Oxide Containing Patents (Class 75/232)
  • Patent number: 5993731
    Abstract: The process for producing net shape or near net shape metal parts is improved by sintering a compact in a reducing atmosphere where the compact contains a metal and chemically-bound oxygen in the form of a metal oxide, for example, and the chemically-bound oxygen is in an amount sufficient to improve the sintering of the compact. Improved sintering is facilitated when the metal oxide forms a metal/metal oxide eutectic during reduction of the chemically-bound oxygen in a reducing atmosphere during the sintering process. The compact can contain a metal oxide and a solution compound to produce an alloy part, provided the chemically-bound oxygen is present in an amount sufficient to improve sintering. In a preferred embodiment, the compact also contains a reinforcement compound and is sintered to make a metal matrix composite. The resultant density of the near net shape metal parts made by the improved sintering process is preferably about 97% or more of the theoretical density.
    Type: Grant
    Filed: November 7, 1997
    Date of Patent: November 30, 1999
    Assignee: Brush Wellman, Inc.
    Inventors: David E. Jech, Juan L. Sepulveda, Anthony B. Traversone
  • Patent number: 5989673
    Abstract: Chromium-tantalum oxides (Cr-TaO.sub.x), including chromium-tantalum pentoxide (Cr-Ta.sub.2 O.sub.5), chromium-tantalum tetrioxide (Cr-Ta.sub.2 O.sub.4 or Cr-TaO.sub.2), sputtering targets containing them, and their manufacture are disclosed. The targets are characterized by high density, uniform TaO.sub.x distribution, low impedance and stable plasma during the sputtering. The Cr-Ta oxides are used as a thin film sublayer to improve the coercivity and other characteristics of magnetic recording media deposited on metallic or non-metallic substrates used in hard disks for data storage.
    Type: Grant
    Filed: June 30, 1997
    Date of Patent: November 23, 1999
    Assignees: Sony Corporation, Materials Research Corporation
    Inventors: Wei Xiong, Hung-Lee Hoo
  • Patent number: 5985440
    Abstract: Sintered silver-iron material for electrical contacts, with properties comparable with those of silver-nickel materials, is obtained by using iron powder having more than 0.25% carbon by weight and microhardness higher than 200 HV 0.025 and sintering in a hydrogen-free protective gas.
    Type: Grant
    Filed: February 27, 1997
    Date of Patent: November 16, 1999
    Assignee: Degussa Aktiengesellschaft
    Inventors: Wolfgang Weise, Willi Malikowski, Roger Wolmer, Peter Braumann, Andreas Koffler
  • Patent number: 5925404
    Abstract: The quantity of impurities in a magnetic material is decreased to produce a magnetic material with good quality, and a decrease in the cost of the magnetic material is realized by desulfurization. A magnetic raw material for metallic thin film magnetic recording media which contains sulfur more than 20 ppm is desulfurized to obtain the magnetic material for metallic thin film magnetic recording media with the sulfur content adjusted to 20 ppm or below, and a metallic thin film magnetic recording medium having a magnetic layer vaporized thereon with the magnetic material is fabricated.
    Type: Grant
    Filed: October 6, 1997
    Date of Patent: July 20, 1999
    Assignee: Sony Corporation
    Inventors: Kazunobu Chiba, Tustomu Takeda, Hiroyuki Yamada, Hideo Katagiri, Hiroshi Osumi
  • Patent number: 5925837
    Abstract: A manufacturing method and products of metallic friction materials includes processes of 1. preparing powder materials, 2. mixing copper as a base, proper proportion of iron powder or steel wool, aluminum powder, zinc or tin or lead powder, graphite powder and alumina or silicon dioxide powder, 3. pressing mixed materials into green bodies under 375.about.625 MPa at room temperature, 4. pre-heat treating the green bodies in an air furnace with temperature raised to 100.about.300.degree. C. for 1.about.3 hours, 5. sintering the green bodies into test samples under 350.about.750 MPa for 24.about.60 hours to gain sintered friction materials having an oxidized layer of less than 1 mm thick, 6. processing and grinding the sintered test samples with grinders to remove the oxidized layer, 7. washing the outer surface of the sintered test samples ground into finished products. The method of the invention may reduce largely difficulty in manufacturing processes, the investment and productive cost.
    Type: Grant
    Filed: September 16, 1998
    Date of Patent: July 20, 1999
    Assignees: Chien-Ping Ju, Jiin-Huey Chen Lin
    Inventors: Chien-Ping Ju, Jiin-Huey Chen Lin, Sun-Zen Chen
  • Patent number: 5908486
    Abstract: Austenitic stainless steels and nickel-base alloys containing, by wt. %, 0.1 to 3.0% V, 0.01 to 0.08% C, 0.01 to 0.5% N, 0.05% max. each of Al and Ti, and 0.005 to 0.10% O, are strengthened and ductility retained by atomization of a metal melt under cover of an inert gas with added oxygen to form approximately 8 nanometer-size hollow oxides within the alloy grains and, when the alloy is aged, strengthened by precipitation of carbides and nitrides nucleated by the hollow oxides. Added strengthening is achieved by nitrogen solid solution strengthening and by the effect of solid oxides precipitated along and pinning grain boundaries to provide temperature-stabilization and refinement of the alloy grains.
    Type: Grant
    Filed: April 26, 1996
    Date of Patent: June 1, 1999
    Assignee: Lockheed Martin Idaho Technologies Company
    Inventors: John E. Flinn, Thomas F. Kelly
  • Patent number: 5902943
    Abstract: The invention relates to an aluminum powder blend and sintered components produced from the aluminum powder blend. The powder is based on the precipitation hardenable 7000 series Al-Zn-Mg-Cu alloys with trace addition of lead or tin. The powder blend comprises 2-12 wt. % zinc, 1-5 wt. % magnesium, 0.1-5.6 wt. % copper, 0.01-0.3 wt. % lead or tin, and the balance aluminum. The invention also provides a composite powder comprising the foregoing powder blend and a reinforcing element or compound.
    Type: Grant
    Filed: October 31, 1997
    Date of Patent: May 11, 1999
    Assignee: The University of Queensland
    Inventors: Graham Barry Schaffer, Roger Neil Lumley, Shuhai Huo
  • Patent number: 5900559
    Abstract: In an aspect of the present invention, a synchronizer ring, made of Fe-based sintered alloy, having an internal circumferential surface 101, is provided, the internal circumferential surface 101 being adapted to detachably engage in synchronized sliding with a rotating counterpart member thereof. At least the internal circumferential surface 101 is applied with aqueous vapor treatment to form iron oxide film thereon. In another aspect of the present invention, the iron oxide film has surface roughness not less than 20 .mu.mRz but not more than 55 .mu.mRz. In a further aspect of the present invention, the iron oxide film has a surface roughness not less than 25 .mu.mRz but not more than 35 .mu.mRz. In another aspect of the present invention, the iron oxide film has a thickness not less than 0.05 .mu.m but not more than 5 .mu.m. In a further aspect of the present invention, the major component of the iron oxide film is Fe.sub.3 O.sub.4.
    Type: Grant
    Filed: August 29, 1997
    Date of Patent: May 4, 1999
    Assignee: Nippon Piston Ring Co., Ltd.
    Inventors: Yoshikatsu Nakamura, Tetsuo Masuyama
  • Patent number: 5874684
    Abstract: A method and system for synthesizing nanocrystalline material. A system includes a chamber, a nonconsumable cathode shielded against chemical reaction by a working gas not including an oxidizing gas, but including an inert gas, a consumable anode vaporizable by an arc formed between the cathode and the anode, and a nozzle for injecting at least one of a quench and reaction gas in the boundaries of the arc.
    Type: Grant
    Filed: May 3, 1996
    Date of Patent: February 23, 1999
    Assignee: Nanophase Technologies Corporation
    Inventors: John C. Parker, Mohammed N. Ali, Byron B. Lympany
  • Patent number: 5868876
    Abstract: A wet-doping process for producing an oxide-dispersion strengthened (ODS), creep-resistant molybdenum alloy is disclosed. The alloy is made by adding nitrate or acetate salts of lanthanum, cerium, thorium, or yttrium to molybdenum oxide to produce a slurry, heating the slurry in a hydrogen atmosphere to produce a powder, mixing and cold isostatically pressing the powder, sintering in a hydrogen atmosphere, and thermomechanically processing (swaging, extruding, cold drawing) the product. The ODS molybdenum alloy produced by the process contains 2-4% by volume (.about.1-4% by weight) of an oxide of lanthanum, cerium, thorium, or yttrium. The alloy has high strength and improved creep-resistance at temperatures greater than 0.55T.sub.m of molybdenum.
    Type: Grant
    Filed: May 15, 1997
    Date of Patent: February 9, 1999
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Robert Bianco, R. William Buckman, Jr., Clint B. Geller
  • Patent number: 5866518
    Abstract: A self lubricating, friction and wear reducing composite material useful over a wide temperature range of from cryogenic temperature up to about 900.degree. C. contains 60-80 wt. % of particulate Cr.sub.2 O.sub.3, dispersed in a metal binder of a metal alloy containing Cr and at least 50 wt. % of Ni, Cr or a mixture of Ni and Cr. It also contains 5-20 wt. % of a fluoride of at least one Group I, Group II, or rare earth metal and, optionally, 5-20 wt. % of a low temperature lubricant metal. Such as Ag, Au, Pt, Pd, Rh and Cu. This composite exhibits less oxidation instability and less abrasiveness than composites containing chromium carbide, is readily applied using plasma spray and can be ground and polished with a silicon carbide abrasive.
    Type: Grant
    Filed: January 16, 1997
    Date of Patent: February 2, 1999
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Christopher Dellacorte, Brian J. Edmonds
  • Patent number: 5858525
    Abstract: A synthetic gasket material for use in a high-pressure press includes a major proportion of clay mineral powder having sufficient lubricity to flow in a high-pressure press, a minor proportion of at least one hard material powder having a sufficiently greater hardness than the clay mineral to retard flow of the clay mineral and form a seal during pressing in a high-pressure press, and a sufficient amount of binder to form an integral body. The synthetic gasket material is formed by thoroughly mixing together in desired proportions the clay mineral, hard material, and binder. The mixture is compacted into a body near net geometry and having a desired configuration to facilitate use in the high-pressure press. The compacted body is heated for a sufficient time and at a sufficient temperature to remove non-crystallographic water.
    Type: Grant
    Filed: June 13, 1997
    Date of Patent: January 12, 1999
    Assignee: General Electric Company
    Inventors: Lan Carter, Xian Yao, Ghanshyam Rai
  • Patent number: 5850591
    Abstract: A method of manufacturing a porous metal sheet having pores forming a pattern, comprising the steps of supplying metal powders to a peripheral surface, of at least one pattern roller of a pair of rollers, on which a pattern including a large number of concaves is formed; dropping metal powders to the concaves and accumulating metal powders on the peripheral surface of the pattern roller except the concaves; and rolling directly the metal powders accumulated on the peripheral surface of the pattern roller by rotating a pair of the rollers. It is preferable to laminate porous metal sheets or solid metal sheets manufactured by a method other than the above-described method on the metal sheet manufactured by the above-described method.
    Type: Grant
    Filed: April 18, 1997
    Date of Patent: December 15, 1998
    Assignee: Katayama Special Industries, Ltd.
    Inventor: Hirofumi Sugikawa
  • Patent number: 5846270
    Abstract: A magnetic-abrasive powder includes a magnetic component of a powder of a magnetic material, an abrasive component of a powder of an abrasive material, and an adhesive which adhesively connects particles of the magnetic material with particles of the abrasive material.
    Type: Grant
    Filed: April 6, 1998
    Date of Patent: December 8, 1998
    Inventors: Savva Feygin, Gennady Kremen, Leonid Igelstyn
  • Patent number: 5841042
    Abstract: The present invention is related to a brake lining material for a heavy-load braking device. The present invention is to provide a novel brake lining material which can have extended useful life under heavy-load conditions, can retain stable coefficients of friction under such heavy load conditions, can have appropriate wear resistance and can reduce the wear of its opponent material significantly. In accordance with the present invention,the novel brake lining material is provided which comprises copper-base metal powder, refractory material powder and graphite powder, the metal powder containing iron powder and titanium powder and being used as a matrix, the refractory material powder and the graphite powder being sintered together with this matrix in a uniformly distributed state in the powder.
    Type: Grant
    Filed: April 29, 1996
    Date of Patent: November 24, 1998
    Assignee: Tokyo Yogyo Kabushiki Kaisha
    Inventor: Yoshinari Kato
  • Patent number: 5841044
    Abstract: Silver-iron materials for electrical switching contacts with properties which come very close to those of silver-nickel materials formed of 0.5 to 4.5% by weight iron and 0.05 to 2% by weight of one or more of the oxides magnesium oxide, calcium oxide, yttrium oxide, lanthanum oxide, titanium oxide, zirconium oxide, hafnium oxide, cerium oxide, niobium oxide, tantalum oxide, chromium oxide, manganese oxide, iron oxide, zinc oxide, aluminum oxide, indium oxide, silicon oxide, and tin oxide, the balance being silver.
    Type: Grant
    Filed: November 19, 1996
    Date of Patent: November 24, 1998
    Assignee: Degussa Aktiengesellschaft
    Inventors: Wolfgang Weise, Willi Malikowski, Roger Wolmer, Peter Braumann, Andreas Koffler
  • Patent number: 5830257
    Abstract: A manufacturing method for an alumina-dispersed reinforced copper alloy according to the invention is an improved method which is capable of manufacturing efficiently alumina-dispersed reinforced copper having both good electro-conductivity used for wire-manufacturing-material and good mechanical property, the manufacturing method comprises the steps of obtaining powders constituted by particles having aluminum-contained copper alloy-oxide, allowing to mill aluminum-contained copper alloy powder within the air atmosphere by milling device with mechanical-alloying-operation due to shock compression, converting aluminum into aluminum-oxide by heat-treatment of the powders within inert atmosphere, implementing reduction-treatment of the converted member within the reducing atmosphere, and executing hot extrusion the reduction-treated-material.
    Type: Grant
    Filed: August 22, 1996
    Date of Patent: November 3, 1998
    Assignee: Yazaki Corporation
    Inventors: Hirohiko Fujimaki, Manabu Kiuchi, Tetsuya Takaai, deceased
  • Patent number: 5809393
    Abstract: A sputtering target comprising a body of metal such as aluminum and its alloy with an ultrafine grain size and small second phase. Also described is a method for making an ultra-fine grain sputtering target comprising melting, atomizing, and depositing atomized metal to form a workpiece, and fabricating the workpiece to form a sputtering target. A method is also disclosed that includes the steps of extruding a workpiece through a die having contiguous, transverse inlet and outlet channels of substantially identical cross section, and fabricating the extruded article into a sputtering target. The extrusion may be performed several times, producing grain size of still smaller size and controlled grain texture.
    Type: Grant
    Filed: October 30, 1995
    Date of Patent: September 15, 1998
    Assignee: Johnson Matthey Electronics, Inc.
    Inventors: John Alden Dunlop, Jun Yuan, Janine Kiyabu Kardokus, Roger Alan Emigh
  • Patent number: 5800636
    Abstract: A dust core is prepared from an iron powder with a particle size of 75-200 .mu.m having added thereto 0.015-0.15 wt % of silica sol, 0.05-0.5 wt % of a silicone resin, and 10-50 wt % based on the silicone resin of an organic titanium compound. By subjecting the iron powder to a curing treatment at 50.degree.-250.degree. C., compacting the powder, and annealing in an inert atmosphere at 550.degree.-650.degree. C., there is obtained a dust core consisting essentially of iron powder particles with a particle size of 75-200 .mu.m, 0.03-0.1% by weight of Si, 15-210 ppm of Ti, and 300-2,500 ppm of oxygen.
    Type: Grant
    Filed: January 3, 1997
    Date of Patent: September 1, 1998
    Assignee: TDK Corporation
    Inventors: Takeo Tsukada, Masaaki Kanasugi, Masataka Miyashita, Kazuhiro Okada, Norishige Yamaguchi
  • Patent number: 5798468
    Abstract: An electrical contact material for switching rated currents between 20 and 100 Ampere having improved operational life made of 3.2 to 19.9 wt-% tin oxide and 0.05 to 0.4 wt-%, in each case, of indium oxide and bismuth oxide, the remainder being silver. In the course of the manufacture of the material by powder metallurgy more than 60 wt-% of the tin oxide should exhibit a particle size of more than 1 .mu.m.
    Type: Grant
    Filed: January 31, 1996
    Date of Patent: August 25, 1998
    Assignee: Degussa Aktiengesellschaft
    Inventors: Wolfgang Weise, Roger Wolmer, Peter Braumann
  • Patent number: 5796017
    Abstract: Contact material based on silver, use of such a contact material in a switching device in power engineering, and process for preparing the contact material.For contact pieces in low-voltage switches, in particular, substitute materials based on silver-iron oxide are proposed for the silver-nickel hitherto often used in practice. According to the invention, such a material contains, as a further effective component, an oxide of a metal of the third sub-group, yttrium oxide (Y.sub.2 O.sub.3) being especially designed for this purpose. For example, a material of the composition Ag/Fe.sub.2 O.sub.3 10/Y.sub.2 O.sub.3 1 meets, with its favourable temperature behaviour, the properties required with respect to the contact property spectrum. In addition, at least one metal oxide which contains elements of the sixth sub-group of the Periodic Table of the Elements, preferably iron tungstate (FeWO.sub.4), can be present. In particular, a material of the composition Ag/Fe.sub.2 O.sub.3 9/Y.sub.2 O.sub.3 1/FeWO.sub.4 0.
    Type: Grant
    Filed: February 23, 1996
    Date of Patent: August 18, 1998
    Assignee: Siemens Aktiengesellschaft
    Inventor: Franz Hauner
  • Patent number: 5789686
    Abstract: Methods for making, methods for using and articles comprising cermets, preferably cemented carbides and more preferably tungsten carbide, having at least two regions exhibiting at least one property that differs are discussed. Preferably, the cermets further exhibit a portion that is binder rich and which gradually or smoothly transitions to at least a second region. The multiple-region cermets are particularly useful in compressively loaded application wherein a tensile stress or fatigue limit might otherwise be excessive for monolithic articles. The cermets are manufactured by juxtaposing and densifying at least two powder blends having different properties (e.g., differential carbide grain size, differential carbide chemistry, differential binder content, differential binder chemistry, or any combination of the preceding).
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: August 4, 1998
    Assignee: Kennametal Inc.
    Inventors: Ted R. Massa, John S. Van Kirk, Robert R. McNaughton, Jr.
  • Patent number: 5782954
    Abstract: The present invention provides for iron-based metallurgical powder compositions that contain nanoparticle metal or metal oxide flow agents useful for enhancing the flow characteristics of the compositions, particularly at elevated processing temperatures. The iron-based powder compositions can be advantageously blended with a flow agent such as a silicon oxide or iron oxide, or a combination of both, to provide a powder composition having improved flow properties and ejection release characteristics.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: July 21, 1998
    Assignee: Hoeganaes Corporation
    Inventor: Sydney Luk
  • Patent number: 5780755
    Abstract: A sputtering target comprising a body of metal such as aluminum and its alloy with an ultrafine grain size and small second phase. Also described is a method for making an ultra-fine grain sputtering target comprising melting, atomizing, and depositing atomized metal to form a workpiece, and fabricating the workpiece to form a sputtering target. A method is also disclosed that includes the steps of extruding a workpiece through a die having contiguous, transverse inlet and outlet channels of substantially identical cross section, and fabricating the extruded article into a sputtering target. The extrusion may be performed several times, producing grain size of still smaller size and controlled grain texture.
    Type: Grant
    Filed: October 30, 1995
    Date of Patent: July 14, 1998
    Assignee: Johnson Matthey Electronics, Inc.
    Inventors: John Alden Dunlop, Jun Yuan, Janine Kiyabu Kardokus, Roger Alan Emigh
  • Patent number: 5728194
    Abstract: Silver-iron materials for electrical switching contacts with properties which come very close to those of silver-nickel materials formed of 0.5 to 20% by weight iron 0.5 to 5% by one or more of the elements rhenium, iridium, and ruthenium, and 0.05 to 2% by weight of one or more of the oxides magnesium oxide, calcium oxide, yttrium oxide, lanthanum oxide, titanium oxide, zirconium oxide, hafnium oxide, cerium oxide, niobium oxide, tantalum oxide, chromium oxide, manganese oxide, iron oxide, zinc oxide, copper oxide, aluminum oxide, indium oxide, silicon oxide, and tin oxide, the balance being silver.
    Type: Grant
    Filed: November 19, 1996
    Date of Patent: March 17, 1998
    Assignee: Degussa Aktiengesellschaft
    Inventors: Wolfgang Weise, Willi Malikowski, Roger Wolmer, Peter Braumann, Andreas Koffler
  • Patent number: 5723799
    Abstract: The present invention provides metal-based composite with oxide particle dispersion and a method for producing the same.The present invention relates to a method for producing metal-based composite with oxide particle dispersion, comprising sintering of metal-based ultrafine powders (with an average grain size of about 20 nm to 100 nm and a grain size distribution of about 5 nm to 300 nm and with the surface oxidized for handling) in vacuum, in an inert gas or in a reducing atmosphere by rapid sintering, crystallizing the ultrafine powders with a grain size of about 50 nm or less to metal oxide during sintering and simultaneously removing the oxygen on the surface of the ultrafine powders with the grain size of about 50 nm or more, and the metal-based composite with oxide particle dispersion produced according to the said method.
    Type: Grant
    Filed: July 5, 1996
    Date of Patent: March 3, 1998
    Assignee: Director General of Agency of Industrial Science and Technology
    Inventors: Norimitsu Murayama, Yasuyoshi Torii
  • Patent number: 5705280
    Abstract: This invention relates to composite materials and the production of composite materials that are designed for use under high stress and at high temperatures. More particularly, this invention relates to materials suited for use in turbine engines, such as those used in aircraft, that must withstand high temperature, high stress, corrosion and oxidation. The invention specifically relates to composite materials which have alloy matrices, e.g., nickel aluminide, reinforced with a substantially continuous, interpenetrating, and interconnected network of a metal oxide. These composite materials have superior properties as compared to superalloys, intermetallics, ceramics, or artificially reinforced materials.
    Type: Grant
    Filed: December 23, 1996
    Date of Patent: January 6, 1998
    Inventor: Herbert W. Doty
  • Patent number: 5695544
    Abstract: A silicon nitride based sintered product having strength at a high temperature is obtained by sintering a mixture. The mixture comprises a silicon powder or a mixture powder of silicon and silicon nitride added a sintering assistant powder, a compound powder of iron and a compound powder containing at least one of vanadium, niobium and tantalum in 5a group elements of the periodic table. The silicon nitride based sintered product contains silicon, aluminum, yttrium, oxygen, nitrogen, iron and at least one of 5a group element in the periodic table, and when weights at which the elements are present as a compound of silicon nitride, alumina, yttria, a compound powder of iron and 5a group elements in the periodic table are represented by a, b, c, d and e, the following formulae are fulfilled:1.ltoreq.100(b+c+d+e).times.(a+b+c+d+e).ltoreq.15, 1.ltoreq.(b+c)/d0.005.ltoreq.100d/(a+b+c+d+e).ltoreq.7.5, and 0.005.ltoreq.e/(b+c).ltoreq.
    Type: Grant
    Filed: April 18, 1996
    Date of Patent: December 9, 1997
    Assignee: Isuzu Ceramics Research Institute Co., Ld.
    Inventor: Toshiyuki Yamada
  • Patent number: 5686676
    Abstract: The sinterability of a copper/tungsten green compact is improved by using copper oxide, tungsten oxide or both as the copper and/or tungsten source. Sinterability is further enhanced by including steam in the sintering atmosphere.
    Type: Grant
    Filed: May 7, 1996
    Date of Patent: November 11, 1997
    Assignee: Brush Wellman Inc.
    Inventors: David E. Jech, Juan L. Sepulveda, Anthony B. Traversone
  • Patent number: 5663500
    Abstract: Substitute materials are increasingly proposed for contact pieces in low-voltage switches, which until now frequently consisted of silver-nickel. In the case of such a substitute material which, besides silver, contains at least iron oxide (Fe.sub.2 O.sub.3 /Fe.sub.3 O.sub.4) and zirconium oxide (ZrO.sub.2) as active components, the making capacity with regard to the critical welding current is improved by an addition of a further oxide of the sixth subgroup of the Periodic System and/or of a mixed oxide that consists of iron oxide and the oxide of an element of the sixth subgroup of the Periodic System. In this connection, the further additive is, in particular, ferro-wolframate (FeWO.sub.4).
    Type: Grant
    Filed: June 20, 1996
    Date of Patent: September 2, 1997
    Assignee: Siemens Aktiengesellschaft
    Inventors: Franz Hauner, Manfred Muller, Gunter Tiefel
  • Patent number: 5648620
    Abstract: A cast sliding surface bearing for guiding and supporting moving machine members consists of a light alloy matrix (4), which contains a cast-in shaped body (2), which constitutes portions of the sliding surface (6) and is made of a hard material and has open cavities, which contain infiltrated matrix material. In order to achieve improved tibological properties the open cavities of the shaped body are filled with matrix material, each of the hard portions of the shaped body which lie in the sliding surface has a size, measured in an axis, of .ltoreq.0.1 mm, and the distance between the hard portions of the shaped body, measured in an axis, is .ltoreq.2 mm.
    Type: Grant
    Filed: February 24, 1995
    Date of Patent: July 15, 1997
    Assignee: KS Aluminium-Technologie Aktiengesellschaft
    Inventors: Otto W. Stenzel, Georg Sick, Eduard Kohler, Herbert Moding, Jurgen Niehues
  • Patent number: 5599377
    Abstract: A mixed iron powder for powder metallurgy containing less than about 0.1 wt % of Mn, about 0.08 to 0.15 wt % of S, a total of about 0.05 to 0.70 wt % of one or more compounds selected from MoO.sub.3 and WO.sub.3, about 0.50 to 1.50 wt % of graphite powder, and the balance Fe and incidental impurities. The mixed iron powder can be manufactured by an atomizing process using water, and be used to manufacture a sintered steel having excellent machinability, strength and toughness without forming soot, even if sintered in a hydrogen-containing atmosphere.
    Type: Grant
    Filed: July 24, 1995
    Date of Patent: February 4, 1997
    Assignee: Kawasaki Steel Corporation
    Inventors: Satoshi Uenosono, Kuniaki Ogura
  • Patent number: 5591926
    Abstract: A silver base electrical contact material is described which contains uniformly in a silver matrix dispersed particles of nickel, nickel oxide, and at least one additive selected from the group consisting of vanadium, manganese, chromium, thallium, titanium, cobalt, and tungsten carbide. The contact material contains 1.3 to 24.8 wt % of nickel, 0.2 to 4.7 wt % of nickel oxide, 0.05 to 3 wt % of the additive, and balance silver. A superior silver base contact material having excellent welding and wear resistances is obtained by adding the metals and the metal carbide to a silver-nickel-nickel oxide contact material.
    Type: Grant
    Filed: September 26, 1995
    Date of Patent: January 7, 1997
    Assignee: Matsushita Electric Works, Ltd.
    Inventors: Hayato Inada, Koji Tsuji
  • Patent number: 5590392
    Abstract: A corrosion-resistant material for the construction of a member destined to contact molten metal comprises a matrix of a refractory metal and a powder of the oxide of at least one metallic element selected from the group consisting of the same metallic element as the molten metal and metallic elements having lower levels of free energy for the formation of an oxide than the molten metal, the powder of the oxide being dispersed and disposed in the matrix. The refractory metal is W, Mo, Ta, Nb, or Re. The metal oxide is selected from the rare earth metal oxides, namely the oxides of the same metallic elements as the molten metals, and the oxides of Ti, Cr, and Zr.
    Type: Grant
    Filed: February 22, 1995
    Date of Patent: December 31, 1996
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yutaka Ishiwata, Yoshiyasu Itoh
  • Patent number: 5561829
    Abstract: A method of preparing a metal alloy product from a powder blend. The method comprising: (a) cold pressing a blend to form a compact, the metal blend comprising a metal powder phase and at least one reinforcement phase having a hardness greater than the metal phase; (b) heating the compact to form a preheated compact; and (c) hot working the heated compact. In a preferred method, the powder metal blend comprises 50 to 90 vol. % of an aluminum alloy powder and 10 to 50 vol. % of silicon carbide; the heating of the compact perforated in a nitrogen atmosphere to form a preheated compact; and the extruded hot compact is hot worked. Hot working may take the form of forging, rolling, upset forging, exuding, compacting or other processes known in the art.
    Type: Grant
    Filed: April 27, 1995
    Date of Patent: October 1, 1996
    Assignee: Aluminum Company of America
    Inventors: Ralph R. Sawtell, Warren H. Hunt, Jr., Thomas J. Rodjom, Erik J. Hilinski, John H. Milsom
  • Patent number: 5545598
    Abstract: Disclosed is a high heat conductive body which consists of 30-99 wt. % of at least one of molybdenum and tungsten and 1 or more wt. % ceramic. A wiring base substrate fitted with such a high heat conductive body is also disclosed. Methods of producing such a high heat conductive body and a wiring base substrate are further disclosed.
    Type: Grant
    Filed: February 14, 1994
    Date of Patent: August 13, 1996
    Assignee: NGK Spark Plug Co., Ltd.
    Inventors: Kouki Ogawa, Kozo Yamasaki, Naomiki Kato
  • Patent number: 5486222
    Abstract: Contact materials with the composition AgSnO.sub.2 Bi.sub.2 O.sub.3 CuO have proven themselves, particularly for low-voltage switching devices. These materials can contain an additive of other metal oxides. In addition to the required useful lifetime and suitable excess high temperature behavior, such materials are also supposed to fulfill all the requirements under short-circuit current stress. This is accomplished, according to the invention, in that the additional metal oxide is separately added stannic oxide and/or iron containing at least one element of the sixth sub-group of the periodic system. In the sintered composite material according to the invention, the other metal oxide is particularly ferric tungstate (FeWO.sub.4). Preferably, separately added SnO.sub.2 is present in combination with FeWO.sub.4.
    Type: Grant
    Filed: July 18, 1994
    Date of Patent: January 23, 1996
    Assignee: Siemens Aktiengesellschaft
    Inventor: Franz Hauner
  • Patent number: 5462903
    Abstract: The invention relates to nano-composite powders of alumina and metal constituted of grains of micronic size. Each grain comprises a compact matrix of alumina of a specific surface area less than 5 m.sup.2 /g, in which are dispersed crystallites of transition metals of alloys of these metals, of sizes less than 50 nm. The powder according to the invention may be produced starting with a precursor comprised of a mixed carboxylic salt of aluminum and one or more transition metals. The powders according to the invention permit producing by sintering cermets of alumina/metal benefitting from greatly improved mechanical and thermo-mechanical properties.
    Type: Grant
    Filed: May 24, 1994
    Date of Patent: October 31, 1995
    Assignee: Centre National De La Recherche Scientifique (C.N.R.S.)
    Inventors: Abel Rousset, Xavier Devaux
  • Patent number: 5462808
    Abstract: A high-rigidity composite material having a Young's modulus larger than 25,000 kgf/mm.sup.2 is disclosed, in which particles are dispersed in a matrix of a ferritic steel, and the degree of accumulation of {111} planes in a plane perpendicular to a given direction, in terms of X-ray diffraction intensity, is 30 times larger than that of equiaxial polycrystals.
    Type: Grant
    Filed: September 2, 1994
    Date of Patent: October 31, 1995
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Kazutaka Asabe, Masaru Nishiguchi, Sukeyoshi Yamamoto
  • Patent number: 5443615
    Abstract: A method of producing a molded ceramic article comprises the first step mixing powdery raw materials and a liquid additive, thereby obtaining a mixed raw material, the second step press-molding the mixed raw material obtained in the first step in a hydrostatically applied condition of pressure, thereby removing an excess of the liquid additive to obtain a preform, and the third step calcining the preform obtained in the second step to obtain a molded ceramic article. The molded ceramic article comprises, as a principal component, copper and, as essential components, Cr and Ni within composition ranges of 0.1.ltoreq.Cr<2 wt. % and 0.1.ltoreq.Ni<10 wt. % and further at least one additive component selected from the group consisting of the following composition ratios: the following composition ratios: 0<Fe<5 wt. %, 0.ltoreq.Co<5 wt. %, 0.ltoreq.Al<10 wt. % 0.ltoreq.Ti<20 wt. %, 0.ltoreq.Mo<3 wt. %, 0.ltoreq.Si<3 wt. % 0.ltoreq.V<3 wt. % 0.ltoreq.Mg<1 wt. % and 0.ltoreq.
    Type: Grant
    Filed: October 22, 1992
    Date of Patent: August 22, 1995
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Mitsuo Kuwabara, Kiyoshi Ikegami, Teruaki Yoshida, Koji Takahashi, Tamotsu Harada, Takeshi Komiyama, Fumio Hirai, Masamichi Hayashi
  • Patent number: 5439499
    Abstract: A cermet useful in the fabrication of metal cutting, rockdrilling and mineral tools, as well as wear parts. The cermet comprises (i) a hard phase of a simple boride of a transition metal, a mixture of simple borides of transition metals, or a mixed boride of transition metals; (ii) a binder phase of Fe, Ni, Co, Cr, or alloys thereof; (iii) a dispersion of particles of oxides of transition metals in which the oxygen can be replaced by nitrogen and/or carbon; and (iv) a dispersion of oxides of metals chosen from aluminum and Group IIA and IIIA metals.
    Type: Grant
    Filed: February 26, 1993
    Date of Patent: August 8, 1995
    Assignee: Sandvik AB
    Inventors: Henri Pastor, Colette Allibert, Laurent Ottavi, Manuel Albajar, Francisco Castro-Fernandez
  • Patent number: 5435826
    Abstract: A sputtering target having a relative density of 90% or more and a single-phase structure for forming a indium-tin oxide layer of low resistance is produced by pressing a composite powder of indium oxide and tin oxide having an average diameter of 0.1 .mu.m or less and a tin content controlled to 1.5-6 weight %; and sintering the pressed composite powder at 1500.degree.-1700.degree. C. in an oxygen atmosphere pressurized at 1-10 atm.
    Type: Grant
    Filed: November 23, 1993
    Date of Patent: July 25, 1995
    Assignee: Hitachi Metals, Ltd.
    Inventors: Masahiko Sakakibara, Hiromi kikuchi
  • Patent number: 5435825
    Abstract: Disclosed herein is an aluminum matrix composite powder comprising 1 to 40% by weight of ceramic particles dispersed in a matrix of aluminum-silicon alloy. The matrix of the composite may further comprise at least one of Cu, Mg and transition metals.The aluminum matrix composite is prepared by a rapid solidification.In the aluminum matrix composite, the ceramic particles are very uniformly dispersed in the matrix, thereby the improvement of mechanical properties of product prepared therefrom can be obtained.
    Type: Grant
    Filed: August 7, 1992
    Date of Patent: July 25, 1995
    Assignee: Toyo Aluminum Kabushiki Kaisha
    Inventors: Jun Kusui, Fumiaki Nagase, Akiei Tanaka, Kohei Kubo, Takamasa Yokote
  • Patent number: 5429656
    Abstract: In particular for contacts in low-voltage switches, the contact material consists of silver and further active components. In accordance with the invention, there are present as active components, in combination, iron oxide (Fe.sub.2 O.sub.3 /Fe.sub.3 O.sub.4) in a proportion of between 1 and 50% by weight and at least one oxide of a further chemical element in a proportion of between 0.01 and 5% by weight. In particular, contact materials of the constitution AgFe.sub.2 O.sub.3 ReO.sub.2 and AgFe.sub.2 O.sub.3 ZrO.sub.2 have proven suitable in practice. The manufacture of the material and fabricating of the contacts can be effected by methods of powder metallurgy with the inclusion of molding or extrusion technique.
    Type: Grant
    Filed: November 24, 1993
    Date of Patent: July 4, 1995
    Assignee: Siemens Aktiengesellschaft
    Inventors: Franz Hauner, Gunter Tiefel
  • Patent number: 5427600
    Abstract: A low alloy sintered steel contains at least 0.15 percent by weight and less than 0.8 percent by weight of carbon. Its matrix is formed by a tempered martensite containing prior austenite crystal grains of not more than 15 .mu.m in mean grain size. Pores and nonmetallic inclusions contained in the matrix are not more than 50 .mu.m in maximum diameter, and the density of the low alloy sintered steel is at least 96 percent of theoretical density. A raw material powder for forming the low alloy sintered steel includes iron alloy powder which is prepared by an atomizing process, and is treated with a dry mill in an inert gas atmosphere or in the atmospheric air. Thus, dislocations are introduced into the raw material powder, and nonmetallic inclusions contained in the raw material powder are pulverized to be not more than 50 .mu.m in maximum diameter. Not only static characteristics but also dynamic characteristics, such as fatigue strength, of the low alloy sintered steel are improved.
    Type: Grant
    Filed: November 30, 1993
    Date of Patent: June 27, 1995
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Yoshiaki Itoh, Kozo Ito, Yoshinobu Takeda
  • Patent number: 5411571
    Abstract: Disclosed are a hard sintered alloy having fine pores which comprises a sintered alloy comprising 2 to 30% by volume of a dispersed phase of at least one of oxide, carbide and sulfide of Ca, Sr or Ba and mutual solid solutions of these, and the balance of a binder phase comprising at least one metal of Co, Ni and Fe or an alloy containing said metal as a main component and a hard phase of at least one of carbide, nitride and boride of the 4a (Ti, Zr, Hf), 5a (V, Nb, Ta) or 6a (Cr, Mo, W) group metal of the periodic table and mutual solid solutions of these, with a volume ratio of said binder phase to said hard phase being 2:98 to 95:5, wherein fine pores are formed by removing said dispersed phase from a surface portion of said sintered alloy, and a process for preparing the same.
    Type: Grant
    Filed: July 19, 1993
    Date of Patent: May 2, 1995
    Assignee: Toshiba Tungaloy Co., Ltd.
    Inventors: Masaki Kobayashi, Tatuya Sato
  • Patent number: 5409661
    Abstract: An aluminum alloy consists essentially of 90 to 99.5% by weight of matrix and 0.5 to 10% by weight of a dispersant dispersed within the matrix. The matrix comprises 10 to 25% by weight of Si, 5 to 20% by weight of Ni, 1 to 5% by weight of Cu and the rest of Al and impurity elements. The dispersant is at least one selected from the group consisting of 0.5 to 10% of nitride, boride, carbide and oxide. The aluminum alloy shows excellent tensile strength and wear resistance.
    Type: Grant
    Filed: May 24, 1994
    Date of Patent: April 25, 1995
    Assignees: Toyota Jidosha Kabushiki Kaisha, Toyo Aluminium Kabushiki Kaisha
    Inventors: Kunihiko Imahashi, Hirohisa Miura, Yasuhiro Yamada, Hirohumi Michioka, Jun Kusui, Akiei Tanaka
  • Patent number: 5405707
    Abstract: In order to form internal conductors of a multilayer ceramic electronic component such as a multilayer ceramic capacitor, copper paste containing copper powder having a mean particle size of 0.3 to 2 .mu.m in a particle size range of 0.1 to 4 .mu.m and ceramic powder having a main component which is common to that of a ceramic material contained in the multilayer ceramic electronic component and being in a particle size range of 0.5 to 8 .mu.m, as well as an organic vehicle and a solvent with the contents of the copper powder and the ceramic powder and the total content of the organic vehicle and the solvent in ranges of 40 to 70 percent by weight, 1 to 15 percent by weight and 25 to 60 percent by weight respectively is applied onto ceramic green sheets. The ceramic green sheets provided with such copper paste films are stacked and fired so that occurrence of voids in the laminate and deformation of the laminate are suppressed in the as-obtained multilayer ceramic electronic component.
    Type: Grant
    Filed: February 22, 1993
    Date of Patent: April 11, 1995
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Hiroji Tani, Kazuhito Ohshita, Mitsuyoshi Nishide
  • Patent number: 5397373
    Abstract: A raw material for high oxygen chromium targets comprising chromium crystalline particles dispersed in metallic chromium wherein at least a portion of the surface of all the crystals constituting the oxide crystalline particles is in contact with the matrix of said metallic chromium. And a method of producing a raw material for high oxygen chromium targets comprising chromium oxide crystalline particles dispersed in metallic chromium characterized by heat-treating metallic chromium containing a solid solution of oxygen or oxide particles as a starting material, and precipitating or crystal-growing the oxygen or oxide particles as chromium oxide crystalline particles having a particle size of 0.1 to 100, .mu.m, thereby obtaining a raw material for chromium targets.
    Type: Grant
    Filed: June 9, 1993
    Date of Patent: March 14, 1995
    Assignee: Japan Metals & Chemicals Co., Ltd.
    Inventors: Hidenori Tomioka, Kenichi Kobayashi, Manabu Takahashi, Tatsuhiko Fujinuma
  • Patent number: 5364442
    Abstract: A composite electrode for electrochemical processing having improved high temperature properties, and a process for making the electrode by combustion synthesis. A composition from which the electrode is made by combustion synthesis comprises from about 4% to about 90% by weight of a particulate or fibrous combustible mixture which, when ignited, is capable of forming an interconnected network of a ceramic or metal-ceramic composite, and from about 10% to about 60% by weight of a particulate or fibrous filler material capable of providing the electrode with improved oxidation resistance and maintenance of adequate electrical conductivity at temperatures above 1000.degree. C. The filler material is molybdenum silicide, silicon carbide, titanium carbide, boron carbide, boron nitride, zirconium boride, cerium oxide, cerium oxyfluoride, or mixtures thereof.
    Type: Grant
    Filed: October 26, 1993
    Date of Patent: November 15, 1994
    Assignee: Moltech Invent S.A.
    Inventor: Jainagesh A. Sekhar