Oxide Containing Patents (Class 75/232)
  • Patent number: 5350628
    Abstract: A magnetic material is provided which includes a discrete phase including grains made of a first substance which comprises a magnetic metal; and a continuous phase including a thin coating film made of a second substance which comprises a dielectric or insulating substance. The thin coating film is formed on the surface of the grains and has a mean thickness smaller than the mean particle size of the grains. The grains are separated substantially from each other by the thin coating film.
    Type: Grant
    Filed: November 19, 1992
    Date of Patent: September 27, 1994
    Assignee: Matsushita Electric Industrial Company, Inc.
    Inventors: Koichi Kugimiya, Yasuhiro Sugaya, Osamu Inoue, Ken Hirota, Mitsuo Satomi
  • Patent number: 5338330
    Abstract: A compacted, single phase or multiphase composite article. Particles for use in the compacted article are produced by providing a precursor compound containing at least one or at least two metals and a coordinating ligand. The compound is heated to remove the coordinating ligand therefrom and increase the surface area thereof. It may then be reacted so that at least one metal forms a metal-containing compound. The particles may be consolidated to form a compacted article, and for this purpose may be used in combination with graphite or diamonds. The metal-containing compound may be a nonmetallic compound including carbides, nitrides and carbonitrides of a refractory metal, such as tungsten. The metal-containing compound may be dispersed in a metal matrix, such as iron, nickel or cobalt. The dispersed nonmetallic compound particles are no larger than about 0.1 micron in particle size and have a volume fraction greater than about 0.15 within the metal matrix.
    Type: Grant
    Filed: July 24, 1991
    Date of Patent: August 16, 1994
    Assignee: Exxon Research & Engineering Company
    Inventors: Richard S. Polizzotti, Larry E. McCandlish, Edwin L. Kugler
  • Patent number: 5312582
    Abstract: A process for producing porous structures for use in molten carbonate fuel cells in which a powder comprising at least one of a non-alloyed metal powder and a metal oxide powder, and a ceramic oxide powder is mixed, formed into a desired shape and sintered in an oxidizing atmosphere at a temperature between 900.degree. C. and about 1400.degree. C. via reactive oxidation to form a sintered oxide structure, which is then cooled to 700.degree. C. to 1100.degree. C. and treated in a reducing atmosphere to form a metallic structure with the non-reducible oxide dispersed within the metal.
    Type: Grant
    Filed: February 4, 1993
    Date of Patent: May 17, 1994
    Assignee: Institute of Gas Technology
    Inventor: Rafael A. Donado
  • Patent number: 5306568
    Abstract: A high Young's modulus material comprises carbon steel or alloying steel and contains a particular amount of hard particles having a Young's modulus of not less than 24,000 kgf/mm.sup.2. Furthermore, a surface-coated tool member comprises a substrate comprised of carbon steel or alloying steel and a hard coating layer having a Young's modulus of not less than 24,000 kgf/mm.sup.2 in which the substrate contains a particular amount of hard particles having a Young's modulus of not less than 24,000 kgf/mm.sup.2.
    Type: Grant
    Filed: April 24, 1992
    Date of Patent: April 26, 1994
    Assignee: Daido Tokushuko Kabushiki Kaisha
    Inventors: Yukinori Matsuda, Kozo Ozaki, Koichi Sudo
  • Patent number: 5303617
    Abstract: A Cu--Sn based sintered material, which has an improved corrosion-resistance, is provided by setting the Pb content at 1 to less than 10% and adding from 0.1 to 30% of a hard matter(s) selected from the groups (a), (b), (c) and (d). The hard matter is(a) Fe.sub.2 P, Fe.sub.3 P, FeB, Fe.sub.2 B and Mo.(b) Fe--Cr, Fe--Mn, Fe--Ni, Fe--Si, Fe--W, Fe--Mo, Fe--V, Fe--Ti, Fe--Nb, CuP, Cr, and W;(c) SiC, TiC, WC, B.sub.4 C, TiN, cubic BN, Si.sub.3 N.sub.4, SiO.sub.2, ZrO.sub.2, and Al.sub.2 O.sub.3 ;(d) Si--Mn, Cu--Si, and FeS.Most of said hard matter being dispersed in Cu particles, grain boundaries between Cu particles, and between the Cu and Pb particles.
    Type: Grant
    Filed: November 3, 1992
    Date of Patent: April 19, 1994
    Assignee: Taiho Kogyo Co., Ltd.
    Inventors: Eiji Asada, Hiromi Ogino
  • Patent number: 5279650
    Abstract: A seal coat composition comprises a slurry consisting essentially of an aluminum neutralized phosphate bonding solution and iron oxide (Fe.sub.2 O.sub.3) powder. The bonding solution advantageously contains a relatively small but essential amount of vanadium pentoxide and, preferably, magnesium. A process for forming the bonding solution component of the coating slurry includes equilibrating an aqueous phosphate solution with a small but controlled and necessary amount of solute aluminum prior to adding iron oxide powder to form the slurry. The present invention overcomes the problem of bonding solutions which require environmentally disadvantageous chromates or molybdates to neutralize the bonding solution prior to formation of the slurry.
    Type: Grant
    Filed: May 20, 1993
    Date of Patent: January 18, 1994
    Assignee: Solar Turbines Incorporated
    Inventors: Alvin R. Stetson, William D. Brentnall, Zaher Z. Mutasim, Lulu L. Hsu
  • Patent number: 5279649
    Abstract: A coating composition comprises a slurry consisting essentially of an aluminum neutralized phosphate bonding solution and aluminum powder. The bonding solution advantageously contains a relatively small but essential amount of vanadium pentoxide and, preferably, magnesium. A process for forming the bonding solution component of the coating slurry includes equilibrating an aqueous phosphate solution with a small but controlled and necessary amount of solute aluminum prior to adding aluminum powder to form the slurry. The present invention overcomes the problem of bonding solutions which require environmentally disadvantageous chromates or molybdates.
    Type: Grant
    Filed: May 20, 1993
    Date of Patent: January 18, 1994
    Assignee: Solar Turbines Incorporated
    Inventors: Alvin R. Stetson, William D. Brentnall, Zaher Z. Mutasim, Lulu L. Hsu
  • Patent number: 5273569
    Abstract: A composite has a magnesium base metal matrix and a reinforcing phase. The composite is produced from a charge containing a rapidly solidified magnesium base alloy and particles of a reinforcing material present in an amount ranging from about 0.1 to 50 percent by volume of the charge. Ball milling the charge energetically enfolds metal matrix material around each of the particles, while maintaining the charge in a pulverant state. Consolidation of the charge provides a mechanically formable, substantially void-free mass.
    Type: Grant
    Filed: November 9, 1989
    Date of Patent: December 28, 1993
    Assignee: Allied-Signal Inc.
    Inventors: Paul S. Gilman, Michael S. Zedalis
  • Patent number: 5271758
    Abstract: A dense cermet article including about 44-93% of a granular first hard phase, about 4-44% of a granular second hard phase, and about 2-20% of a metal phase, all expressed in % by volume. The first hard phase consists essentially of alumina and from 0% to less than 5% of one or more oxides selected from magnesia, zirconia, yttria, hafnia, and silica. The second hard phase consists essentially of a hard refractory carbide, nitride, or boride, or mixture or solid solution thereof. Preferred materials for inclusion in the second hard phase are titanium carbide, hafnium carbide, tantalum carbide, tantalum nitride, tungsten carbide, titanium diboride, and boron carbide. The metal phase consists essentially of a combination of nickel and aluminum having a ratio of nickel to aluminum of from about 85:15 to about 88:12, and 0-5% of an additive selected from the group consisting of titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, cobalt, boron, and/or carbon.
    Type: Grant
    Filed: May 13, 1991
    Date of Patent: December 21, 1993
    Assignee: Valenite Inc.
    Inventors: Sergej T. Buljan, Helmut Lingertat, Steven F. Wayne
  • Patent number: 5266414
    Abstract: An impregnated thermionic cathode includes a porous matrix of sintered tungsten-alloy particles containing less than six percent iridium and/or other platinum-group metal. The pores of the matrix are impregnated with a temporary process impregnant such as molten copper or an organic monomer, and upon solidification is machined to a desired shape. Thereafter the temporary process impregnant is removed, and the matrix pores again infiltrated with a barium oxide such as molten barium aluminate, or other alkaline earth. A thin, iridium-rich surface activating layer, preferably of about 50% iridium, is then applied to the emitting surface. The diffusion of surface activating iridium is substantially blocked; superior emission and lifetime is provided; and the cathode is relatively low cost and easy to fabricate.
    Type: Grant
    Filed: March 18, 1988
    Date of Patent: November 30, 1993
    Assignee: Varian Associates, Inc.
    Inventors: Gerard A. Goeser, Michael C. Green
  • Patent number: 5256183
    Abstract: Particle reinforced composite material produced by mixing granules of a composite material formed by rapidly solidifying a melt comprising a based light metal matrix and particles of a non-metallic reinforced material with granules of unreinforced host metal matrix, compacting the mixture and applying a shear deformation on said mixture.
    Type: Grant
    Filed: January 23, 1992
    Date of Patent: October 26, 1993
    Assignee: Norsk Hydro a.s.
    Inventors: Wolfgang W. Ruch, Lars Auran, Nils Ryum
  • Patent number: 5238507
    Abstract: A magnetic material is provided which includes a discrete phase including grains made of a first substance which comprises a magnetic metal; and a continuous phase including a thin coating film made of a second substance which comprises a dielectric or insulating substance. The thin coating film is formed on the surface of the grains and has a mean thickness smaller than the mean particle size of the grains. The grains are separated substantially from each other by the thin coating film.
    Type: Grant
    Filed: June 8, 1990
    Date of Patent: August 24, 1993
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Koichi Kugimiya, Yasuhiro Sugaya, Osamu Inoue, Ken Hirota, Mitsuo Satomi
  • Patent number: 5238886
    Abstract: Ceramic bodies are bonded together via a layer of an oxidation reaction product of a molten metal, which metal is present in one or both of the ceramic bodies prior to bonding. At least one of the ceramic bodies comprises a ceramic product formed by the oxidation reaction of molten parent metal (e.g., alumina from molten aluminum) and grown as molten metal is transported through, and oxidized on the surface of, its own oxidation product. One or both of the ceramic bodies used in the bonding process contains surface-accessible channels of residual metal, i.e., metal channels which have resulted from molten-metal transport during the ceramic growth process. When the suitably assembled ceramic bodies are heated in the presence of an oxidant at a temperature above the melting point of the residual metal, molten metal at the surface of at least one of the ceramic bodies reacts with the oxidant to form a layer of oxidation reaction product, which may or may not incorporate at least one filler material.
    Type: Grant
    Filed: April 13, 1992
    Date of Patent: August 24, 1993
    Assignee: Lanxide Technology Company, LP
    Inventors: Stanley J. Luszcz, Andrew W. Urquhart, Marc S. Newkirk
  • Patent number: 5225381
    Abstract: A vacuum switch contact material consists essentially of a mixture of Cu and Cr.sub.x O.sub.y (x=1 to 2, y=0 to 3) wherein Cr.sub.x O.sub.y is in a particulate state, the center part of the particles consists of Cr.sub.2 O.sub.3 (x=2, y=3), and the peripheral part of the particles consists of Cr (x=1, y=0). The Cr.sub.x O.sub.y particles having Cr.sub.2 O.sub.3 central part and Cr periphery can be formed by reducing the surface of Cr.sub.2 O.sub.3 particles. Cu may be infiltrated into the open pores of Cr.sub.x O.sub.y particles after a green compact of Cr.sub.2 O.sub.3 is formed. Alternatively, a mixture of Cr.sub.2 O.sub.y particles and Cu particles may be formed into a green compact, which may then be sintered. Still alternatively, a mixture of Cr.sub.2 O.sub.y particles and Cu particles may be hot-pressed.
    Type: Grant
    Filed: April 27, 1992
    Date of Patent: July 6, 1993
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Eizo Naya, Mitsuhiro Okumura
  • Patent number: 5217583
    Abstract: A dimensionally stable combustion synthesis product of a composition containing at least 20% by weight of a particulate combustible material; at least 15% by weight of a particulate filler material capable of providing desired mechanical and electrical properties; and up to 35% by weight of a particulate inorganic binder having a melting point lower than the combustion synthesis temperature. Electrodes suitable for electrochemical processing are a preferred product form, particularly electrodes for use in the electrowinning of aluminum from its oxide.
    Type: Grant
    Filed: January 30, 1991
    Date of Patent: June 8, 1993
    Assignee: University of Cincinnati
    Inventors: Jainagesh A. Sekhar, Sarit B. Bhaduri
  • Patent number: 5209772
    Abstract: A dispersion-strengthened (DS) alloy, more particularly oxide-dispersion-strengthened (ODS) iron-based alloys which manifest resistant to oxidation at temperatures as high as 1300.degree. C. (approx. 2400.degree. F.) whereby the alloys are useful in the production of advanced aircraft gas turbine engine components and in demanding industrial applications.
    Type: Grant
    Filed: October 5, 1988
    Date of Patent: May 11, 1993
    Assignee: Inco Alloys International, Inc.
    Inventors: Raymond C. Benn, Gaylord D. Smith, John J. Fischer
  • Patent number: 5198187
    Abstract: An improved method of forming a composite body of a metal, intermetallic or ceramic matrix reinforced with niobium filaments, particles, platelets or mixtures thereof, the method comprising admixing the niobium reinforcing material with powders of the matrix component elements, forming the admixture into a desired shape and converting the powders to a matrix reinforced with the niobium material, the improvement wherein the reinforcing material has a surface coating thereon of a compound Nb.sub.2 O.sub.5, wherein the compound NbO reacts during formation of the matrix with a portion of at least one of the powdered elements to form a barrier layer at the reinforcer-matrix interface to prevent further reaction between the reinforcer and the matrix component elements. Also disclosed is a method of treating niobium particles, filaments, platelets or mixtures thereof by exposing the surface thereof to molecular O.sub.2 at temperatures and pressure conditions such that the niobium and molecular O.sub.
    Type: Grant
    Filed: November 20, 1991
    Date of Patent: March 30, 1993
    Assignee: University of Florida
    Inventors: Lixion Lu, Atul B. Gokhale, Reza Abbaschian
  • Patent number: 5198015
    Abstract: A silver base electrical contact material with superior resistance to arc erosion along with improved wear and welding resistance. The contact material consists essentially of 0.5 to 39.9 wt % of nickel, 0.14 to 7.0 wt % of nickel oxides, and balance silver. The material contains not less than, 0.4 wt % of nickel responsible for constituting minute nickel and nickel particles which have a particle size of not more than 1 .mu.m and are dispersed in a silver matrix for strengthening the material to give improved wear and welding resistance. The dispersed minute nickel oxide particles are included to stabilize arcing occurring at the time of opening and closing contacts in such a manner as to anchor one end of an arc substantially at any immediately available point over the entire contact surface as soon as the arcing occurs, thereby preventing the arc end from moving violently across or beyond the contact surface and therefore minimizing arc related damages or arc erosion.
    Type: Grant
    Filed: June 20, 1991
    Date of Patent: March 30, 1993
    Assignee: Matsushita Electric Works, Ltd.
    Inventors: Koji Tsuji, Yoshinobu Takegawa, Hayato Inada, Shuji Yamada
  • Patent number: 5189009
    Abstract: A method of preparing a superconducting oxide by combining the metallic elements of the oxide to form an alloy, followed by oxidation of the alloy to form the oxide. Superconducting oxide-metal composites are prepared in which a noble metal phase intimately mixed with the oxide phase results in improved mechanical properties. The superconducting oxides and oxide-metal composites are provided in a variety of useful forms.
    Type: Grant
    Filed: April 30, 1992
    Date of Patent: February 23, 1993
    Assignee: Massachusetts Institute of Technology
    Inventors: Gregory J. Yurek, John B. VanderSande
  • Patent number: 5174953
    Abstract: A method is disclosed of making a sintered composite unitary artifact having an alpha-alumina component fast with a metal component. Particulate alpha-alumina and a glass-forming additive are mixed together; and a green artifact is pressed having an alumina portion formed from the mixture and a metal portion formed from a particulate metal. The green artifact is then heated under a non-oxidizing atmosphere to a temperature at which both portions undergo densification. This provides a sintered artifact having a debased alpha-alumina component sintered to a metal artifact.
    Type: Grant
    Filed: October 9, 1991
    Date of Patent: December 29, 1992
    Assignee: Lillywyte Societe Anonyme
    Inventors: Jonathan L. Albain, Adrian W. Paterson
  • Patent number: 5173107
    Abstract: The invention relates to a composite hard metal body of hard material, a binder and embedded reinforcing material, as well as to a process for the production of the composite hard metal body by methods of powder metallurgy.In order to create a composite hard metal body with improved toughness under load, improved hardness and a lower fracture susceptibility, the invention proposes to build in monocrystalline, preferably needle-shaped and/or platelet-shaped reinforcing materials, coated with an inert layer with respect to the binder metal phase and consisting of borides and/or carbides, and/or nitrides and/or carbonitrides of the elements of Groups IVa or Va or mixtures thereof and/or coated monocrystalline reinforcing material of SiC, Si.sub.3 N.sub.4, Si.sub.2 N.sub.2 O, Al.sub.2 O.sub.3, ZrO.sub.2, AlN and/or BN.
    Type: Grant
    Filed: June 10, 1991
    Date of Patent: December 22, 1992
    Assignee: Krupp Widia GmbH
    Inventors: Klaus Dreyer, Hans Kolaska
  • Patent number: 5160366
    Abstract: A silver-metal oxide composite material comprising a silver matrix, (a) from 1 to 20% by weight, in terms of elemental metal, of an oxide of at least one element selected from the group consisting of Sn, Cd, Zn and In and, optionally, (b) an oxide of Mg, Zr, etc. and/or (c) an oxide of Cd, Sb, etc.; the oxides being dispersed in the form of fine particles with a particle size of not more than about 0.1 .mu.m uniformly and being bound to the silver matrix with no space left, and a process for producing the same. The composite material is excellent in physical and chemical strengths at high temperatures. The process can produce the composite product even with thick walls, within a markedly short time in high productivity. The composite material is useful as electrical contact materials and electrode materials for electric welding.
    Type: Grant
    Filed: March 14, 1991
    Date of Patent: November 3, 1992
    Assignees: Sumico Management Planning Company, Ltd., Akira Shibata
    Inventor: Akira Shibata
  • Patent number: 5143540
    Abstract: Substantially dense, void-free ceramic-metal composites are prepared from components characterized by chemical incompatibility and non-wetting behavior. The composites have a final chemistry similar to the starting chemistry and microstructures characterized by ceamic grains similar in size to the starting powder and the presence of metal phase. A method for producing the composites requires forming a homogeneous mixture of ceramic-metal, heating the mixture to a temperature that approximates but is below the temperature at which the metal begins to flow and pressing the mixture at such pressure that compaction and densification of the mixture occurs and an induced temperature spike occurs that exceeds the flowing temperature of the metal such that the mixture is further compacted and densified. The temperature spike and duration thereof remains below that at which significant reaction between metal and ceramic occurs. The method requires pressures of 60-250 kpsi employed at a rate of 5-250 kpsi/second.
    Type: Grant
    Filed: September 18, 1990
    Date of Patent: September 1, 1992
    Assignee: The Dow Chemical Company
    Inventors: Aleksander J. Pyzik, Irving G. Snyder, Jr., Robert R. McDonald, Alexander Pecnenik
  • Patent number: 5120351
    Abstract: This invention is a ferrite molding made by a manufacturing method of molding and sintering ferrite particles, which are made by pre-sintering of magnetic materials including iron oxide, together with metallic particles mixed therein by a hydrostatic pressing at extra-high pressure, whereby metal fills in between the ferrite particles. The ferrite molding has improved ductility so as to resist chipping and breaking and has extremely low hydroscopicity so as to maintain its characteristics.
    Type: Grant
    Filed: April 9, 1991
    Date of Patent: June 9, 1992
    Assignee: Kitagawa Industries Co., Ltd.
    Inventor: Hiroji Kitagawa
  • Patent number: 5120350
    Abstract: A reinforced metal composite comprised of a mixture of fused yttria and a metal matrix selected from the group consisting of Ti, Nb, Fe, Co, Ni, Ti alloy, Co based alloys aluminides of Ti, aluminides of Ni, aluminides of Nb and their mixtures. Preferably, the metal matrix is Ti or a Ti alloy which has a low Cl content (e.g. less than 0.15 wt. % Cl).
    Type: Grant
    Filed: July 3, 1990
    Date of Patent: June 9, 1992
    Assignee: The Standard Oil Company
    Inventors: Edward C. Supan, Joseph F. Dolowy, Jr., Bradley A. Webb
  • Patent number: 5114469
    Abstract: A process for producing high-strength, substantially nonporous alloys by means of a three-component mixture, including admixing a first component of one or more low-melting temperature metals or alloys thereof, a second component of one or more high-melting temperature metals or alloys thereof, and a substantially inert third component of one or more refractory compounds, subjecting the mixture to changes in temperature so as to form a mixture capable of being shaped at a temperature well below the melting or decomposition temperature of the highest melting metal and the inert refractory compound.
    Type: Grant
    Filed: December 10, 1987
    Date of Patent: May 19, 1992
    Assignee: General Dynamics Corporation Air Defense Systems Division
    Inventor: Sam M. Weiman
  • Patent number: 5110349
    Abstract: A cutting insert of a sintered carbonitride alloy and with a complicated geometry, the insert having improved efficiency. This is obtained by giving the powder non-uniform compaction during pressing of the powder into a press-body so that the ultimate working edges will have a higher relative density than the surrounding, more "supporting" material in the press-body. By these means are often obtained surface defects in the form of cracks because of dissolved strains during the sintering.
    Type: Grant
    Filed: November 14, 1990
    Date of Patent: May 5, 1992
    Assignee: Sandvik AB
    Inventors: Kenneth Westergren, Gerold Weinl, Rolf Oskarsson
  • Patent number: 5110688
    Abstract: The present invention relates to a method of fabricating various types of bearing materials and the bearing materials produced thereby. The processes of the invention may be used to produce porous self-lubricating bearings, laminated composite bearings (babbitt bearings) and bearings for high temperature application. The processes of the invention involve the use of micro-pyretic synthesis to achieve bearing materials with improved bearing properties, including higher bearing capacity and toughness.
    Type: Grant
    Filed: December 3, 1990
    Date of Patent: May 5, 1992
    Assignee: University of Cincinnati
    Inventors: Jainagesh A. Sehkar, A. K. Bhattacharya, Hung P. Li
  • Patent number: 5089354
    Abstract: A copper alloy composite material which comprises a copper alloy matrix and at least one additive selected from solid materials having self-lubricity and wear-resistant materials and uniformly dispersed in the alloy matrix is described. The composite material has improved wear resistance and anti-seizing properties.
    Type: Grant
    Filed: December 11, 1990
    Date of Patent: February 18, 1992
    Assignee: Chuetsu Metal Works, Co., Ltd.
    Inventors: Kunio Nakashima, Ryouichi Ishigane, Takayuki Tanaka, Ken-ichi Ichida
  • Patent number: 5069713
    Abstract: A non-sintered permanent magnet is formed by a cold compacting technique or by resin bonding using particles of a stoichiometric alloy (e.g. R.sub.2 Fe.sub.14 B where R is at least one rare earth and/or yttrium, particularly La, Ce, Pr, ND or Y or a mixture thereof) which have been coated with a reaction product of the alloy or a non-magnetic metal such as Sn, Ga, Zn, Al, or Cu. The use of a stoichiometric alloy avoids the presence of a reactive grain boundary phase normally present in non-stoichiometric alloys.
    Type: Grant
    Filed: April 4, 1988
    Date of Patent: December 3, 1991
    Assignee: The University of Birmingham
    Inventors: Ivor R. Harris, Syed H. Safi
  • Patent number: 5059489
    Abstract: A structure comprising a mixture of metals and metal alloys which are sintered into a hard porous body is presented. The structure can be useful for many different chemical and physical purposes, such as for catalysis, desorption and absorption, and selective leaching of the structure components into solutions.
    Type: Grant
    Filed: July 15, 1988
    Date of Patent: October 22, 1991
    Assignee: Corning Incorporated
    Inventors: Charles Q. Buckwalter, Jr., Irwin M. Lachman, Mallanagouda D. Patil, Jimmie L. Williams
  • Patent number: 5053074
    Abstract: A dense cermet article including about 80-90% by volume of a granular hard phase and about 5-20% by volume of a metal phase. The hard phase is a carbide, nitride, carbonitride, oxycarbide, oxynitride, or carboxynitride of a cubic solid solution selected from W-Ti, W-Hf, W-Nb, W-Ta, Zr-Ti, Hf-Ti, Hf-Zr, V-Ti, Nb-Ti, Ta-Ti, or Mo-Ti. The metal phase consists essentially of a combination of nickel and aluminum having a ratio of nickel to aluminum of from about 90:10 to about 70:30 by weight, and 0-5% by weight of an additive selected from titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, cobalt, boron, and/or carbon. The preferred hard phase is a cubic solid solution of tungsten and titanium. In the preferred metal phase, an amount of about 15-80% by volume of the metal phase component exhibits a Ni.sub.3 Al ordered crystal structure. The article may be produced by presintering the hard phase - metal phase component mixture in a vacuum or inert atmosphere at about 1475.
    Type: Grant
    Filed: December 20, 1990
    Date of Patent: October 1, 1991
    Assignee: GTE Laboratories Incorporated
    Inventors: Sergej T. Buljan, Helmut Lingertat, Steven F. Wayne
  • Patent number: 5049452
    Abstract: A target according to the present invention contains metallic copper ranging from about 8% to about 40% by volume and an oxide containing a rare earth metal such as yttrium and an alkaline earth metal, and has a metallic structure where the oxide is substantially uniformly dispersed into the metallic copper, so that a large thermal conductivity, great mechanical strength and a low electric resistivity are achieved.
    Type: Grant
    Filed: August 9, 1989
    Date of Patent: September 17, 1991
    Assignee: Mitsubishi Metal Corporation
    Inventors: Takuo Takeshita, Tadashi Sugihara
  • Patent number: 5041261
    Abstract: A method for manufacturing a dense cermet article including about 80-95% by volume of a granular hard phase and about 5-20% by volume of a metal binder phase. The hard phase is (a) the hard refractory carbides, nitrides, carbonitrides, oxycarbides, oxynitrides, carboxynitrides, borides, and mixtures thereof of the elements selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, and B, or (b) the hard refractory carbides, nitrides, carbonitrides, oxycarbides, oxynitrides, and carboxynitrides, and mixtures thereof of a cubic solid solution of Zr--Ti, Hf--Ti, Hf--Zr, V--Ti, Nb--Ti, Ta--Ti, Mo--Ti, W--Ti, W--Hf, W--Nb, or W--Ta. The binder phase is a combination of Ni and Al having a Ni:Al weight ratio of from about 85:15 to about 88:12, and 0-5% by weight of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Co, B, and/or C. The method involves presintering the hard phase/binder phase mixture in a vacuum or inert atmosphere at about 1475.degree.-1675.degree. C., then HIPing at about 1575.degree.-1675.degree. C.
    Type: Grant
    Filed: December 21, 1990
    Date of Patent: August 20, 1991
    Assignee: GTE Laboratories Incorporated
    Inventors: Sergej T. Buljan, Helmut Lingertat, Steven F. Wayne
  • Patent number: 5041159
    Abstract: An improved method of forming a nickel plaque wherein an assemblage of particles of a nickel alloy are oxidized and sintered in a preselected atmosphere such that the alloying material is exclusively substantially internally oxidized and the resultant product sintered to provide a sintered porous plaque containing nickel metal and oxidized alloying material.
    Type: Grant
    Filed: February 13, 1989
    Date of Patent: August 20, 1991
    Assignee: Energy Research Corporation
    Inventors: Joel D. Doyon, Lawrence M. Paetsch, Mark Benedict, D. Lynn Johnson
  • Patent number: 5030275
    Abstract: This invention relates to substantially full-dense, near-net shape bodies made of dispersion strengthened copper (D.S.C.) powder and products which are cold formed and/or machined from these bodies, such as resistance welding electrodes. The invention includes processes for manufacturing substantially full-dense, near-net shape, substantially equiaxed bodies from D.S.C. powder.
    Type: Grant
    Filed: June 20, 1989
    Date of Patent: July 9, 1991
    Assignee: SCM Metal Products, Inc.
    Inventors: Prasan K. Samal, Anil V. Nadkarni
  • Patent number: 5026680
    Abstract: A Ca carbonate powder, a Sr carbonate powder, and a Cu oxide powder are mixed in predetermined proportions, and sintered at a first predetermined temperature into a Ca-Sr-Cu--O oxide sintered body. A Bi oxide powder and a Pb oxide powder are mixed in predetermined proportions, and are sintered at a second predetermined temperature into a Bi--Pb--O oxide sintered body. The obtained Ca--Sr--Cu--O oxide sintered body and Bi--Pb--O oxide sintered body are crushed, and the resulting Ca--Sr--Cu--O oxide powder and Bi--Pb--O oxide powder are mixed in predetermined proportions. The resulting mixed powder is sintered at a third predetermined temperature into a Bi--Pb--Sr--Ca--Cu--O superconductive oxide sintered body, which is crushed into a powder of a Bi-based superconductive oxide containing Pb. A sintered body of the Bi-based superconductive oxide containing Pb is formed from the Bi-based superconductive oxide powder.
    Type: Grant
    Filed: August 7, 1989
    Date of Patent: June 25, 1991
    Assignee: Mitsubishi Metal Corporation
    Inventors: Tadashi Sugihara, Takuo Takeshita, Yukihiro Ohuchi
  • Patent number: 5015290
    Abstract: An improved ceramic-metal composite comprising a mixture of a ceramic material with a ductile intermetallic alloy, preferably Ni.sub.3 Al.
    Type: Grant
    Filed: October 12, 1989
    Date of Patent: May 14, 1991
    Assignee: The Dow Chemical Company
    Inventors: Terry N. Tiegs, Robert R. McDonald
  • Patent number: 5011529
    Abstract: A cured sintered porous metal structure comprising aluminum and aluminum alloys is presented comprising an aluminum oxide durable surface integral to the structure. The surface layer is enhanced in aluminum while the underlying structure is thereby depleted in aluminum. The structure exhibits surface and interfacial durability.
    Type: Grant
    Filed: March 14, 1989
    Date of Patent: April 30, 1991
    Assignee: Corning Incorporated
    Inventors: Kathryn E. Hogue, Srinivas H. Swaroop, Raja R. Wusirika
  • Patent number: 5001014
    Abstract: A composite comprised of a sintered matrix of spinel ferrite and a non-exposed continuous phase of elemental silver or Ag-Pd alloy ranging to 25 atomic % Pd is produced by co-firing a laminated structure of ferrite powder-containing tapes containing non-exposed metallization-forming material. The composite can be formed into a composite product which contains a continuous silver or Ag-Pd alloy phase with two end portions wherein only the end portions are exposed.
    Type: Grant
    Filed: May 23, 1988
    Date of Patent: March 19, 1991
    Assignee: General Electric Company
    Inventors: Richard J. Charles, Achuta R. Gaddipati
  • Patent number: 4999336
    Abstract: There is provided a substantially fully dense powdered metal composite comprising a highly conductive metal or metal alloy matrix having dispersed therein discrete microparticles of a refractory metal oxide and discrete macroparticles of a mechanical or physical property-conferring additive material. The respective components undergo minimal alloying or interdispersion because sintering is not utilized in forming the composite. These composites are characterized by high thermal or electrical conductivity and a desired property (controlled thermal expansion, high strength, wear and arc erosion resistance, or magnetic) attributable to the composite forming material, like refractory metal, alloy, or compound. The composites are useful in forming lead frames for integrated circuit chips, electric lamp lead wires, electrical contact members, and discrete component leads.
    Type: Grant
    Filed: June 17, 1988
    Date of Patent: March 12, 1991
    Assignee: SCM Metal Products, Inc.
    Inventors: Anil Nadkarni, Prasan K. Samal, James E. Synk
  • Patent number: 4980123
    Abstract: Disclosed is a process for obtaining a metallurgical bond between a metal material, or a composite material having a metal matrix, and a metal casting, or a metal alloy casting, which comprises carrying out a surface treatment on said material by means of the deposition of a thin layer of a metal, generally different from the metals contained in the material and in the casting, which is capable of increasing the wettability between the metal of the casting and the material, as well as the heat transfer coefficient between said two partners; and a step of casting around the same material, positioned inside a mold, of the metal, or of the metal alloy the same casting is constituted by.
    Type: Grant
    Filed: September 18, 1989
    Date of Patent: December 25, 1990
    Assignee: Temav S.p.A.
    Inventors: Steve A. Gedeon, Renato Guerriero, Ilario Tangerini
  • Patent number: 4973356
    Abstract: The present invention relates to a method of preparing an alloy for use as a cutting tool material comprising hard principles and binder phase by which a uniform distribution of the hard principles in the binder phase is obtained, and the resulting product.
    Type: Grant
    Filed: October 23, 1989
    Date of Patent: November 27, 1990
    Assignee: Sandvik AB
    Inventors: Peder von Holst, Hakan Morberg, Rolf Oskarsson
  • Patent number: 4971866
    Abstract: In manufacturing contact materials which satisfy all the criteria required for use in vacuum switches as to chopping current, circuit breaking performance, withstanding voltage, welding separation force and wear, Cu powder and Ta.sub.2 O.sub.5 powder are mixed, and compressed while heating below the melting point of Cu in a nonoxidizing atmosphere. Alternatively a green compact is first manufactured from Ta.sub.2 O.sub.5 powder or a mixture of Ta.sub.2 O.sub.5 and Cu powder, and molten Cu is made to infiltrate into the compact. Preparing a green compact from a mixture of Cu powder and Ta.sub.2 O.sub.5 powder, it may be sintered at a temperature below the melting point of Cu, re-pressed, and resintered at 400.degree.-900.degree. C. in a nonoxidizing atmosphere.
    Type: Grant
    Filed: January 8, 1990
    Date of Patent: November 20, 1990
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Eizo Naya, Mitsuhiro Okumura
  • Patent number: 4966625
    Abstract: A composite comprises of a sintered matrix of spinel ferrite and an electrically conductive phase of elemental silver is produced by co-firing a laminated structure of ferrite powder-containing tapes containing a silver metallization-forming material having two end portions wherein only the end portions are exposed.
    Type: Grant
    Filed: June 5, 1989
    Date of Patent: October 30, 1990
    Assignee: General Electric Company
    Inventors: Richard J. Charles, Achuta R. Gaddipati
  • Patent number: 4961778
    Abstract: Substantially dense, void-free ceramic-metal composites are prepared from components characterized by chemical incompatibility and non-wetting behavior. The composites have a final chemistry similar to the starting chemistry and microstructures characterized by ceramic grains similar in size to the starting powder and the presence of metal phase. A method for producing the composites requires forming a homogeneous mixture of ceramic-metal, heating the mixture to a temperature that approximates but is below the temperature at which the metal begins to flow and presssing the mixture at such pressure that compaction and densification of the mixture occurs and an induced temperature spike occurs that exceeds the flowing temperature of the metal such that the mixture is further compacted and densified. The temperature spike and duration thereof remains below that at which significant reaction between metal and ceramic occurs. The method requires pressure of 60-250 kpsi employed at a rate of 5-250 kpsi/second.
    Type: Grant
    Filed: January 13, 1988
    Date of Patent: October 9, 1990
    Assignee: The Dow Chemical Company
    Inventors: Aleksander J. Pyzik, Irving G. Snyder, Jr., Alexander Pechenik, Robert R. McDonald
  • Patent number: 4954170
    Abstract: High density compacts are made by providing a compactable particulate combination of Class 1 metals selected from at least one of Ag, Cu and Al, with material selected from at least one of CdO, SnO, SnO.sub.2, C, Co, Ni, Fe, Cr, Cr.sub.3 C.sub.2, Cr.sub.7 C.sub.3, W, WC, W.sub.2 C, WB, Mo, Mo.sub.2 C, MoB, Mo.sub.2 B, TiC, TiN, TiB.sub.2, Si, SiC, Si.sub.3 N.sub.4, usually by mixing powders of each, step (1); uniaxially pressing the powders to a density of from 60% to 95%, to provide a compact, step (2); hot densifying the compact at a pressure between 352 kg/cm.sup.2 (5,000 psi) and 3,172 kg/cm.sup.2 (45,000 psi) and at a temperature from 50.degree. C. to 100.degree. C. below the melting point or decomposition point of the lower melting component of the compact, to provide densification of the compact to over 97% of theoretical density; step (3); and cooling the compact, step (4).
    Type: Grant
    Filed: June 30, 1989
    Date of Patent: September 4, 1990
    Assignee: Westinghouse Electric Corp.
    Inventors: Maurice G. Fey, Natraj C. Iyer, Alan T. Male, William R. Lovic
  • Patent number: 4950327
    Abstract: A creep-resistant alloy having a tiered structural arrangement of one or several refractory metals Mo, W, Nb, Ta, V, Cr containing certain doping agents, as well as a process for producing the same. The special doping agents are compounds and/or mixed phases of such compounds selected from the group of oxides, nitrides, carbides, borides, silicates or aluminates having a melting point higher than 1500.degree. C. The size of their grains is .ltoreq.1.5 .mu.m, their proportion in the alloy is comprised between 0.005 and 10% by weight. Unlike in the known state of the art, the use of porassium as doping agent is avoided in this alloy. A good reproducible consolidation and in particular high densities during sintering can thus be obtained. Furthermore, this alloy has better ambient temperature, heat and creep resistance properties than known alloys of refractory metal with a tiered structual arrangement.
    Type: Grant
    Filed: September 27, 1988
    Date of Patent: August 21, 1990
    Assignee: Schwarzkopf Development Corporation
    Inventors: Ralf Eck, Gerhard Leichtfried
  • Patent number: 4948676
    Abstract: The present invention provides a ceramic/metal composite material comprising cerium/aluminum mixed oxides as the ceramic phase and an alloy or intermetallic compond of cerium and at least one of aluminum, nickel, iron and cobalt as the metal phase. The ceramic phase may comprise interengaged crystal lattices of ceria and alumina. The material may be a self-sustaining body which may be used as substrate for a dimensionally stable anode in molten sale aluminum electrowinning cells, coated with a protective layer of cerium oxyfluoride in situ during electrolysis in molten cryolite containing cerium ions.
    Type: Grant
    Filed: February 15, 1989
    Date of Patent: August 14, 1990
    Assignee: Moltech Invent S.A.
    Inventors: Dominique Darracq, Jean-Jacques Duruz
  • Patent number: 4946500
    Abstract: An aluminum based metal matrix composite is produced from a charge containing a rapidly solidified aluminum alloy and particles of a reinforcing material present in an amount ranging from about 0.1 to 50 percent by volume of the charge. The charge is ball milled energetically to enfold metal matrix material around each of the particles while maintaining the charge in a pulverulant state. Upon completion of the ball milling step, the charge is consolidated to provide a powder compact having a formable, substantially void free mass. The compact is especially suited for use in aerospace, automotive, electronic, wear resistance critical components and the like.
    Type: Grant
    Filed: September 12, 1988
    Date of Patent: August 7, 1990
    Assignee: Allied-Signal Inc.
    Inventors: Michael S. Zedalis, Paul S. Gilman