Nonmetal Is Boron(b) Or Nitrogen(n) Patents (Class 75/238)
  • Patent number: 10094005
    Abstract: A cermet and a cutting tool are provided which have high wear resistance and high fracture resistance at a cutting edge even in a mode of cutting where the cutting edge comes to have a high temperature. A cermet 1 includes a hard phase 2 including a carbonitride of one or more kinds of metals selected from Group 4, Group 5, and Group 6 metals of the periodic table including at least Ti and a binder phase 3 containing W and at least one kind of a metal selected from Co and Ni, wherein the binder phase 3 includes a first binder phase 4 in which a mass ratio of W to a total amount of Co and Ni (W/(Co+Ni)) is 0.8 or less and a second binder phase 5 in which a mass ratio of W to a total amount of Co and Ni (W/(Co+Ni)) is 1.2 or more.
    Type: Grant
    Filed: August 28, 2015
    Date of Patent: October 9, 2018
    Assignee: KYOCERA CORPORATION
    Inventors: Ryoma Nomiyama, Hideyoshi Kinoshita
  • Patent number: 9970082
    Abstract: A heat-resistant alloy that satisfies physical properties such as proof stress and hardness adapted to an increase in the melting point of a welding object compared to conventional alloys is provided. The heat resistant alloy includes a first phase, as a main component, containing a Mo or W metal phase, a second phase containing a Mo—Si—B—based alloy, and a third phase containing titanium carbonitride, wherein the balance is inevitable compounds and inevitable impurities.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: May 15, 2018
    Assignee: A.L.M.T.CORP.
    Inventors: Shigekazu Yamazaki, Ayuri Tsuji, Masahiro Katoh, Akihiko Ikegaya
  • Patent number: 9758708
    Abstract: An abrasive particle having an irregular surface, wherein the surface roughness of the particle is less than about 0.95. A method for producing modified abrasive particles, including providing a plurality of abrasive particles, providing a reactive coating on said particles, heating said coated particles; and recovering modified abrasive particles.
    Type: Grant
    Filed: June 1, 2016
    Date of Patent: September 12, 2017
    Assignee: DIAMOND INNOVATIONS, INC
    Inventors: Timothy Francis Dumm, Kan-Yin Ng
  • Patent number: 9399600
    Abstract: The present invention relates to a method of producing a sintered composite body comprising cubic boron nitride particles dispersed in a cemented carbide matrix by sintering a mixture comprising cubic boron nitride particles and a cemented carbide powder at a sintering temperature below 1350° C. without applying a pressure.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: July 26, 2016
    Assignee: SANDVIK INTELLECTUAL PROPERTY AB
    Inventors: Jane Smith, Peter Chan, Michael Carpenter
  • Patent number: 9381617
    Abstract: A cutting tool having a sintered compact including 30 to 80 vol. % cubic boron nitride and a binder phase, wherein the binder phase includes about 2 to about 6 vol. % ZrN, is disclosed. In more specific examples, the cutting tool has a sintered compact including 30 to 80 vol. % cubic boron nitride, between about 4 vol. % and about 15 vol. % aluminum and/or aluminum compound and/or aluminum alloy and/or combinations thereof, and a binder phase, wherein the binder phase includes TiN and about 3 to about 5 vol. % ZrN, and wherein the cubic boron nitride has a grain size of less than 20 microns. Cutting tools of the disclosed composition display improved performance, particularly at higher operating speeds, e.g., about 200 m/min or greater.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: July 5, 2016
    Assignee: Diamond Innovations, Inc.
    Inventor: Abds-Sami Malik
  • Patent number: 9346716
    Abstract: A tool made of a cubic boron nitride sintered body which has a long life in a stable manner in any application of cutting and plastic working is provided. The tool made of the cubic boron nitride sintered body according to the present invention includes a cubic boron nitride sintered body at least at a tool working point and it is characterized by satisfying an Equation (I) and any one of an Equation (II) and an Equation (III) 20?X?98??(I) Y?0.6×X+3 (where 20?X<88)??(II) Y?5.8×X?455 (where 88?X?98)??(III) where a ratio of cubic boron nitride contained in the cubic boron nitride sintered body is denoted as X volume % and thermal conductivity of the cubic boron nitride sintered body is denoted as Y (W/m·K).
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: May 24, 2016
    Assignee: Sumitomo Electric Hardmetal Corp.
    Inventors: Katsumi Okamura, Makoto Setoyama, Satoru Kukino
  • Patent number: 9284230
    Abstract: The present invention relates to a novel process for producing ceramic materials, in particular refractory materials having a reduced relative density. In particular, the invention relates to a process for producing light, refractory materials having non-contiguous pores based on shaped and unshaped materials. These materials can be used as working lining in high-temperature applications. The process is based on the production of spherical, closed and isolated pores in the microstructure of the material. The pores having a pore diameter which can be set in a targeted manner are generated by use of polymer particles, in particular polymethacrylates, in particular polymers or copolymers prepared by means of suspension polymerization, as pore formers which can be burnt out. The polymers or copolymers are present in the form of small spheres having a defined diameter.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: March 15, 2016
    Assignee: Evonik Röhm GmbH
    Inventors: Tadeusz Von Rymon Lipinski, Bruno Keller, Frank Beissmann, Peter Neugebauer, Ruth Kernke, Dirk Poppe
  • Patent number: 9238854
    Abstract: Disclosed is a method of producing carbide and carbon nitride powders containing a binder, and cermet obtained from the same. The method includes preparing Ti—Ni alloy powders for Ti alloy powders and graphite, planetary-pulverizing the Ti—Ni alloy powders and the graphite, mortar-pulverizing the alloy powders and the graphite which are subject to the planetary-pulverizing, and performing heat treatment for the Ti—Ni alloy powders and the graphite that are pulverized. Cermet, which is made of the composite powders of carbide and carbon nitride/metal including both TiC which is ceramic material and Ni which is metal is provided.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: January 19, 2016
    Assignee: KOREA INSTITUTE OF GEOSCIENCE AND MINERAL RESOURCES
    Inventors: Han-Jung Kwon, Sun-A Jung, Sung-Wook Cho, Dae-Sup Kil, Ji-Woong Kim, Ki-Min Roh, Jae-Won Lim
  • Patent number: 9222153
    Abstract: Provided are Ti(C,N)-based cermets with Ni3Al and Ni as binder and a preparation method thereof. The Ti(C,N)-based cermets are prepared by raw materials subjected to ball-mill mixing, die forming, vacuum degreasing and vacuum sintering, wherein weight percentage of each chemical component of the raw materials is as follows: TiC 34.2˜43%, TiN 8˜15%, Mo 10˜15%, WC 5˜10%, graphite 0.8˜1.0%, Ni 20˜24%, and Ni3Al powder containing B 6˜10%. Ni powder and Ni3Al powder containing B are used as binder. The Ti(C,N)-based cermets feature in excellent corrosion resistance, oxidation resistance and mechanical properties at high temperature, has a hardness of 89.0˜91.9 HRA, a room temperature bending strength of 1600 MPa or more, and a fracture toughness of 14 MPa·m1/2 or more, and is applicable for manufacturing high-speed cutting tools, dies and heat-resisting and corrosion-resisting components.
    Type: Grant
    Filed: December 31, 2014
    Date of Patent: December 29, 2015
    Assignee: HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Weihao Xiong, Bin Huang, Qingqing Yang, Mingkun Chen, Zhenhua Yao, Guopeng Zhang, Xiao Chen, Shan Chen
  • Publication number: 20150107411
    Abstract: An Fe-based magnetic material sintered compact containing BN, wherein the Fe-based magnetic material sintered compact has an oxygen content of 4000 wtppm or less. The present invention provides a sintered compact which enables the formation of a magnetic thin film in a thermally assisted magnetic recording media, and in which the generation of cracks and chipping is suppressed when the sintered compact is processed into a sputtering target or the like.
    Type: Application
    Filed: August 6, 2013
    Publication date: April 23, 2015
    Inventor: Shini-ichi Ogino
  • Patent number: 8992657
    Abstract: A lightweight material for decorative parts having a silver metallic color tone is provided. The material includes a sintered body including a main hard phase composed of a solid solution formed of titanium carbonitride and titanium carbide; a main binder phase composed of nickel; a first additive material composed of at least one selected from the group consisting of molybdenum carbide, niobium carbide, tungsten carbide, and tantalum carbide; a second additive material composed of at least one of chromium and chromium carbide; and the balance being incidental impurities. The N content in the sintered body is 2.0% to 6.0% by mass. The color tone of the sintered body satisfies L*=9 to 14, a*=?2 to 3, and b*=?6 to 0, which are values of the L*a*b* color system measured with a spectrophotometric colorimeter.
    Type: Grant
    Filed: February 23, 2012
    Date of Patent: March 31, 2015
    Assignees: Sumitomo Electric Hardmetal Corp., Sumitomo Electric Industries, Ltd.
    Inventors: Yoshimitsu Sawazono, Katsuya Uchino, Yoshihiro Minato
  • Publication number: 20140356215
    Abstract: Provided is a heat-resistant alloy that satisfies physical properties such as proof stress and hardness adapted to an increase in the melting point of a welding object compared to conventional alloys. A heat-resistant alloy of this invention includes a first phase, as a main component, containing a Mo or W metal phase, a second phase containing a Mo—Si—B-based alloy, and a third phase containing titanium carbonitride, wherein the balance is inevitable compounds and inevitable impurities.
    Type: Application
    Filed: December 13, 2012
    Publication date: December 4, 2014
    Applicant: A.L.M.T.CORP.
    Inventors: Shigekazu Yamazaki, Ayuri Tsuji, Masahiro Kato, Akihiko Ikegaya
  • Patent number: 8764876
    Abstract: PCBN material consisting essentially of cubic boron nitride (cBN) grains and binder material, the content of the cBN grains being at least 80 weight percent of the PCBN material; the binder material comprising greater than 50 weight percent Al and a combined content of at least 5 weight percent of an iron group element and a refractory element, the iron group element selected from the group consisting of Co, Fe, Ni and Mn, and the refractory element selected from the group consisting of W, Cr, V, Mo, Ta, Ti, Hf and Zr.
    Type: Grant
    Filed: July 6, 2011
    Date of Patent: July 1, 2014
    Assignee: Element Six Limited
    Inventor: Stefan Magnus Olof Persson
  • Publication number: 20140174255
    Abstract: A hard-faced article includes a wear-resistance element that has a precipitated hard phase and a non-precipitated hard phase that is different from the precipitated hard phase in composition. The precipitated hard phase and the non-precipitated hard phase are dispersed through a boron-containing metallic matrix. The precipitated hard phase includes a boride material. The wear-resistance element can include, by weight, less than 50% of the non-precipitated hard phase. The wear-resistance element can also include boron, carbon, chromium and silicon such that, by weight exclusive of the non-precipitated hard phase, a product of the amounts of boron, carbon, chromium and silicon is greater than 28 and less than 350 and the amount of chromium by weight is less than 15%. A method includes forming the wear-resistance element with the precipitated hard phase and the non-precipitated hard phase dispersed through the boron-containing metallic matrix.
    Type: Application
    Filed: December 26, 2012
    Publication date: June 26, 2014
    Applicant: DEERE & COMPANY
    Inventor: Brent A. Augustine
  • Patent number: 8679220
    Abstract: This invention relates to a ceramic and a cermet each having a second phase for improving toughness via phase separation from a complete solid-solution phase and to a method of preparing them. The ceramic and the cermet may have the second phase phase-separated from the complete solid-solution phase, thereby easily achieving a great improvement in toughness and exhibiting other good properties including high strength, consequently enabling the manufacture of high-strength and high-toughness cutting tools, instead of conventional WC—Co hard materials.
    Type: Grant
    Filed: June 20, 2007
    Date of Patent: March 25, 2014
    Assignee: SNU R&DB Foundation
    Inventor: Shin Hoo Kang
  • Publication number: 20130303356
    Abstract: The present invention relates to a method of producing a sintered composite body comprising cubic boron nitride particles dispersed in a cemented carbide matrix by sintering a mixture comprising cubic boron nitride particles and a cemented carbide powder at a sintering temperature below 1350° C. without applying a pressure.
    Type: Application
    Filed: September 23, 2011
    Publication date: November 14, 2013
    Applicant: SANDVIK INTELLECTUAL PROPERTY AB
    Inventors: Jane Smith, Peter Chan, Michael Carpenter
  • Patent number: 8535407
    Abstract: The invention relates to a hard-metal comprising at least 13 volume % of a metal carbide selected from the group consisting of TiC, VC, ZrC, NbC, MoC, HfC, TaCl WC or a combination thereof, a binder phase comprising one or more of iron-group metals or alloy thereof and 0.1 to 10 weight % Si and 0.1 to 10 weight % Cr and having a liquidus temperature at 1280 degrees C. or lower and 3 to 39 volume % of diamond or cBN grains coated with a protective coating or a mixture thereof and a process for making the hard-metal.
    Type: Grant
    Filed: September 15, 2009
    Date of Patent: September 17, 2013
    Assignee: Element Six GmbH
    Inventors: Igor Yuri Konyashin, Bernd Heinrich Ries, Frank Friedrich Lachmann
  • Publication number: 20130087019
    Abstract: A lightweight material for decorative parts having a silver metallic color tone is provided. The material includes a sintered body including a main hard phase composed of a solid solution formed of titanium carbonitride and titanium carbide; a main binder phase composed of nickel; a first additive material composed of at least one selected from the group consisting of molybdenum carbide, niobium carbide, tungsten carbide, and tantalum carbide; a second additive material composed of at least one of chromium and chromium carbide; and the balance being incidental impurities. The N content in the sintered body is 2.0% to 6.0% by mass. The color tone of the sintered body satisfies L*=9 to 14, a*=?2 to 3, and b*=?6 to 0, which are values of the L*a*b* color system measured with a spectrophotometric colorimeter.
    Type: Application
    Filed: February 23, 2012
    Publication date: April 11, 2013
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Yoshimitsu Sawazono, Katsuya Uchino, Yoshihiro Minato
  • Publication number: 20130052075
    Abstract: A wear pad of a band saw guide exposed to wear from a moving band saw blade is produced in a powder metallurgical manner from a steel material having the following composition, in percent by weight: 0.01-2 C, 0.01-3.0 Si, 0.01-10.0 Mn, 16-33 Cr, max. 5 Ni, 0.01-5.0 (W+Mo/2), max. 9 Co, max. 0.5 S, 1.6-9.8 N, 7.5 to 14 of (V+Nb/2), wherein the contents of N and of (V+Nb/2) are balanced in relation to each other so that the contents of the elements are within a range I?, F?, G, H, I? in a coordinate system, where the content of N is the abscissa and the content of (V+Nb/2) is the ordinate, and where the coordinates for the points (in the format [x: (N, (V+Nb/2)]) are [I?: (1.6, 7.5)], [F?: (5.8, 7.5)], [G: (9.8, 14.0)], and [H: (2.6, 14.0)], max 7 of any of Ti, Zr, and Al; and a balance essentially only iron and unavoidable impurities.
    Type: Application
    Filed: March 9, 2011
    Publication date: February 28, 2013
    Inventor: Jan Boström
  • Patent number: 8318045
    Abstract: Disclosed is a radiation shielding member having improved radiation absorption performance, including 80.0˜99.0 wt % of a polymer matrix or metal matrix and 1.0˜20.0 wt % of a radiation shielding material in the form of nano-particles having a size of 10˜900 nm as a result of pulverization, wherein the radiation shielding material is homogeneously dispersed in the matrix through powder mixing or melt mixing after treatment with a surfactant which is the same material as the matrix or which has high affinity for the matrix. A preparation method thereof is also provided. This radiation shielding member including the nano-particles as the shielding material further increases the collision probability of the shielding material with radiation, compared to conventional shielding members including micro-particles, thus reducing the mean free path of radiation in the shielding member, thereby exhibiting superior radiation shielding effects.
    Type: Grant
    Filed: May 12, 2009
    Date of Patent: November 27, 2012
    Assignee: Korea Atomic Energy Research Institute
    Inventors: Jaewoo Kim, Young Rang Uhm, Byungchul Lee, Jinwoo Jung, Chang Kyu Rhee, Min-Ku Lee, Hee Min Lee, Sang Hoon Lee
  • Patent number: 8303681
    Abstract: A mixed powder and a sintered body obtained by sintering the mixed powder. The mixed powder includes a solid-solution powder with complete solid-solution phase. The solid-solution powder includes a carbide or a carbonitride of at least two metals selected, including Ti, from metals of Groups IVa, Va and VIa of the periodic table, or a mixture thereof. A mixed cermet powder and a cermet obtained by sintering the mixed cermet powder are also disclosed. The mixed cermet powder includes at least a cermet powder with complete solid-solution phase. The cermet powder includes a carbide or a carbonitride of at least two metals selected, including Ti, from metals of Groups IVa, Va and VIa of the periodic table, or a mixture thereof, and at least one metal selected from the group consisting of Ni, Co and Fe. Also disclosed are a sintered body and a fabrication method of a cermet.
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: November 6, 2012
    Assignee: Seoul National University Industry Foundation
    Inventors: Shin-Hoo Kang, Jin-Kwan Jung, Han-Jung Kwon
  • Publication number: 20120063943
    Abstract: Provided are a composite powder of a metal and carbide (carbonitride) for a structural material, a sintered body, and methods of preparing the composite powder and sintered body. The composite powder for a structural member has a composition of M1-x % M2C, M1-x % (M2,M1)C, M1-x % M2(CN), or M1-x % (M2,M1)(CN). A matrix-phase metal M1 is one selected from tungsten (W) and molybdenum (Mo) of the periodic table of the elements, an accessory-phase metal M2 is one selected from the group consisting of Group-IV to Group-VI metals of the periodic table of the elements and forms a carbide or carbonitride having an average particle size of about 1 ?m or less, and the matrix-phase metal M1 and the accessory-phase metal M2 coexist due to a reaction.
    Type: Application
    Filed: September 28, 2009
    Publication date: March 15, 2012
    Applicant: SNU R&DB FOUNDATION
    Inventor: Shinhoo Kang
  • Publication number: 20120003466
    Abstract: A cermet has a hard phase which contains W and nitrogen, and includes at least one selected from a carbide, nitride and carbonitride of a metal having Ti as a main component, and a binder phase having an iron group metal as a main component. A W amount contained in the whole cermet is 5 to 40% by weight, an interfacial phase including a complex carbonitride with a larger W amount than a W amount of the hard phase being present between grains of the hard phase, and when a W amount contained in the interfacial phase based on the whole metal element is represented by Wb (atomic %), and a W amount contained in the hard phase based on the whole metal element is represented by Wh (atomic %), then, an atomic ratio of Wb to Wh (Wb/Wh) is 1.7 or more. The cermet is excellent in fracture resistance and wear resistance.
    Type: Application
    Filed: March 10, 2010
    Publication date: January 5, 2012
    Applicant: TUNGALOY CORPORATION
    Inventors: Keitaro Tamura, Daisuke Takesawa, Hiroki Hara, Kozo Kitamura, Yasuro Taniguchi, Koji Hayashi, Akihiro Matsumoto, Sung-Pyo Cho
  • Patent number: 8007561
    Abstract: A cermet insert having a structure composed of a hard phase and a binding phase and, as a sintered body composition, containing Ti, Nb and/or Ta, and W in a total amount of Ti in terms of carbonitride, Nb and/or Ta in terms of carbide and W in terms of carbide of 70 to 95 wt. % of an entirety of the microstructure, and containing W in terms of carbide in an amount of 15 to 35 wt. % of the entirety of the microstructure, the sintered body composition further containing Co and/or Ni. The hard phase has one or two or more of the phases: (1) a first hard phase of a core-having structure whose core portion contains a titanium carbonitride phase and a peripheral portion containing a (Ti, W, Ta/Nb)CN phase, (2) a second hard phase of a core-having structure whose core portion and peripheral portion both contain a (Ti, W, Ta/Nb)CN phase, and (3) a third hard phase of single-phase structure including a titanium cabonitride phase.
    Type: Grant
    Filed: June 13, 2006
    Date of Patent: August 30, 2011
    Assignees: NGK Spark Plug Co., Ltd., Mitsubishi Materials Corporation
    Inventors: Tomoaki Shindo, Atsushi Komura, Hiroaki Takashima, Toshiyuki Taniuchi, Masafumi Fukumura, Kei Takahashi
  • Publication number: 20110150692
    Abstract: A cemented carbide body is 1-30% by mass of binder consisting of Co, Co/Ni, Co/Fe, Co/Ni/Fe or Ni/Fe and a hard material having a hexagonal WC phase and having a face-centered cubic phase of the form (M1, M2, M3)C or (M1, M2, M3)(C, N) or (M1, M2, M3)(O, C, N) where M1=Ti and/or Zr and M2=W and M3 optionally means none or one or a plurality of the elements Ta, Nb, Hf, Cr, Mo or V, wherein the proportion of the face-centered cubic phase based on the total mass is 2% to 97%, preferably 5 to 12% by mass, and the microstructure of the hexagonal phase and of the face-centered cubic phase has a mean grain size of between 0.2 ?m and 1 ?m, preferably ?0.9 ?m, and the mean grain sizes of the hexagonal phase and of the face-centered cubic phase differ at most by 30%.
    Type: Application
    Filed: July 14, 2009
    Publication date: June 23, 2011
    Inventors: Klaus Rödiger, Hendrikus Van Den Berg, Walter Lengauer, Klaus Dreyer, Dominic Janisch
  • Patent number: 7909905
    Abstract: A cermet comprises a binding phase made of a binding metal including Co and/or Ni. The binding phase is 5 to 30 mass %. The cermet further comprises a plurality of hard particles bound each other with the binding phase. The hard particles comprise core-containing structure particles having cores and shells both including TiCN. The core-containing structure particles comprise first core-containing structure particles of which shells contain the binding metal and second core-containing structure particles of which cores and shells both contain the binding metal.
    Type: Grant
    Filed: September 13, 2007
    Date of Patent: March 22, 2011
    Assignee: Kyocera Corporation
    Inventor: Takashi Tokunaga
  • Patent number: 7892315
    Abstract: Disclosed are a solid-solution powder, a method for preparing the solid-solution powder, a cermet powder including the solid-solution powder, a method for preparing the cermet powder, a cermet using the cermet powder and a method to prepare the cermet. According to the present invention, the problem of low toughness due to high hardness that conventional cermets (especially TiC or Ti(CN) based cermet) have is resolved because a complete solid-solution phase without core/rim structure is provided to the cermets as a microstructure thereof, and in which further increased the hardness as well as the toughness, thereby substantially and considerably increasing general mechanical properties of materials using the cermet, and thus substituting WC—Co hard material and allowing manufacturing of cutting tools with high hardness and toughness.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: February 22, 2011
    Assignee: Seoul National University Industry Foundation
    Inventor: Shinhoo Kang
  • Publication number: 20110020163
    Abstract: The present invention relates to a super-hard enhanced hard-metal comprising particulate hard material and a binder and at least one formation, the formation comprising a core cluster and a plurality of satellite clusters, spaced from, surrounding and smaller than the core cluster, and the core cluster and satellite clusters each comprising a plurality of contiguous super-hard particles.
    Type: Application
    Filed: April 15, 2009
    Publication date: January 27, 2011
    Inventor: Roger William Nigel Nilen
  • Patent number: 7799111
    Abstract: The invention relates to a thermal spray feedstock composition that employs free flowing agglomerates formed from (a) a ceramic component that sublimes,(b) a metallic or semi-conductor material that does not sublime and (c) a binder. The invention also relates to a method for preparing the agglomerates and a method for preparing ceramic containing composite structures from the agglomerates.
    Type: Grant
    Filed: March 28, 2005
    Date of Patent: September 21, 2010
    Assignee: Sulzer Metco Venture LLC
    Inventors: David S. Gollob, Thomas H. Piquette, James Derby, Omar Basil Al-Sabouni, Richard Karl Schmid, Jacobus Cornelis Doesburg
  • Publication number: 20100089203
    Abstract: A Ti-based cermet 1 includes at least one of Co and Ni, at least one of titanium carbide, titanium nitride and titanium carbonitride including at least one selected from the metal elements of groups 4, 5 and 6 of the periodic table, and Ru.
    Type: Application
    Filed: February 25, 2008
    Publication date: April 15, 2010
    Applicant: KYOCERA CORPORATION
    Inventors: Hideyoshi Kinoshita, Takashi Tokunaga
  • Patent number: 7691173
    Abstract: The present invention includes consolidated hard materials, methods for producing them, and industrial drilling and cutting applications for them. A consolidated hard material may be produced using hard particles such as B4C or carbides or borides of W, Ti, Mo, Nb, V, Hf, Ta, Zr, and Cr in combination with an iron-based, nickel-based, nickel and iron-based, iron and cobalt-based, aluminum-based, copper-based, magnesium-based, or titanium-based alloy for the binder material. Commercially pure elements such as aluminum, copper, magnesium, titanium, iron, or nickel may also be used for the binder material. The mixture of the hard particles and the binder material may be consolidated at a temperature below the liquidus temperature of the binder material using a technique such as rapid omnidirectional compaction (ROC), the CERACON® process, or hot isostatic pressing (HIP). After sintering, the consolidated hard material may be treated to alter its material properties.
    Type: Grant
    Filed: September 18, 2007
    Date of Patent: April 6, 2010
    Assignee: Baker Hughes Incorporated
    Inventors: Jimmy W. Eason, James C. Westhoff, Roy Carl Lueth
  • Patent number: 7658781
    Abstract: Composite bodies made by a silicon metal infiltration process that feature a metal phase in addition to any residual silicon phase. Not only does this give the composite material engineer greater flexibility in designing or tailoring the physical properties of the resulting composite material, but the infiltrant also can be engineered compositionally to have much diminished amounts of expansion upon solidification, thereby enhancing net-shape-making capabilities. These and other consequences of engineering the metal component of composite bodies made by silicon infiltration permit the fabrication of large structures of complex shape. Certain liquid-based preforming techniques are particularly well suited to the task, particularly where a high volumetric loading of the reinforcement component is desired.
    Type: Grant
    Filed: July 19, 2005
    Date of Patent: February 9, 2010
    Inventors: W. Michael Waggoner, Barry R Rossing, Marlene Rossing, legal representative, Michael A Richmond, Michael K Aghajanian, Allyn L McCormick
  • Patent number: 7645316
    Abstract: A titanium based carbonitride alloy contains Ti, Nb, W, C, N and Co. The alloy also contains, in addition to Ti, Co with only impurity levels of Ni and Fe, 4-7 at % Nb, 3-8 at % W and has a C/(C+N) ratio of 0.50-0.75. The Co content is 9-<12 at % for general finishing applications and 12-16% for semifinishing applications. The amount of undissolved Ti(C,N) cores must be kept between 26 and 37 vol % of the hard constituents, the balance being one or more complex carbonitrides containing Ti, Nb and W. The invented alloy is particularly useful for semifinishing of steel and cast iron.
    Type: Grant
    Filed: October 30, 2006
    Date of Patent: January 12, 2010
    Assignee: Sandvik Intellectual Property Aktiebolag
    Inventors: Ulf Rolander, Marco Zwinkels, Gerold Weinl
  • Patent number: 7635448
    Abstract: A compact is obtained from a mixed powder of a multi-component system ceramics composed of constitutive elements of at least two metal elements selected from the group consisting of Ti, Al, V, Nb, Zr, Hf, Mo, Ta, Cr, and W, N, and optionally C; and Fe, Ni, Co, or an alloy composed of a constitutive element of at least one metal element of Fe, Ni, and Co. A composite material is prepared by sintering the compact.
    Type: Grant
    Filed: September 10, 2004
    Date of Patent: December 22, 2009
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Mitsuo Kuwabara, Masanori Ohtsuka
  • Patent number: 7588620
    Abstract: A cutting tool comprised of a cemented carbide is provided. The cemented carbide is consisted of a composition including: a predetermined amount of at least one selected from specific carbide, nitride, and carbon nitride, except for cobalt and niobium; 0.01 to 0.08 mass % of oxygen; and the rest consisted of tungsten carbide and unavoidable impurities. The cemented carbide is further made up of a structure in which a tungsten carbide phase and a B1-type solid solution phase being expressed by M(CNO) or M(CO) where “M” is at least one selected from the group consisting of metals of the group IV, V, and VI in the periodic table, containing niobium as being essential, and containing oxygen at a rate of 1 to 4 atomic % are bound by a binder phase composed mainly of the cobalt. This achieves the cutting tool having a long tool life in high-speed interrupted cutting.
    Type: Grant
    Filed: March 26, 2007
    Date of Patent: September 15, 2009
    Assignee: Kyocera Corporation
    Inventor: Takahito Tanibuchi
  • Patent number: 7588621
    Abstract: A titanium based carbonitride alloy containing Ti, Nb, W, C, N and Co. The alloy also contains, in addition to Ti, 9-14 at % Co with only impurity levels of Ni and Fe, 1-<3 at % Nb, 3-8 at % W and has a C/(C+N) ratio of 0.50-0.75. The amount of undissolved Ti(C,N) cores should be kept between 26 and 37 vol % of the hard constituents, the balance being one or more complex carbonitrides containing Ti, Nb and W. The alloy is particularly useful for milling of steel.
    Type: Grant
    Filed: August 23, 2007
    Date of Patent: September 15, 2009
    Assignee: Sandvik Intellectual Property Aktiebolag
    Inventors: Gerold Weinl, Ulf Rolander, Marco Zwinkels
  • Patent number: 7556668
    Abstract: The present invention includes consolidated hard materials, methods for producing them, and industrial drilling and cutting applications for them. A consolidated hard material may be produced using hard particles such as B4C or carbides or borides of W, Ti, Mo, Nb, V, Hf, Ta, Zr, and Cr in combination with an iron-based, nickel-based, nickel and iron-based, iron and cobalt-based, aluminum-based, copper-based, magnesium-based, or titanium-based alloy for the binder material. Commercially pure elements such as aluminum, copper, magnesium, titanium, iron, or nickel may also be used for the binder material. The mixture of the hard particles and the binder material may be consolidated at a temperature below the liquidus temperature of the binder material using a technique such as rapid omnidirectional compaction (ROC), the CERACON™ process, or hot ecstatic pressing (HIP). After sintering, the consolidated hard material may be treated to alter its material properties.
    Type: Grant
    Filed: December 4, 2002
    Date of Patent: July 7, 2009
    Assignee: Baker Hughes Incorporated
    Inventors: Jimmy W. Eason, James C. Westhoff, Roy Carl Lueth
  • Publication number: 20090133534
    Abstract: Disclosed are a solid-solution powder, a method for preparing the solid-solution powder, a cermet powder including the solid-solution powder, a method for preparing the cermet powder, a cermet using the cermet powder and a method to prepare the cermet. According to the present invention, the problem of low toughness due to high hardness that conventional cermets (especially TiC or Ti(CN) based cermet) have is resolved because a complete solid-solution phase without core/rim structure is provided to the cermets as a microstructure thereof, and in which further increased the hardness as well as the toughness, thereby substantially and considerably increasing general mechanical properties of materials using the cermet, and thus substituting WC—Co hard material and allowing manufacturing of cutting tools with high hardness and toughness.
    Type: Application
    Filed: January 23, 2009
    Publication date: May 28, 2009
    Applicant: Seoul National University Industry Foundation
    Inventor: Shinhoo Kang
  • Publication number: 20090049953
    Abstract: A cermet insert having a structure composed of a hard phase and a binding phase and, as a sintered body composition, containing Ti, Nb and/or Ta, and W in a total amount of Ti in terms of carbonitride, Nb and/or Ta in terms of carbide and W in terms of carbide of 70 to 95 wt. % of an entirety of the microstructure, and containing W in terms of carbide in an amount of 15 to 35 wt. % of the entirety of the microstructure, the sintered body composition further containing Co and/or Ni. The hard phase has one or two or more of the phases: (1) a first hard phase of a core-having structure whose core portion contains a titanium carbonitride phase and a peripheral portion containing a (Ti, W, Ta/Nb)CN phase, (2) a second hard phase of a core-having structure whose core portion and peripheral portion both contain a (Ti, W, Ta/Nb)CN phase, and (3) a third hard phase of single-phase structure including a titanium cabonitride phase.
    Type: Application
    Filed: June 13, 2006
    Publication date: February 26, 2009
    Applicants: NGK SPARK PLUG CO., LTD., MITSUBISHI MATERIALS CORPORATION
    Inventors: Tomoaki Shindo, Atsushi Komura, Hiroaki Takashima, Toshiyuki Taniuchi, Masafumi Fukumura, Kei Takahashi
  • Publication number: 20080314199
    Abstract: The present invention provides increased recovery in additive-enhanced or alloy-enhanced molten steel. This is accomplished by deoxidizing powders blended with the additive alloys. The deoxidizing powder reacts with the oxygen, thereby depleting the oxygen in this region. The alloy or additive region is enriched, thereby improving the recovery in the molten steel.
    Type: Application
    Filed: May 19, 2008
    Publication date: December 25, 2008
    Inventors: Leslie Wade Niemi, Gregory P. Marzec
  • Publication number: 20080264203
    Abstract: The present invention relates to a cutting tool insert preferably for machining of hardened steel, hot and cold working tool steel, die steel, case hardened steel, high speed steel and ductile grey cast iron and composed of a composite comprising from about 30 to less than about 60 vol-% of a cBN-phase and a binder phase comprising a titaniumcarbonitride phase and a TiB2 phase. According to the invention, in the XRD pattern from the composite using CuK?-radiation the peak height ratio of the strongest TiB2 peak and the strongest cBN peak is less than about 0.02.
    Type: Application
    Filed: April 18, 2008
    Publication date: October 30, 2008
    Inventors: Leif Dahl, Mikael Lindholm
  • Patent number: 7442225
    Abstract: The present invention provides a worked molybdenum-alloy material that can be used at higher temperatures than at least temperatures at which known TZM alloys are used. A worked molybdenum-alloy material having high strength and high toughness includes at least one of carbide particles, oxide particles, and boride particles and fine nitride particles dispersed by internal nitriding of an untreated worked molybdenum-alloy material in which a nitride-forming-metal element is dissolved to form a solid solution in a molybdenum matrix and at least one of carbide particles, oxide particles, and boride particles is precipitated and dispersed.
    Type: Grant
    Filed: March 27, 2003
    Date of Patent: October 28, 2008
    Assignees: Japan Science and Technology Agency, National University Corporation Okayama University, A.L.M.T. Corp.
    Inventors: Jun Takada, Masahiro Nagae, Makoto Nakanishi, Tomohiro Takida, Tetsushi Hoshika
  • Publication number: 20080257107
    Abstract: Hardmetal compositions each including hard particles having a first material and a binder matrix having a second, different material comprising rhenium or a Ni-based superalloy. A two-step sintering process may be used to fabricate such hardmetals at relatively low sintering temperatures in the solid-state phase to produce substantially fully-densified hardmetals.
    Type: Application
    Filed: April 8, 2008
    Publication date: October 23, 2008
    Inventor: Shaiw-Rong Scott Liu
  • Patent number: 7413591
    Abstract: The throw-away tip has a shape of substantially flat plate, comprising from 1 to 30% by weight of binder phase comprising at least one kind of Co and Ni, and 70 to 99% by weight of carbonitride phase comprising composite metal carbonitride of Ti and one or more kind other than Ti among metals of groups 4a, 5a and 6a of the Periodic Table, wherein the mean grain size of the carbonitride phase is 1.5 ?m or less, while flexural strength test pieces which are cut out of ten throw-away tips including the side face thereof show flexural strength with a Weibull coefficient of 5 or higher. Throw-away tips having fine carbonitride phase structure and high cutting performance can be made with less variance among individual throw-away tips.
    Type: Grant
    Filed: December 23, 2003
    Date of Patent: August 19, 2008
    Assignee: Kyocera Corporation
    Inventor: Takashi Tokunaga
  • Patent number: 7332122
    Abstract: A titanium based carbonitride alloy containing Ti, Nb, W, C, N and Co. The alloy also contains, in addition to Ti, 9-14 at % Co with only impurity levels of Ni and Fe, 1-<3 at % Nb, 3-8 at % W and has a C/(C+N) ratio of 0.50-0.75. The amount of undissolved Ti(C,N) cores should be kept between 26 and 37 vol % of the hard constituents, the balance being one or more complex carbonitrides containing Ti, Nb and W. The alloy is particularly useful for milling of steel.
    Type: Grant
    Filed: October 7, 2003
    Date of Patent: February 19, 2008
    Assignee: Sandvik Intellectual Property AB
    Inventors: Gerold Weinl, Ulf Rolander, Marco Zwinkels
  • Patent number: 7326273
    Abstract: After an alloy powder including W, Cr, at least one of Ti, Zr, and Hf, and at least one of V, Nb, and Ta is produced, the alloy powder, a powdery carbon material, and a catalyst are heat-treated in the presence of a nitrogen gas. The alloy powder is carbonitrided into a multicomponent ceramics powder, and sintered into a sintered body. Alternatively, a powder of a first substance including at least two of Ti, Al, V, Nb, Zr, Hf, Mo, Ta, Cr, and W is molded into a molded body. Then, the surface of the molded body is surrounded by a second substance including a metal element which is not contained in the powder of the first substance, and the molded body is heat-treated in an atmosphere in which N is present. A porous sintered body thus produced is crushed into a multicomponent ceramics powder.
    Type: Grant
    Filed: June 27, 2002
    Date of Patent: February 5, 2008
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventor: Mitsuo Kuwabara
  • Patent number: 7316724
    Abstract: A cermet composition represented by the formula (PQ)(RS)X comprising: a ceramic phase (PQ), a binder phase (RS) and X wherein X is at least one member selected from the group consisting of an oxide dispersoid E, an intermetallic compound F and a derivative compound G wherein said ceramic phase (PQ) is dispersed in the binder phase (RS) as particles of diameter in the range of about 0.5 to 3000 microns, and said X is dispersed in the binder phase (RS) as particles in the size range of about 1 nm to 400 nm.
    Type: Grant
    Filed: April 22, 2004
    Date of Patent: January 8, 2008
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Narasimha-Rao Venkata Bangaru, Jayoung Koo, ChangMin Chun, Hyun-Woo Jin, John Roger Peterson, Robert Lee Antram, Christopher John Fowler
  • Patent number: 7247186
    Abstract: The invention includes a cermet composition represented by the formula (PQ) (RS) comprising: a ceramic phase (PQ) and a binder phase (RS) wherein, P is a metal selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Fe, Mn and mixtures thereof, Q is carbonitride, R is a metal selected from the group consisting of Fe, Ni, Co, Mn and mixtures thereof, S comprises at least one element selected from Cr, Al, Si and Y.
    Type: Grant
    Filed: April 22, 2004
    Date of Patent: July 24, 2007
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: ChangMin Chun, Narasimha-Rao Venkata Bangaru, Hyun-Woo Jin, Jayoung Koo, John Roger Peterson, Robert Lee Antram, Christopher John Fowler
  • Patent number: 7220480
    Abstract: A cemented carbide including WC, a binder phase based on Co, Ni or Fe, and gamma phase, in which said gamma phase has an average grain size <1 ?m. A method of making the cemented carbide is provided in which the powders forming gamma phase are added as mixed cubic carbides of one or more of Ti, Ta, Nb, Zr, Hf and V, and a ratio, fWC, between an amount of WC (in mol fraction of WC) and an equilibrium gamma phase WC content at a sintering temperature (in mol fraction WC) is given by fWC=xWC/xeWC, wherein fWC is 0.6 to 1.0.
    Type: Grant
    Filed: October 12, 2004
    Date of Patent: May 22, 2007
    Assignee: Sandvik Intellectual Property AB
    Inventors: Bo Jansson, Susanne Norgren
  • Patent number: 7186288
    Abstract: A method of production of large Ingots of neutron attenuating composites using a vacuum-bellows system allows for large cross-sectional shapes to be extruded and rolled. This method uses a vacuum-bellows technology which allows the manufacturing of large 8–16 inch diameter ingots (50–450 lbs. each). A variety of primary metal matrix materials can be used in this technology. High specific strength and stiffness can be achieved because the technology allows for final densities of 99% and higher. The vacuum-bellows technology allows metals and ceramics to blend and mesh together at compression pressures of 800 tons with elevated temperatures. The controlled compression movement allows for any oxide layer, on the metal, to be broken up and consolidated with the chosen ceramic particulate.
    Type: Grant
    Filed: October 8, 2004
    Date of Patent: March 6, 2007
    Inventor: Robin A. Carden