotek Instruments, Inc.
    Inventors: Yi-jun Lin, Bor Z Jang, Shaio-Yen Lee, Aruna Zhamu
  • Patent number: 9754724
    Abstract: The present invention generally relates to a MEMS digital variable capacitor (DVC) (900) and a method for manufacture thereof. The movable plate (938) within a MEMS DVC should have the same stress level to ensure proper operation of the MEMS DVC. To obtain the same stress level, the movable plate is decoupled from CMOS ground during fabrication. The movable plate is only electrically coupled to CMOS ground after the plate has been completely formed. The coupling occurs by using the same layer (948) that forms the pull-up electrode as the layer that electrically couples the movable plate to CMOS ground. As the same layer couples the movable plate to CMOS ground and also provides the pull-up electrode for the MEMS DVC, the deposition occurs in the same processing step. By electrically coupling the movable plate to CMOS ground after formation, the stress in each of the layers of the movable plate can be substantially identical.
    Type: Grant
    Filed: June 4, 2014
    Date of Patent: September 5, 2017
    Assignee: CAVENDISH KINETICS, INC.
    Inventors: Robertus Petrus Van Kampen, Richard L. Knipe
  • Patent number: 9752944
    Abstract: A microelectromechanical sensing structure having a membrane region including a membrane that undergoes deformation as a function of a pressure and a first actuator that is controlled in a first operating mode and a second operating mode, the first actuator being such that, when it operates in the second operating mode, it contacts the membrane region and deforms the membrane in a way different from when it operates in the first operating mode.
    Type: Grant
    Filed: March 12, 2015
    Date of Patent: September 5, 2017
    Assignee: STMICROELECTRONICS S.R.L.
    Inventor: Alberto Pagani
  • Patent number: 9689766
    Abstract: A pressure sensor, comprising: a substrate having a measuring membrane, and an electrically conductive cover layer, which has electrical contact elements and is electrically isolated from the substrate by an insulating layer. The cover layer is divided in such a manner that two independent measurements of the respective resistance between two contact elements are possible in two regions electrically isolated from one another. The regions of the cover layer serve to shield external electromagnetic influences from the sensor elements of the measuring membrane, to detect damage to the measuring membrane, as well as for determining exact temperature.
    Type: Grant
    Filed: September 24, 2013
    Date of Patent: June 27, 2017
    Assignee: Endress + Hauser GmbH + Co. KG
    Inventors: Benjamin Lemke, Rene Ziermann, Sebastian Pobering, Ralf Roder
  • Patent number: 9574959
    Abstract: Sensor packages and manners of formation are described. In an embodiment, a sensor package includes a supporting die characterized by a recess area and a support anchor protruding above the recess area. A sensor die is bonded to the support anchor such that an air gap exists between the sensor die and the recess area. The sensor die includes a sensor positioned directly above the air gap.
    Type: Grant
    Filed: October 17, 2014
    Date of Patent: February 21, 2017
    Assignee: Apple Inc.
    Inventors: Caleb C. Han, Tongbi Jiang, Jun Zhai
  • Patent number: 9527729
    Abstract: Process for fabrication of a micromechanical and/or nanomechanical structure comprising the following steps, starting from an element comprising a support substrate and a sacrificial layer: a) formation of a first layer, at least part of which is porous, b) formation on the first layer of a layer made of one (or several) materials providing the mechanical properties of the structure, called the intermediate layer, c) formation on the intermediate layer of a second layer, at least part of which is porous, d) formation of said structure in the stack composed of the first layer, the intermediate layer and the second layer, e) release of said structure by at least partial removal of the sacrificial layer.
    Type: Grant
    Filed: February 18, 2014
    Date of Patent: December 27, 2016
    Assignee: Commissariat a l'energie atomique et aux energies alternatives
    Inventor: Eric Ollier
  • Patent number: 9513182
    Abstract: A pressure sensor includes: a sensor section having one fixed end and first to four gauge resistors arranged on a diaphragm; and a support member fixing the sensor section. A first pair to fourth pair of piezoresistive elements are arranged on the diaphragm. Two piezoresistive elements of each pair have opposite resistance value change directions, and distances to the support member are equal to each other. A distances between each piezoresistive element of the third pair and the fourth pair and the support member is longer than a distance between each piezoresistive element of the first pair and the second pair and the support member. Each gauge resistor includes a combined resistance, which is provided by serially connecting two corresponding piezoresistive elements. The two corresponding piezoresistive elements have a same resistance value change direction.
    Type: Grant
    Filed: July 24, 2012
    Date of Patent: December 6, 2016
    Assignee: DENSO CORPORATION
    Inventor: Naoki Kakoiyama
  • Patent number: 9476788
    Abstract: A pressure sensor has a housing having a bottom surface and side walls that form a cavity. A pressure sensor die is attached to the bottom of the cavity and covered with a layer of low modulus gel. A lid is secured to upper ends of the side walls and covers the cavity, gel and pressure sensor die. The lid has an inner surface facing the gel and an exposed outer surface, and includes protrusions extending from the inner surface along the side walls and towards the gel such that the gel near the upper ends of the side walls is displaced towards a central region of the cavity to ensure that the gel completely covers the pressure sensor die.
    Type: Grant
    Filed: April 22, 2014
    Date of Patent: October 25, 2016
    Assignee: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Navas Khan Oratti Kalandar, Charles Bergere
  • Patent number: 9470598
    Abstract: Provided are a pressure detection device having a fail-safe structure for minimizing leaking out of a fluid targeted for pressure detection, and a method for producing the same. A pressure detection device is provided with: a fluid inflow member having a flow path; a pressure sensor for detecting the pressure of the fluid that has flowed into the flow path; a base plate unit having a first resin section surrounding the pressure sensor; a lid section which is bonded to the first resin section so as to cover the pressure sensor from above, and forms a sealed space in the interior of which the pressure sensor is located; a terminal unit; and a resin cover section for bonding the fluid inflow member, the base plate unit, the lid section, and the terminal unit. The lid section is bonded to the first resin section and is pushed on from above by the resin cover section.
    Type: Grant
    Filed: April 5, 2013
    Date of Patent: October 18, 2016
    Assignee: Nippon Seiki Co., Ltd.
    Inventors: Shuji Sato, Yoshihiro Kamimura, Keiji Tsurumaki, Shigeki Koide
  • Patent number: 9394158
    Abstract: A micromechanical structure includes a substrate, a micromechanical functional structure, and a conductor track arrangement. The substrate has a top side, and the micromechanical functional structure is formed in the substrate on the top side. The conductor track arrangement is formed above the top side of the substrate, and the conductor track arrangement includes at least two insulation layers of non-conductive material and a conductor track layer of conductive material located between the at least two insulation layers.
    Type: Grant
    Filed: July 24, 2013
    Date of Patent: July 19, 2016
    Assignee: Robert Bosch GmbH
    Inventor: Christoph Schelling
  • Patent number: 9358847
    Abstract: A transmitter apparatus can detect and transmit tire information, such as tire air pressure information, even when a puncture in the tire is repaired by a repairing agent. The transmitter apparatus includes a sensor detecting the state of gas in a tire cavity region as tire information; a transmitter transmitting the detected tire information; and a wall covering the sensor and transmitter. The wall forms an internal space divided from the tire cavity region and includes a communicating hole providing communication between the internal space and tire cavity region. An inside opening part of the hole in a housing surface facing the internal space has a greater opening area than an outside opening part of the hole in the housing surface facing the tire cavity region. A wall surface facing the communicating hole includes a recessed part recessed toward the housing surface including the outside opening part.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: June 7, 2016
    Assignee: THE YOKOHAMA RUBBER CO., LTD.
    Inventor: Daisuke Kanenari
  • Patent number: 9352958
    Abstract: A physical quantity measurement sensor includes: a ceramic package including a plate provided with a flow port through which a fluid to be measured flows; an electronic component including a sensing element housed in the package to detect the pressure of the fluid to be measured having flown through the flow port; a terminal provided on an exterior of the package; a lid attached to a wall of the package; and a metal attachment piece used to attach the package to the mount member, the attachment piece being engaged with the mount member while holding the package.
    Type: Grant
    Filed: November 13, 2014
    Date of Patent: May 31, 2016
    Assignee: NAGANO KEIKI CO., LTD.
    Inventors: Atsushi Imai, Ryouichi Matsumura
  • Patent number: 9285404
    Abstract: A test structure includes two capacitor structures, wherein one of the capacitor structures has conductor plates spaced apart by a cavity, and the other capacitor structure does not include a cavity. Methodology entails forming the test structure and a pressure sensor on the same substrate using the same fabrication process techniques. Methodology for estimating the sensitivity of the pressure sensor includes detecting capacitances for each of the two capacitor structures and determining a ratio of the capacitances. A critical dimension of the cavity in one of the capacitor structures is estimated using the ratio, and the sensitivity of the pressure sensor is estimated using the critical dimension.
    Type: Grant
    Filed: August 15, 2013
    Date of Patent: March 15, 2016
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Chad S. Dawson, Peter T. Jones, Bruno J. Debeurre
  • Publication number: 20150128715
    Abstract: The present invention provides a pressure detection device which enables a simplified structure and reduced manufacturing costs. A pressure detection device is characterized by being provided with: a fluid inflow member; a semiconductor-type pressure sensor; a first unit member which has a first lead terminal connected to the sensor; a second unit member which has a lid member that covers the sensor and forms an enclosed space, and a second lead terminal that is connected to the first lead terminal; and a resinous cover member which combines the respective members and covers the members by resin molding with part of the second lead terminal exposed to the outside therethrough, and characterized in that the sensor and the first lead terminal are connected by wire bonding, the first lead terminal and the second lead terminal are joined by welding, and the joined portion is covered when the resinous cover member is molded.
    Type: Application
    Filed: May 10, 2013
    Publication date: May 14, 2015
    Applicant: Nippon Seiki Co., Ltd.
    Inventors: Yoshihiro Kamimura, Shuji Sato
  • Patent number: 9027392
    Abstract: A multi-hole probe has a kernel that includes a forward surface that includes at least a first, second, and third pressure sensing ports. The multi-hole probe kernel further includes an upper surface, generally orthogonal to the forward surface, and including at least a first, second, and third stem ports. Still further, the multi-hole probe kernel includes first, second, and third tubes running between and providing a fluid connection with the first, second, and third pressure sensing ports and the first, second, and third stem ports, respectively.
    Type: Grant
    Filed: May 7, 2013
    Date of Patent: May 12, 2015
    Assignee: Honeywell International Inc.
    Inventor: Timothy Vander Hoek
  • Publication number: 20150122042
    Abstract: A pressure sensor comprises a first substrate and a cap attached to the first substrate. The cap includes a processing circuit, a cavity and a deformable membrane separating the cavity and a port open to an outside of the pressure sensor. Sensing means are provided for converting a response of the deformable membrane to pressure at the port into a signal capable of being processed by the processing circuit. The cap is attached to the first substrate such that the deformable membrane faces the first substrate and such that a gap is provided between the deformable membrane and the first substrate which gap contributes to the port. The first substrate comprises a support portion the cap is attached to, a contact portion for electrically connecting the pressure sensor to an external device, and one or more suspension elements for suspending the support portion from the contact portion.
    Type: Application
    Filed: October 23, 2014
    Publication date: May 7, 2015
    Inventors: Chung-Hsien LIN, Rene Hummel, Ulrich Bartsch, Marion Hermersdorf, Tsung Lin Tang, Wang Shen Su, Chia Min Lin
  • Patent number: 9021689
    Abstract: A method of forming a dual port pressure sensor includes forming a first opening and a second opening in a flag of a lead frame. An encapsulant is molded to hold the lead frame in which the encapsulant is over a top of the flag and a bottom of the flag is uncovered by the encapsulant. A first opening in the encapsulant is aligned with and larger than the first opening in the flag and a second opening in the encapsulant aligned with the second opening in the flag. A pressure sensor transducer is attached to the bottom of the flag to cover the first opening in the flag, wherein the pressure sensor transducer provides an electrically detectable correlation to a pressure differential based on a first pressure received on its top side and a second pressure received on its bottom side. An integrated circuit is attached to the bottom of the flag. The integrated circuit is electrically coupled to the pressure sensor. A lid is attached to the encapsulant to form an enclosure around the bottom of the flag.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: May 5, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Stephen R. Hooper, William G. McDonald
  • Publication number: 20150107367
    Abstract: A high-precision pressure sensor with two or more pressure ranges is formed from multiple micro-electromechanical system (MEMS) pressure transducers mounted inside a housing and coupled to sense a pressurized fluid. The non-linear outputs of the MEMS pressure transducers are linearized by a corresponding number of processors, preferably DSPs, each processor being coupled to a corresponding MEMS pressure transducer and receiving the MEMS pressure transducer output signal there from. Each processor generates an applied pressure output signal, which is representative of a pressure applied to the MEMS pressure transducer, which is a linearized and digitized version of output signal from the MEMS pressure transducers. The data that is output from multiple processors, each of which outputs pressure data pertaining to a different range of pressures, is transmitted serially on a serial data bus.
    Type: Application
    Filed: October 7, 2014
    Publication date: April 23, 2015
    Inventors: Robert Charles Kosberg, James Lee Nowicki, JR.
  • Patent number: 8991262
    Abstract: A capacitive pressure sensor includes a semiconductor substrate, a first insulating portion configured to define a sensor region, a reference pressure chamber configured to divide a lower portion of the sensor region in a direction, a second insulating portion configured to divide a surface portion of the sensor region above the reference pressure chamber in the direction, and a trench configured to divide the sensor region in the direction. The sensor region is divided into at least three semiconductor parts by the reference pressure chamber, the second insulating portion, and the trench.
    Type: Grant
    Filed: June 7, 2013
    Date of Patent: March 31, 2015
    Assignee: Rohm Co., Ltd.
    Inventor: Goro Nakatani
  • Patent number: 8984953
    Abstract: A solid state sensor to sense pressure includes a semiconductor substrate having a crystallographic design axis, and an odd number of identical inverter modules coupled in series to form a ring oscillator on the semiconductor substrate. Each inverter module includes a pair of structurally identical CMOS inverter stages. A logic input circuit starts oscillation of the ring oscillator and select a signal propagation path therein, either through CMOS inverter stage more affected by the induced mechanical stress or through CMOS inverter stages less affected by the pressure, using two logic command signals. The ring oscillator allows a reading of a frequency of oscillation based on the two logic command signals.
    Type: Grant
    Filed: April 9, 2013
    Date of Patent: March 24, 2015
    Assignee: STMicroelectronics S.R.L.
    Inventors: Manuela Larosa, Giovanni Sicurella
  • Publication number: 20150040675
    Abstract: A pressure sensor includes a top cap with a recess formed in an end of the top cap and a cavity formed in the end of the top cap to communicate with the recess. The cavity extends further axially into the top cap than the recess thereby having depth greater than a depth of the recess. Outer edges of the recess extend laterally outward beyond outer edges of the cavity thereby defining a bonding boundary. A silicon substrate has a sensing circuit on a top side thereof. The top cap is bonded to the top side of the silicon substrate in a range from the outer edges of the top cap to the bonding boundary. The recess and the cavity of the top cap face the top side of the silicon substrate and form a reference vacuum cavity. When pressure is exerted on a backside of the substrate, a portion of the substrate is constructed and arranged to deflect.
    Type: Application
    Filed: May 29, 2014
    Publication date: February 12, 2015
    Applicant: Continental Automotive Systems, Inc.
    Inventor: Xiaoyi Ding
  • Patent number: 8934263
    Abstract: The present disclosure relates to sensors including pressure sensors, humidity sensors, flow sensors, etc. In some cases, a cover for use with a sensor assembly may include an electrically insulating body having perimeter features extending a majority of the way around perimeters of upper and lower printed circuit boards that the cover may vertically separate. In one example, the body of the cover may include support features that extend from a lower side of the cover and those support features may contact the lower printed circuit board in at least two locations. The support features of the cover may be separated by a gap and a sensor connected to the lower printed circuit board may be situated within the gap.
    Type: Grant
    Filed: August 1, 2011
    Date of Patent: January 13, 2015
    Assignee: Honeywell International Inc.
    Inventors: Todd Eckhardt, Jim Machir, Palani Thanigachalam, Sunil Job
  • Patent number: 8922227
    Abstract: Systems and methods are provided for detecting surface charge on a semiconductor substrate having a sensing arrangement formed thereon. An exemplary sensing system includes the semiconductor substrate having the sensing arrangement formed thereon, and a module coupled to the sensing arrangement. The module obtains a first voltage output from the sensing arrangement when a first voltage is applied to the semiconductor substrate, obtains a second voltage output from the sensing arrangement when a second voltage is applied to the semiconductor substrate, and detects electric charge on the surface of the semiconductor substrate based on a difference between the first voltage output and the second voltage output.
    Type: Grant
    Filed: March 8, 2011
    Date of Patent: December 30, 2014
    Assignee: Freescale Semiconductor Inc.
    Inventors: Chad S. Dawson, Bernhard H. Grote, Woo Tae Park
  • Publication number: 20140338460
    Abstract: A micromechanical component having a sensor chip is described, on and/or in which at least one sensor element is disposed, and a cladding, formed of an injection-molding material, encloses the sensor chip in such a way that at least one partial area of a surface of the sensor chip is covered in airtight fashion by the injection-molding material. At least one channel is formed in the injection-molding material, which takes a course, straight or not straight, from an outer surrounding area of the cladding toward the at least one sensor element of such a length that a change in shape and/or a change in chemical consistency of at least one part of the at least one sensor element is able to be brought about as a function of at least one physical property and/or at least one chemical partial composition of a medium present in the at least one channel.
    Type: Application
    Filed: May 19, 2014
    Publication date: November 20, 2014
    Applicant: ROBERT BOSCH GMBH
    Inventors: Matthias LUDWIG, Martin ROJAHN
  • Publication number: 20140331777
    Abstract: A pressure sensor module of the invention includes: a substrate; a lid connected to the substrate; a semiconductor pressure sensing device and an integrated circuit device functionally connected to the semiconductor pressure sensing device, which are accommodated in an internal space surrounded by the substrate and the lid; a pressure introducing hole that communicates the internal space to an external space; and a light shield that is provided between the external space and the internal space and is formed so that a hole axis of the pressure introducing hole is bent.
    Type: Application
    Filed: July 28, 2014
    Publication date: November 13, 2014
    Applicant: FUJIKURA LTD.
    Inventor: Michikazu TOMITA
  • Patent number: 8869623
    Abstract: A semiconductor pressure sensor includes: a case; a pressure inlet port through which a measurement target fluid is introduced into the case; an atmosphere inlet port through which atmosphere is introduced; and a sensor chip configured to measure the pressure of the fluid with respect to atmospheric pressure. The pressure inlet port and the atmosphere inlet port are disposed on the same surface side of the case. The pressure inlet port is communicated with the inside of the case.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: October 28, 2014
    Assignee: Panasonic Corporation
    Inventor: Naoki Yahata
  • Publication number: 20140283616
    Abstract: A workfunction modulation-based sensor comprising a field-effect transistor (FET). The FET comprises a substrate, a gate dielectric, a metal gate, a source, a drain, and a layer of sensing material that is electrically connected to the metal gate. An electrical connection that connects to the source of the FET. An electrical connection that connects to the drain of the FET. An electrical connection that connects to the layer of sensing material. An environment that includes an adsorbate gas surrounding, at least a portion of, the layer of sensing material. Wherein the sensing material is adapted to adsorb, at least in part, the adsorbate gas. The amount of adsorbate gas adsorbed on the layer of sensing material modulates the workfunction of the FET such that the degree of adsorbate gas adsorption corresponds to one of the temperature or pressure associated with the environment of the FET.
    Type: Application
    Filed: March 25, 2013
    Publication date: September 25, 2014
    Applicant: International Business Machines Corporation
    Inventors: Balaji Jayaraman, Kota V. R. M. Murali, Edward J. Nowak, Ninad D. Sathaye, Rajesh Sathiyanarayanan
  • Patent number: 8833171
    Abstract: As may be consistent with one or more embodiments discussed herein, an integrated circuit apparatus includes a membrane suspended over a cavity, with the membrane and cavity defining a chamber. The membrane has a plurality of openings therein that pass gas into and out of the chamber. As the membrane is actuated, the volume of the chamber changes to generate a gas pressure inside the chamber that is different than a pressure outside the chamber. A sensor detects a frequency-based characteristic of the membrane responsive to the change in volume, and therein provides an indication of the gas pressure outside the chamber.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: September 16, 2014
    Assignee: NXP, B.V.
    Inventors: Willem Frederik Adrianus Besling, Peter Gerard Steeneken, Olaf Wunnicke
  • Patent number: 8820170
    Abstract: Techniques disclosed herein include systems and methods for pressure measurement of fluids including vehicular fluids. The pressure sensor includes a MEMS die for pressure measurement. The MEMS die is attached to a glass pedestal member. The pedestal member is mechanically held in place via a mounting frame that attachable to a pressure port of a fluid-containing enclosure. Techniques herein provide a strong connection of a MEMS die to a pressure sensor while decoupling thermal expansion stress from the MEMS die. With such decoupling techniques, pressure sensing reliability and accuracy can be improved. With thermal expansion stress decoupled from the MEMS die, sensor sealing materials can be selected for their robust chemical properties instead of structural properties. Such techniques provide an accurate, durable, and cost-effective pressure sensor.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: September 2, 2014
    Assignee: Sensata Technologies, Inc.
    Inventors: Rob Slakhorst, Gerard Klaasse, Erik Hop, Arnout van den Bos, Wico Hopman
  • Publication number: 20140224019
    Abstract: The present disclosure relates to piezoelectric sensors and piezoelectric sensor arrays, to methods of manufacturing therefor, and to a method of measuring characteristics of a mechanical wave using a piezoelectric sensor array. A piezoelectric sensor is formed of a silicon substrate on which an electrical barrier is added. A patterned bottom electrode layer is added on top of the electrical barrier. A patterned bottom electrode layer is added on top of the electrical barrier. A piezoelectric layer and then a patterned top electrode layer are added on top of the electrical barrier.
    Type: Application
    Filed: August 6, 2012
    Publication date: August 14, 2014
    Applicant: SOCPRA SCIENCES ET GENIE S.E.C.
    Inventors: Martin Brouillette, Gholamreza Mirshekari
  • Patent number: 8800377
    Abstract: A contact force sensor package includes a substrate layer having a vibration detection unit and a pair of first junction pads that are electrical connection ports which are provided on an upper surface of the substrate layer, a flexible circuit substrate layer having a pair of second junction pads provided at a position corresponding to the first junction pads and electrically connected to the first junction pad, a vibration transfer unit having one side contacting the vibration detection unit and the other side contacting a human body and transferring a sphygmus wave of the human body to the vibration detection unit, and an adhesion layer formed between the substrate layer and the flexible circuit substrate layer to reinforce a junction force between the substrate layer and the flexible circuit substrate layer, the adhesion layer being not formed in an area overlapping at least the vibration transfer unit.
    Type: Grant
    Filed: March 26, 2008
    Date of Patent: August 12, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Jong-pal Kim
  • Patent number: 8794075
    Abstract: Various embodiments relate to a MEMS pressure sensor including: a lower electrode; a first insulating layer over the lower electrode; a second insulating layer over the first insulating layer that forms a cavity between the first and second insulating layers; an upper electrode over the second insulating layer, wherein a portion of the cavity is between the upper and lower electrodes; and a NONON pressure membrane over the upper electrode.
    Type: Grant
    Filed: August 11, 2011
    Date of Patent: August 5, 2014
    Assignee: NXP, B.V.
    Inventor: Willem Frederik Adrianus Besling
  • Patent number: 8794077
    Abstract: A pressure sensor, comprising: a monocrystalline membrane body, which includes a measuring membrane and an edge region surrounding the measuring membrane. The edge region has a greater material thickness than the measuring membrane and the edge region has a first mounting surface, whose surface normal is given by a first principal crystal axis. A monocrystalline substrate, which, with respect to crystal structure, comprises the same semiconductor material as the membrane body, the substrate has a second mounting surface, whose surface normal extends parallel to the first principal crystal axis. The membrane body is tightly connected to the substrate by joining the first mounting surface to the second mounting surface. The orientations of other principal crystal axes of the membrane body and the substrate are, in each case, oriented parallel relative to one another.
    Type: Grant
    Filed: March 24, 2010
    Date of Patent: August 5, 2014
    Assignee: Endress + Hauser GmbH + Co. KG
    Inventor: Michael Philipps
  • Patent number: 8773152
    Abstract: In the case of a device for detecting physical state variables of a medium, such as pressure or temperature, for example, of a liquid, comprising at least one measuring sensor, which is connected to at least one electrical conductor so as to transmit signals, wherein at least one section of the conductor, which encompasses the sensor, is embedded in a casting compound, the casting compound is embodied, according to the invention, from at least one casting core and a casting jacket, which encloses the casting core, and provision is made in the casting compound for at least one recess for a media-conducting access to a contact surface of the sensor.
    Type: Grant
    Filed: July 18, 2011
    Date of Patent: July 8, 2014
    Assignee: Hella KGa Hueck & Co.
    Inventors: Thomas Niemann, Torsten Eggers
  • Patent number: 8770034
    Abstract: The present disclose relates to sensor including multiple sensor elements. In some cases, the multiple sensor elements may be mounted on a single substrate and each may be configured to sense a single parameter with different resolutions, sensitivities, and/or ranges, and/or the multiple parameters. In one example, multiple pressure sensing die may be mounted in a single package, and each may be configured as a differential pressure sensor, an absolute pressure sensor, and/or a gauge pressure sensor, as desired.
    Type: Grant
    Filed: September 6, 2011
    Date of Patent: July 8, 2014
    Assignee: Honeywell International Inc.
    Inventors: Ian Bentley, Lamar Floyd Ricks
  • Patent number: 8770035
    Abstract: A semiconductor pressure sensor (720) includes a thin film piezoelectric element (701) which applies strain to a portion of a semiconductor substrate that corresponds to a thin region (402). The thin film piezoelectric element (701) is formed at a distance away from diffusion resistors (406, 408, 410, and 412) functioning as strain gauges and is extended to the proximity of a bonding pad (716A) connected to an upper electrode layer of the thin film piezoelectric element and a bonding pad (716F) connected to a lower electrode thereof. The diffusion resistors (406, 408, 410, and 412) constitute a bridge circuit by metal wiring (722) and diffusion wiring (724). During self-diagnosis, a prescribed voltage is applied to a thin film piezoelectric element (701). If the output difference of the bridge circuit between before and after the voltage application falls outside a prescribed range, it is determined that a breakage occurs in the semiconductor pressure sensor (720).
    Type: Grant
    Filed: July 12, 2010
    Date of Patent: July 8, 2014
    Assignee: Rohm Co., Ltd.
    Inventors: Nobuyuki Yamada, Masahiro Sakuragi, Takeshi Yoshida, Kei Hayashi
  • Publication number: 20140182386
    Abstract: An electrostatic pressure sensor has a supporting diaphragm bonded to be held between first and second pedestal plates, a sensor chip supported on a top face of a center portion of the second pedestal plate. The supporting diaphragm has in the center portion thereof a large-diameter hole that forms a slit-shaped space between the first and second pedestal plates. The first pedestal plate has at least one inlet hole, for the fluid being measured, connecting to the slit-shaped space. The second pedestal plate has at least an outlet hole, connecting to the slit-shaped space, for directing the fluid being measured to the pressure-sensitive diaphragm of the sensor chip. The pedestal plate has an inlet hole of the first pedestal plate and an outlet hole of the second pedestal plate do not overlap each other in the direction of thickness of the first and second pedestal plates.
    Type: Application
    Filed: December 27, 2013
    Publication date: July 3, 2014
    Applicant: AZBIL CORPORATION
    Inventors: Takuya ISHIHARA, Hidenobu TOCHIGI
  • Publication number: 20140144244
    Abstract: The present disclosure relates to sensors including pressure sensors, humidity sensors, flow sensors, etc. In some cases, a sensor unit subassembly for installation in or use with a pressure sensor housing may include at least one pressure sensor signal output terminal supported by a printed circuit board, a pressure input port, and a pressure sense element secured relative to one or more printed circuit boards. The printed circuit board(s) may include circuitry configured to format pressure output signals provided by the pressure sense element into a particularly chosen output format, and may provide the formatted pressure output signal(s) to an attached electrical connector of the pressure sensor housing. In some cases, the sensor unit subassemblies can be mixed with a multitude of different electrical connectors and/or with a multitude of different port connections to from a wide array of pressure sensor assemblies.
    Type: Application
    Filed: February 3, 2014
    Publication date: May 29, 2014
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Ryan Jones, Todd Eckhardt, Richard Wade
  • Patent number: 8707794
    Abstract: A pressure sensor device includes a semiconductor pressure sensor element and a base part. The base part includes a mounting surface, a through hole having an opening on the mounting surface and configured to introduce a fluid to the semiconductor pressure sensor element, a soldered part that is to be soldered and is provided on the mounting surface, and a step-like structure formed on the mounting surface between the opening and the soldered part.
    Type: Grant
    Filed: August 16, 2011
    Date of Patent: April 29, 2014
    Assignee: Mitsumi Electric Co., Ltd.
    Inventor: Takashi Usui
  • Patent number: 8701496
    Abstract: Systems and methods for a pressure sensor are provided, where the pressure sensor comprises a housing having a high side input port that allows a high pressure media to enter a high side of the housing and a low side input port that allows a low pressure media to enter a low side of the housing when the housing is placed in an environment containing the high and low pressure media; a substrate mounted within the housing; a stress isolation member mounted to the substrate; a die stack having sensing circuitry bonded to the stress isolation member; a low side atomic layer deposition (ALD) applied to surfaces, of the substrate, the stress isolation member, and the die stack, exposed to the low side input port; and a high side ALD applied to surfaces, of the stress isolation member and the die stack, exposed to the high side input port.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: April 22, 2014
    Assignee: Honeywell International Inc.
    Inventor: Gregory C. Brown
  • Patent number: 8692339
    Abstract: In a method for manufacturing a micromechanical component, a cavity is produced in the substrate from an opening at the rear of a monocrystalline semiconductor substrate. The etching process used for this purpose and the monocrystalline semiconductor substrate used are controlled in such a way that a largely rectangular cavity is formed.
    Type: Grant
    Filed: June 3, 2009
    Date of Patent: April 8, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Jochen Reinmuth, Michael Saettler, Stefan Weiss, Arnim Hoechst
  • Publication number: 20140033824
    Abstract: A pressure detection module of a pressure sensor device includes a receptacle part for receiving a carrier substrate. The carrier substrate is located on a first side with a pressure detection unit, and is inserted into the receptacle part with a second side facing away from the first side. The carrier substrate is fixed with its second side on a base of a receptacle groove. In order to construct the pressure detection module as small as possible, and to manufacture it in a cost-effective way, the receptacle part, the receptacle groove and a peripheral flange around the receptacle groove are, for example, provided with a plate-shaped design. The base has a contacting opening, through which contact surfaces of the carrier substrate, which are exposed at the contacting opening, are electrically contactable.
    Type: Application
    Filed: June 25, 2013
    Publication date: February 6, 2014
    Applicant: Robert Bosch GmbH
    Inventors: Masoud HABIBI, Markus REINHARD
  • Patent number: 8621932
    Abstract: A pressure measuring device includes a pressure sensor element and an analog-digital converter. An output signal voltage of the pressure sensor element is a function of a temperature and is applied as an input voltage to an input of the analog-digital converter. The analog-digital converter is adapted to convert any input voltage from input voltage ranges which vary with a temperature into a digital value representing the input voltage.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: January 7, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Polichronis Lepidis, Maxime Loidreau