Carbide Only Of Vanadium(v), Niobium(nb) Or Columbium(cb), Or Tantalum(ta) Patents (Class 75/239)
-
Patent number: 11612847Abstract: A system for removing particulates of a fissile material includes first and second filtration paths. A first filter and a first valve are disposed in the first filtration path. A second filter and a second valve are disposed in the second filtration path. The first valve and the second valve are configured to switch between a dual open state and a mixed open/closed state. During the dual open state, the first valve and the second valve axe open to permit concurrent flows of the effluent gas through the first and second filtration paths. During the mixed open/closed state, one of the first valve and the second valve is open while the other of the first valve and the second valve is closed to permit the particulates on a corresponding one of the first filter and the second filter to be dislodged by a countercurrent flow of a purging gas.Type: GrantFiled: January 31, 2018Date of Patent: March 28, 2023Assignee: Global Nuclear Fuel-Americas, LLCInventors: Lon E. Paulson, Frank E. Beaty
-
Patent number: 11525173Abstract: A component obtainable by a process which includes providing a composition and sintering the composition at a sintering temperature of from 1250° C. to 1400° C. for a period of from 3 to 15 minutes. The composition includes hard material particles with an inner core of fused tungsten carbide and an outer shell of tungsten carbide, and a binder metal selected from Co, Ni, Fe and alloys with at least one metal selected from Co, Ni and Fe.Type: GrantFiled: December 8, 2017Date of Patent: December 13, 2022Assignee: H.C STARCK TUNGSTEN GMBHInventors: Christian Gerk, Markus Zumdick
-
Patent number: 9340852Abstract: An elevated refractory alloy with ambient-temperature and low-temperature ductility and the method thereof is disclosed, that is, at least four high-melting point metal elements are composed with at least four carbides of the high-melting point metal elements through a high-temperature alloy process, the carbides is dissolved in the high-melting point metal elements, therefore the high-melting point metal elements are wet and composed with the carbides, consequently the crystallographic structure composed by the high-melting point metal elements and the carbides is changed from a body-centered cubic structure to a face-centered cubic structure. Therefore, at least four high-melting point metal elements are composed with corresponding carbides of the four high-melting point metal elements and an alloy material is made through high-temperature, wherein the crystallographic structure of the alloy material is a face-centered cubic structure so as to let that the alloy material is convenient machined.Type: GrantFiled: September 26, 2011Date of Patent: May 17, 2016Assignee: National Tsing Hua UniversityInventor: Swe-Kai Chen
-
Patent number: 9327352Abstract: A cubic boron nitride sintered body with excellent wear resistance and fracture resistance. The cubic boron nitride sintered body includes 85 to 95% by volume of cubic boron nitride, and 5 to 15% by volume of a binder phase and inevitable impurities. The binder phase has at least three compounds selected from carbides, nitrides, carbonitrides, oxides and mutual solid solutions thereof of Al, V, Cr, Mn, Co, Ni, Nb and Mo. An amount of an aluminum element contained in the cubic boron nitride sintered body is 0.5 to 5% by mass based on a total mass of the cubic boron nitride sintered body. The binder phase is essentially free of both pure metals and alloys consisting of pure metals.Type: GrantFiled: November 7, 2012Date of Patent: May 3, 2016Assignee: Tungaloy CorporationInventor: Yuichiro Fukushima
-
Patent number: 9162384Abstract: A hot runner nozzle assembly includes a nozzle heater, a hot runner nozzle, a nozzle tip, a nozzle tip seal surrounding the nozzle tip and a connecting element positioned to removably couple the tip seal to the nozzle tip and to create a first contact seal between the nozzle tip and the tip seal and a second annular contact seal between the tip seal and a mold component. The nozzle tip is made or shaped via a sintering process from a metal matrix composite (MMC) material having a first coefficient of thermal expansion. The tip seal is made or shaped from a ceramic based powder material, having a second coefficient of thermal expansion that is different from the first coefficient of thermal expansion. In operation this hot runner nozzle assembly provides an improved heat profile and a reduced leakage at the tip area under a wider operating processing window.Type: GrantFiled: March 24, 2014Date of Patent: October 20, 2015Assignee: Otto Männer Innovation GmbHInventors: Swen Spuller, Gheorghe George Olaru
-
Publication number: 20150143953Abstract: A refractory metal matrix-ceramic compound multi-component composite material with the super-high melting point is disclosed. At least one ceramic compound A and at least one refractory bonding metal B are fused together by the smelting process to make the multi-component composite material. The fused ingredients of the multi-component composite material are mAnB, and (m+n)max=13. The positive integer m is the number of the kinds of the ceramic components A, and the positive integer n is the number of the kinds of the refractory bonding metals B. The absolute value of the combining enthalpy of the ceramic compound A is larger than the absolute value of the combining enthalpy between the ceramic compound A and the refractory bonding metal B. The multi-component composite material has the properties including over 3000° C. melting point, high stability, hardness, ductility, and fusibility in high or low temperature, fast production, and low cost.Type: ApplicationFiled: October 4, 2013Publication date: May 28, 2015Applicant: National Tsing Hua UniversityInventor: Swe-Kai CHEN
-
Publication number: 20140345423Abstract: Carbide pellets including relatively small amounts of metallic binder are produced by steps of pressing, comminuting, shaping and sintering. The carbide pellets may be used as wear resistant hard facing materials that are applied to various types of tools. The carbide pellets provide improved mechanical properties such as hardness and abrasiveness while maintaining required levels of toughness and strength.Type: ApplicationFiled: August 13, 2014Publication date: November 27, 2014Inventors: Terry W. Kirk, Hongbo Tian, Xin Deng, Debangshu Banerjee, Qingjun Zheng
-
Patent number: 8697258Abstract: An article includes a working portion including cemented carbide, and a heat sink portion in thermal communication with the working portion. The heat sink portion includes a heat sink material having a thermal conductivity greater than a thermal conductivity of the cemented carbide. Also disclosed are methods of making an article including a working portion comprising cemented carbide, and a heat sink portion in thermal communication with the working portion and including a heat sink material having a thermal conductivity that is greater than a thermal conductivity of the cemented carbide. The heat sink portion conducts heat from the working portion.Type: GrantFiled: July 14, 2011Date of Patent: April 15, 2014Assignee: Kennametal Inc.Inventors: Prakash K. Mirchandani, Alfred J. Mosco, Eric W. Olsen, Steven G. Caldwell
-
Patent number: 8535407Abstract: The invention relates to a hard-metal comprising at least 13 volume % of a metal carbide selected from the group consisting of TiC, VC, ZrC, NbC, MoC, HfC, TaCl WC or a combination thereof, a binder phase comprising one or more of iron-group metals or alloy thereof and 0.1 to 10 weight % Si and 0.1 to 10 weight % Cr and having a liquidus temperature at 1280 degrees C. or lower and 3 to 39 volume % of diamond or cBN grains coated with a protective coating or a mixture thereof and a process for making the hard-metal.Type: GrantFiled: September 15, 2009Date of Patent: September 17, 2013Assignee: Element Six GmbHInventors: Igor Yuri Konyashin, Bernd Heinrich Ries, Frank Friedrich Lachmann
-
Publication number: 20130133531Abstract: An anvil including a hard phase and a metal matrix in which the hard phase is dispersed, a concentration of the metal matrix phase varying according to a concentration gradient, is disclosed. The anvil may be used in a high pressure press. Methods of making an anvil including forming a hard phase dispersed in a metal matrix phase, a concentration of the metal matrix phase varying according to a concentration gradient, are also disclosed.Type: ApplicationFiled: November 26, 2012Publication date: May 30, 2013Applicant: SMITH INTERNATIONAL, INC.Inventor: SMITH INTERNATIONAL, INC.
-
Patent number: 8414677Abstract: The invention provides a method of forming a dense, shaped article, such as a crucible, formed of a refractory material, the method comprising the steps of placing a refractory material having a melting point of at least about 2900° C. in a mold configured to form the powder into an approximation of the desired shape. The mold containing the powder is treated at a temperature and pressure sufficient to form a shape-sustaining molded powder that conforms to the shape of the mold, wherein the treating step involves sintering or isostatic pressing. The shape-sustaining molded powder can be machined into the final desired shape and then sintered at a temperature and for a time sufficient to produce a dense, shaped article having a density of greater than about 90% and very low open porosity. Preferred refractory materials include tantalum carbide and niobium carbide.Type: GrantFiled: September 10, 2009Date of Patent: April 9, 2013Assignee: North Carolina State UniversityInventors: Raoul Schlesser, Rafael F. Dalmau, Vladimir Noveski, Zlatko Sitar
-
Patent number: 8007922Abstract: An article includes a working portion including cemented carbide, and a heat sink portion in thermal communication with the working portion. The heat sink portion includes a heat sink material having a thermal conductivity greater than a thermal conductivity of the cemented carbide. Also disclosed are methods of making an article including a working portion comprising cemented carbide, and a heat sink portion in thermal communication with the working portion and including a heat sink material having a thermal conductivity that is greater than a thermal conductivity of the cemented carbide. The heat sink portion conducts heat from the working portion.Type: GrantFiled: October 25, 2007Date of Patent: August 30, 2011Assignee: TDY Industries, IncInventors: Prakash K. Mirchandani, Alfred J. Mosco, Eric W. Olsen, Steven G. Caldwell
-
Patent number: 8007561Abstract: A cermet insert having a structure composed of a hard phase and a binding phase and, as a sintered body composition, containing Ti, Nb and/or Ta, and W in a total amount of Ti in terms of carbonitride, Nb and/or Ta in terms of carbide and W in terms of carbide of 70 to 95 wt. % of an entirety of the microstructure, and containing W in terms of carbide in an amount of 15 to 35 wt. % of the entirety of the microstructure, the sintered body composition further containing Co and/or Ni. The hard phase has one or two or more of the phases: (1) a first hard phase of a core-having structure whose core portion contains a titanium carbonitride phase and a peripheral portion containing a (Ti, W, Ta/Nb)CN phase, (2) a second hard phase of a core-having structure whose core portion and peripheral portion both contain a (Ti, W, Ta/Nb)CN phase, and (3) a third hard phase of single-phase structure including a titanium cabonitride phase.Type: GrantFiled: June 13, 2006Date of Patent: August 30, 2011Assignees: NGK Spark Plug Co., Ltd., Mitsubishi Materials CorporationInventors: Tomoaki Shindo, Atsushi Komura, Hiroaki Takashima, Toshiyuki Taniuchi, Masafumi Fukumura, Kei Takahashi
-
Patent number: 7998238Abstract: A sintered sliding member comprises a back metal (21a) and a ferrous sintered sliding body (20) which is sintering-bonded to the back metal (21a). The ferrous sintered sliding body (20) has martensite phase having a solid soluble carbon concentration of 0.15 to 0.5 wt % and contains carbide in a content of 5 to 50% by volume. The sintered sliding member is excellent in abrasion resistance, seizing resistance and heat crack resistance.Type: GrantFiled: July 30, 2004Date of Patent: August 16, 2011Assignee: Komatsu Ltd.Inventors: Takemori Takayama, Tetsuo Ohnishi, Kazuo Okamura
-
Patent number: 7909906Abstract: A cold work steel has the following chemical composition in weight-%: 1.25-1.75% (C+N), however at least 0.5% C 0.1-1.5% Si 0.1-1.5% Mn 4.0-5.5% Cr 2.5-4.5% (Mo+W/2), however max. 0.5% W 3.0-4.5% (V+Nb/2), however max. 0.5% Nb max 0.3% S balance iron and unavoidable impurities, and a microstructure which in the hardened and tempered condition of the steel contains 6-13 vol-% of vanadium-rich MX-carbides, -nitrides and/or carbonitrides which are evenly distributed in the matrix of the steel, where X is carbon and/or nitrogen, at least 90 vol-% of said carbides, nitrides and/or carbonitrides having an equivalent diameter, Deq, which is smaller than 3.0 ?m; and totally max. 1 vol-% of other, possibly existing carbides, nitrides or carbonitrides.Type: GrantFiled: October 5, 2007Date of Patent: March 22, 2011Assignee: Uddeholms ABInventors: Odd Sandberg, Lennart Jönson, Magnus Tidesten
-
Publication number: 20110020163Abstract: The present invention relates to a super-hard enhanced hard-metal comprising particulate hard material and a binder and at least one formation, the formation comprising a core cluster and a plurality of satellite clusters, spaced from, surrounding and smaller than the core cluster, and the core cluster and satellite clusters each comprising a plurality of contiguous super-hard particles.Type: ApplicationFiled: April 15, 2009Publication date: January 27, 2011Inventor: Roger William Nigel Nilen
-
Publication number: 20100251921Abstract: A kinetic energy penetrator is provided comprising a consolidated body of a metal nanoparticles phase comprising metal nanoparticles and a metal carbide nanoparticles phase comprising metal carbide nanoparticles. Methods for making a kinetic energy penetrator as well as material compositions comprising a consolidated body of a metal nanoparticles phase comprising metal nanoparticles and a metal carbide nanoparticles phase comprising metal carbide nanoparticles are also provided.Type: ApplicationFiled: April 1, 2009Publication date: October 7, 2010Applicant: Kennametal Inc.Inventors: David Richard Siddle, Christopher David Dunn
-
Patent number: 7799111Abstract: The invention relates to a thermal spray feedstock composition that employs free flowing agglomerates formed from (a) a ceramic component that sublimes,(b) a metallic or semi-conductor material that does not sublime and (c) a binder. The invention also relates to a method for preparing the agglomerates and a method for preparing ceramic containing composite structures from the agglomerates.Type: GrantFiled: March 28, 2005Date of Patent: September 21, 2010Assignee: Sulzer Metco Venture LLCInventors: David S. Gollob, Thomas H. Piquette, James Derby, Omar Basil Al-Sabouni, Richard Karl Schmid, Jacobus Cornelis Doesburg
-
Publication number: 20100196734Abstract: Wear protection sheets containing hard material particles having a metallic shell and solder material particles selected from the group consisting of soft solders, hard solders and high-temperature solders, the use of the wear protection sheets and a process for producing them by tape casting are described.Type: ApplicationFiled: October 8, 2009Publication date: August 5, 2010Applicants: H.C. Starck Inc.Inventors: Michael Svec, Karl-Hermann Buchner, Hans-Peter Baldus, Aloys Eiling, Jim Ryan
-
Publication number: 20090293672Abstract: A macroscopic composite sintered powder metal article including a first region including cemented hard particles, for example, cemented carbide. The article includes a second region including one of a metal and a metallic alloy selected from the group consisting of a steel, nickel, a nickel alloy, titanium, a titanium alloy, molybdenum, a molybdenum alloy, cobalt, a cobalt alloy, tungsten, and a tungsten alloy. The first region is metallurgically bonded to the second region, and the second region has a thickness of greater than 100 microns. A method of making a macroscopic composite sintered powder metal article is also disclosed, herein. The method includes co-press and sintering a first metal powder including hard particles and a powder binder and a second metal powder including the metal or metal alloy.Type: ApplicationFiled: June 2, 2009Publication date: December 3, 2009Applicant: TDY Industries, Inc.Inventors: Prakash K. Mirchandani, Morris E. Chandler, Eric W. Olsen
-
Patent number: 7615094Abstract: A first tungsten-based sintered material of the present invention comprises Ni in a range from 0.2 to 1.5% by mass, Y2O3 in a range from 0.1 to 1% by mass, and optionally, (a) VC in a range from 0.05 to 0.5% by mass and/or (b) Co and/or Fe in a range from 0.01 to 5% by mass, the balance being tungsten (W); W phases are sinter-bonded; Ni phase or Ni—Co/Fe alloy phase which has the largest particle diameter of 5 ?m or less and Y2O3 having the largest particle diameter of 5 ?m or less are distributed at boundaries of the W phases; and the largest particle diameter of the W phase is 30 ?m or less. The first tungsten-based sintered material is preferably used for a hot press mold for optical glass lenses.Type: GrantFiled: July 13, 2004Date of Patent: November 10, 2009Assignee: Mitsubishi Materials C.M.I. CorporationInventors: Ji-bin Yang, Masato Otsuki
-
Patent number: 7588620Abstract: A cutting tool comprised of a cemented carbide is provided. The cemented carbide is consisted of a composition including: a predetermined amount of at least one selected from specific carbide, nitride, and carbon nitride, except for cobalt and niobium; 0.01 to 0.08 mass % of oxygen; and the rest consisted of tungsten carbide and unavoidable impurities. The cemented carbide is further made up of a structure in which a tungsten carbide phase and a B1-type solid solution phase being expressed by M(CNO) or M(CO) where “M” is at least one selected from the group consisting of metals of the group IV, V, and VI in the periodic table, containing niobium as being essential, and containing oxygen at a rate of 1 to 4 atomic % are bound by a binder phase composed mainly of the cobalt. This achieves the cutting tool having a long tool life in high-speed interrupted cutting.Type: GrantFiled: March 26, 2007Date of Patent: September 15, 2009Assignee: Kyocera CorporationInventor: Takahito Tanibuchi
-
Patent number: 7531022Abstract: A liquid for the preparation of powder mixtures on the basis of hard metals, comprising water and an inhibitor, wherein the inhibitor is in the form of at least one of the following materials: polyvinyllactam or wax emulsion, or the inhibitor is in the form of at least one of the following materials: carboxylic acid, amines or their derivatives.Type: GrantFiled: October 13, 2005Date of Patent: May 12, 2009Assignee: Zschimmer & Schwarz GmbH & Co. KG Chemische FabrikenInventors: Peter Quirmbach, Michael Hölzgen, Alfred Vuin
-
Publication number: 20080202820Abstract: The present invention includes consolidated hard materials, methods for producing them, and industrial drilling and cutting applications for them. A consolidated hard material may be produced using hard particles such as B4C or carbides or borides of W, Ti, Mo, Nb, V, Hf, Ta, Zr, and Cr in combination with an iron-based, nickel-based, nickel and iron-based, iron and cobalt-based, aluminum-based, copper-based, magnesium-based, or titanium-based alloy for the binder material. Commercially pure elements such as aluminum, copper, magnesium, titanium, iron, or nickel may also be used for the binder material. The mixture of the hard particles and the binder material may be consolidated at a temperature below the liquidus temperature of the binder material using a technique such as rapid omnidirectional compaction (ROC), the Ceracon™ process, or hot isostatic pressing (HIP). After sintering, the consolidated hard material may be treated to alter its material properties.Type: ApplicationFiled: September 18, 2007Publication date: August 28, 2008Applicant: BAKER HUGHES INCORPORATEDInventors: Jimmy W. Eason, James C. Westhoff, Roy Carl Lueth
-
Publication number: 20080163723Abstract: The present invention relates to compositions and methods for forming a bit body for an earth-boring bit. The bit body may comprise hard particles, wherein the hard particles comprise at least one carbide, nitride, boride, and oxide and solid solutions thereof, and a binder binding together the hard particles. The binder may comprise at least one metal selected from cobalt, nickel, and iron, and, optionally, at least one melting point reducing constituent selected from a transition metal carbide in the range of 30 to 60 weight percent, boron up to 10 weight percent, silicon up to 20 weight percent, chromium up to 20 weight percent, and manganese up to 25 weight percent, wherein the weight percentages are based on the total weight of the binder.Type: ApplicationFiled: February 20, 2008Publication date: July 10, 2008Applicants: TDY Industries Inc., Baker Hughes IncorporatedInventors: Prakash K. Mirchandani, Jimmy W. Eason, James J. Oakes, James C. Westhoff, Gabriel B. Collins, John H. Stevens, Steven G. Caldwell, Alfred J. Mosco
-
Patent number: 7297177Abstract: A cold work steel has the following chemical composition in weight-%: 1.25-1.75% (C+N), however at least 0.5% C 0.1-1.5% Si 0.1-1.5% Mn 4.0-5.5% Cr 2.5-4.5% (Mo+W/2), however max. 0.5% W 3.0-4.5% (V+Nb/2), however max. 0.5% Nb max 0.3% S balance iron and unavoidable impurities, and a microstructure which in the hardened and tempered condition of the steel contains 6-13 vol-% of vanadium-rich MX-carbides, -nitrides and/or carbonitrides which are evenly distributed in the matrix of the steel, where X is carbon and/or nitrogen, at least 90 vol-% of said carbides, nitrides and/or carbonitrides having an equivalent diameter, Deq, which is smaller than 3.0 ?m; and totally max. 1 vol-% of other, possibly existing carbides, nitrides or carbonitrides.Type: GrantFiled: May 17, 2002Date of Patent: November 20, 2007Assignee: Uddeholm Tooling AktiebolagInventors: Odd Sandberg, Lennart Jönson, Magnus Tidesten
-
Patent number: 7288132Abstract: Cermets are provided in which a substantially stoichiometric metal carbide ceramic phase along with a reprecipitated metal carbide phase, represented by the formula MxCy, is dispersed in a metal binder phase. In MxCy M is Cr, Fe, Ni, Co, Si, Ti, Zr, Hf, V, Nb, Ta, Mo or mixtures thereof, x and y are whole or fractional numerical values with x ranging from 1 to 30 and y from 1 to 6. These cermets are particularly useful in protecting surfaces from erosion and corrosion at high temperatures.Type: GrantFiled: March 7, 2006Date of Patent: October 30, 2007Assignee: Exxonmobil Research and Engineering CompanyInventors: ChangMin Chun, Narasimha-Rao Venkata Bangaru, Hyun-Woo Jin, Jayoung Koo, John Roger Peterson, Robert Lee Antram, Christopher John Fowler
-
Patent number: 7179319Abstract: The invention proposes a fine grained sintered cemented carbide containing chromium and based on WC and a binder based on Co or CoNiFe, and having at least one additional phase comprising at least one carbide or mixed carbide of tantalum. For improving the high-temperature properties while simultaneously maintaining a good trade-off between hardness and bending strength, it is proposed that the sintered cemented carbide contains approximately 0.3 to 4% Ta, as related to the total mass of the sintered cemented carbide, that the WC has a grain size of between 0.1 and 1.3 ?m, that the binder phase contains the metals W, Cr and Ta, dissolved in solid solution, and that the at least one additional phase comprises a TaC phase visible by optical microscopy. The invention further relates to a powder-metallurgical process for manufacturing the sintered cemented carbide and to the use of the sintered cemented carbide for manufacturing cutting tools having improved high-temperature properties.Type: GrantFiled: January 16, 2004Date of Patent: February 20, 2007Assignee: Kennametal Inc.Inventors: Hans-Wilm Heinrich, Dieter Schmidt, Manfred Wolf
-
Patent number: 7128773Abstract: A composite material includes a double cemented carbide and a coarse grain dopant, wherein the coarse grain is added in an amount sufficient to improve wear resistance of virgin double cemented carbide. The double cemented carbide may selected from the group of carbides consisting of W, Ti, Mo, Nb, V, Hf, Ta, and Cr carbides. The coarse grain dopant may also be at least one carbide selected from the group consisting of W, Ti, Mo, Nb, V, Hf, Ta, and Cr carbides. The coarse grain carbide may be between about 5% to about 90% by weight of the total carbide in the composite. Preferably, the coarse grain carbide is about 10% to about 50% by weight of the total carbide in the composite.Type: GrantFiled: April 30, 2004Date of Patent: October 31, 2006Assignee: Smith International, Inc.Inventors: Dah-Ben Liang, Greg Lockwood, Anthony Griffo
-
Patent number: 7074253Abstract: Cermets are provided in which a substantially stoichiometric metal carbide ceramic phase along with a reprecipitated metal carbide phase, represented by the formula MxCy, is dispersed in a metal binder phase. In MxCy M is Cr, Fe, Ni, Co, Si, Ti, Zr, Hf, V, Nb, Ta, Mo or mixtures thereof, x and y are whole or fractional numerical values with x ranging from 1 to 30 and y from 1 to 6. These cermets are particularly useful in protecting surfaces from erosion and corrosion at high temperatures.Type: GrantFiled: April 22, 2004Date of Patent: July 11, 2006Assignee: ExxonMobil Research and Engineering CompanyInventors: ChangMin Chun, Narasimha-Rao Venkata Bangaru, Hyun-Woo Jin, Jayoung Koo, John Roger Peterson, Robert Lee Antram, Christopher John Fowler
-
Patent number: 7070643Abstract: There is disclosed a compositionally graded sintered alloy which comprises: 1 to 40% by weight of a iron group metal; 0.1 to 10% by weight of at least one type of a specific metal element selected from the group consisting of Cr, Au, Ge, Cu; Sn, Al, Ga, Ag, In, Mn and Pb; a hard phase containing, as a main component, at least one compound selected from the group consisting of a carbide, a nitride and a mutual solid solution of a metal(s) which belongs to Group 4 (Ti, Zr, Hf), 5 (V, Nb, Ta) or 6 (Cr, Mo, W) of the Periodic Table; and inevitable impurities, wherein the content of the specific metal element gradually increases from a surface of the sintered alloy toward an inner portion thereof, and a ratio of the average concentration of the specific metal element in a region which is at least 1 mm inside from the surface of the sintered alloy, to the average concentration of the specific metal element in a region between the surface and the position which is 0.Type: GrantFiled: March 26, 2004Date of Patent: July 4, 2006Assignee: Toshiba Tungaloy Co., Ltd.Inventor: Masaki Kobayashi
-
Patent number: 6911063Abstract: Hardmetal compositions each including hard particles having a first material and a binder matrix having a second, different material comprising rhenium or a Ni-based superalloy. A two-step sintering process may be used to fabricate such hardmetals at relatively low sintering temperatures in the solid-state phase to produce substantially fully-densified hardmetals.Type: GrantFiled: June 2, 2003Date of Patent: June 28, 2005Assignee: Genius Metal, Inc.Inventor: Shaiw-Rong Scott Liu
-
Publication number: 20040223865Abstract: Ultra fine TaC-transition metal based complex powder is prepared by: dispersing a mixture of a Ta-containing material and a transition metal-containing water soluble salt into a solvent; stirring the mixture and spray-drying the stirred material to obtain precursor powder; calcining the precursor powder to form ultra fine Ta-transition metal complex oxide powder; mixing the ultra fine Ta-transition metal complex oxide powder with nano-sized carbon particles, followed by drying to obtain complex oxide powder; and subjecting the dried complex oxide powder to reduction/carburization in a non-oxidizing atmosphere.Type: ApplicationFiled: December 30, 2003Publication date: November 11, 2004Inventors: Byong Kee Kim, Seong Hyeon Hong, Yong Won Woo
-
Patent number: 6797031Abstract: The invention concerns a method for the manufacturing of a wire-shaped product with high wear resistance. The characteristic feature is that a melt is prepared of a martensitic stainless chromium steel which contains in weight-% 0.6-3.0 C, max 2.0 Si max 2.0 Mn, 13-30 Cr, 0-10 Mo, from zero to totally max 10% of those strong carbide forming elements which belong to the group of elements which comprises V, Nb, Ta and Zr, totally max 1% of other, optionally existing alloying elements, balance iron and unavoidable impurities, that the melt is tapped and caused to solidify through cooling at a cooling rate of at least 100° C.Type: GrantFiled: April 18, 2002Date of Patent: September 28, 2004Assignee: Haldex Garphyttan AktiebolagInventor: Claes-Henrik Engström
-
Patent number: 6767416Abstract: A corrosion resistant, high strength austenitic stainless steel consisting of 1.0% or less of Si, 2.0% or less of Mn, 0.5% or less of O, 7 to 30% of Ni, 14 to 26% of Cr, 0.3% or less of combination of C and N, at least one element selected from the group consisting of 1.0% or less of Ti, 2.0% or less of Zr and 2.0% or less of Nb, and the balance consisting of Fe and unavoidable impurities, the percentage being given in weight basis; said steel containing carbonitride with a grain size of several to 100 nm dispersed therein; said steel having an average crystal grain size of 1 &mgr;m or less; and said steel containing 90% by volume or more of austenite phase; is excellent in strength and corrosion resistance.Type: GrantFiled: February 27, 2002Date of Patent: July 27, 2004Assignee: Hitachi, Ltd.Inventors: Ryo Ishibashi, Yasuhisa Aono
-
Patent number: 6761750Abstract: A cutting tool insert has a cemented carbide substrate and a coating. The cemented carbide substrate includes 73-93 wt % WC, 4-12 wt % binder phase, and cubic carbide phase with a binder phase enriched surface zone essentially free of cubic carbide phase. The cubic carbide phase includes elements from the groups IVB and VB, with the Ta content on a level corresponding to a technical impurity. Inserts according to the invention exhibit favorable edge strength and thermal shock resistance.Type: GrantFiled: November 26, 2002Date of Patent: July 13, 2004Assignee: SECO Tools ABInventors: Jenni Zackrisson, Jan Qvick
-
Publication number: 20040079189Abstract: 1. A niobium powder for capacitors, wherein the chromium content is 50 ppm by mass or less, granulated product and sintered body thereof, and producing method of those; 2. a capacitor constructed by one part electrode formed of the niobium sintered body, another part electrode and a dielectric material interposed between two electrodes, and its producing method; and 3. an electronic circuit and electronic device using the capacitor. A capacitor having good voltage resistance properties can be manufactured by using the niobium sintered body for capacitors of the present invention, wherein the chromium content is 50 ppm by mass or less.Type: ApplicationFiled: September 15, 2003Publication date: April 29, 2004Inventors: Masaaki Nishioka, Kazumi Naito, Isao Kabe
-
Patent number: 6712871Abstract: A sintered alloy composition for automotive engine valve seats, and a method for producing the same, are described. An iron base sintered alloy composition comprising vanadium carbide particles, Fe—Co—Ni—Mo alloy particles, and Cr—W—Co—C alloy particles in which the composition is dispersed in a structure of sorbite is particularly suitable for use as materials of valve seats for automotive engines which requires excellent wear resistance, high-performance, high-rotation-speed, and low-fuel-consumption.Type: GrantFiled: August 29, 2002Date of Patent: March 30, 2004Assignee: Hyundai Motor CompanyInventor: Jung Seok Oh
-
Patent number: 6682580Abstract: A matrix powder for the production of components for wear-resistant applications by forming the matrix powder, along with an infiltrant, into a matrix, and and a wear-resistant component produced therefrom are presented. In order to improve mechanical properties, in particular resistance to erosion, it is proposed for at least some of the hard material to be in the form of spheroidal hard-material particles with a particle size of less than 500 &mgr;m.Type: GrantFiled: April 16, 2002Date of Patent: January 27, 2004Assignee: WOKA Schweisstechnik GmbHInventors: Eberhard G. Findeisen, Vivek Ranjan Banerjee, Richard F. Moll, Siegmund Kremmer
-
Patent number: 6656245Abstract: A niobium sintered body for a capacitor, which exhibits an LC value of not larger than 300 &mgr;A/g as measured after an electrolytic oxide film is formed thereon. The sintered body preferably exhibits a product (CV) [i.e., a product of capacity (C) with electrolysis voltage (V)] of at least 40,000 &mgr;F·V/g. The sintered body is produced by sintering a niobium powder containing at least one niobium compound selected from niobium nitride, niobium carbide and niobium boride. A capacitor manufactured from the sintered body has a large capacity per unit weight and good leak current characteristics. Especially, a sintered body made of a niobium powder having a large average degree of roundness has a relatively large porosity and a good packed density, and a capacitor manufactured from this sintered body has a large capacity and good withstand voltage characteristics.Type: GrantFiled: July 8, 2002Date of Patent: December 2, 2003Assignee: Showa Denko Kabushiki KaishaInventors: Kazumi Naito, Atsushi Shimojima
-
Patent number: 6607850Abstract: Chain parts and other steel articles are provided with hard, wear-resistant carbide coatings by tumbling them in a heated retort with a particulate mix which includes a source of vanadium and/or niobium. The steel substrate comprises a steel having at least 0.2% carbon, preferably 0.7-1.2%. Where the chromium content of the steel is 4-12%, preferably 4-8%, the chemical deposition process includes drawing a small amount of chromium from the steel substrate into the vanadium or niobium carbide coating, where it is distributed substantially homogeneously, helping to provide adhesion strength to the coating.Type: GrantFiled: October 28, 2002Date of Patent: August 19, 2003Assignee: BorgWarner, Inc.Inventors: Yumin Wang, Yoshito Hanayama, Doug Fornell, Naosumi Tada, Kunihiko Mishima
-
Patent number: 6547846Abstract: The invention relates to a steel with a high wear resistance, high hardness and good notched bar impact strength, useful for the manufacture of products, in the use of which at least some of the features are desirable, preferably for the manufacture of tools intended to be used at temperatures up to at least 500 ° C. The steel is produced powder-metallurgically and consists in percent by weight essentially of 0.55-0.65 C, 0.7-1.5 Si, 0.1-1.0 Mn, 3.5-4.5 Cr, 1.5-2.5 Mo, 1.5-2.5 W, 1.2-1.8 V, 0-0.2 Nb, balance iron and impurities in normal amounts. After hardening and tempering the steel contains 1.5-2.5 percent by volume of MC carbides, in which M consists essentially only of vanadium, the carbides being evenly distributed in the steel matrix. The invention also relates to use of the steel, manufacture and products manufactured from the steel.Type: GrantFiled: April 4, 2001Date of Patent: April 15, 2003Assignee: Erasteel Kloster AktiebolagInventor: Leif Westin
-
Patent number: 6521013Abstract: A niobium sintered body for a capacitor, which exhibits an LC value of not larger than 300 &mgr;A/g as measured after an electrolytic oxide film is formed thereon. The sintered body preferably exhibits a product (CV) [i.e., a product of capacity (C) with electrolysis voltage (V)] of at least 40,000 &mgr;F·V/g. The sintered body is produced by sintering a niobium powder containing at least one niobium compound selected from niobium nitride, niobium carbide and niobium boride. A capacitor manufactured from the sintered body has a large capacity per unit weight and good leak current characteristics. Especially, a sintered body made of a niobium powder having a large average degree of roundness has a relatively large porosity and a good packed density, and a capacitor manufactured from this sintered body has a large capacity and good withstand voltage characteristics.Type: GrantFiled: February 5, 2001Date of Patent: February 18, 2003Assignee: Showa Denko Kabushiki KaishaInventors: Kazumi Naito, Atsushi Shimojima
-
Publication number: 20020194954Abstract: A niobium sintered body for a capacitor, which exhibits an LC value of not larger than 300 &mgr;A/g as measured after an electrolytic oxide film is formed thereon. The sintered body preferably exhibits a product (CV) [i.e., a product of capacity (C) with electrolysis voltage (V)] of at least 40,000 &mgr;F·V/g. The sintered body is produced by sintering a niobium powder containing at least one niobium compound selected from niobium nitride, niobium carbide and niobium boride. A capacitor manufactured from the sintered body has a large capacity per unit weight and good leak current characteristics. Especially, a sintered body made of a niobium powder having a large average degree of roundness has a relatively large porosity and a good packed density, and a capacitor manufactured from this sintered body has a large capacity and good withstand voltage characteristics.Type: ApplicationFiled: July 8, 2002Publication date: December 26, 2002Applicant: SHOWA DENKO K.K.Inventors: Kazumi Naito, Atsushi Shimojima
-
Patent number: 6423111Abstract: A ball for a ball-point pen is provided comprising cemented carbide of WC—Cr3C2—Co where VC is contained as a solid solution in the Cr3C2—CO phase which is a binder of WC particles and wherein the mean diameter of the WC particles is in the range of from about 0.3 to about 0.5 &mgr;m. In one embodiment of the invention, a portion of the Cr3C2—VC—CO phase exposed on the surface of the ball comprises a plurality of concave recesses.Type: GrantFiled: April 11, 2001Date of Patent: July 23, 2002Assignee: Tsubaki Nakashima Co., Ltd.Inventors: Kazuyuki Nishikita, Hideji Yoshida
-
Patent number: 6387149Abstract: A metal porous body having a skeleton which has a foam structure, composed of an alloy composed mainly of Fe and Cr and includes a Cr carbide and/or FeCr carbide uniformly dispersed therein. The metal porous bodies are obtained by preparing a slurry mainly composed of an Fe oxide powder of average particle not more than 5 &mgr;m, at least one powder selected from among metallic Cr, Cr alloy and Cr oxide powders, thermosetting resin and a diluent; applying this slurry onto a foamed resin core body; then drying, and then forming a metal porous body by firing in a non-oxidizing atmosphere, including a heat-treatment at 950 to 1350° C. The metal porous bodies thus obtained have excellent heat resistance, corrosion resistance and strength and are useful as electrode base plates, catalyst supports and filter materials, and furthermore, as metallic composite materials.Type: GrantFiled: June 26, 2000Date of Patent: May 14, 2002Assignee: Sumitomo Electric Industries, Ltd.Inventors: Keizo Harada, Kenichi Watanabe
-
Patent number: 6387552Abstract: A TiCN-based cermet comprises 5-25 weight % of a binder phase mainly composed of Co and/or Ni, the balance being substantially a hard phase and inevitable impurities, the hard phase being mainly composed of carbide, nitride and/or carbonitride and containing at least Ti and W, the cermet having a cross-section microstructure in which the number of Ti-rich particles having an area of 0.02 &mgr;m2 or more is 1000 or less per a unit area of 1000 &mgr;m2.Type: GrantFiled: September 21, 2000Date of Patent: May 14, 2002Assignee: Hitachi Tool Engineering, Ltd.Inventors: Yusuke Iyori, Yuichi Nakahara, Yoshio Kimura
-
Patent number: 6248149Abstract: A hardfacing composition for an earth-boring bit has a quantity macrocrystalline tungsten carbide particles and a quantity of spherical cast tungsten carbide pellets. The particles and pellets are contained within a metal matrix which forms the balance of the composition.Type: GrantFiled: May 11, 1999Date of Patent: June 19, 2001Assignee: Baker Hughes IncorporatedInventors: Alan J. Massey, James L. Overstreet
-
Patent number: 6228484Abstract: A composite body of a microwave sintered composition of a cermet or hard metal as a modified surface layer which can promote the microwave sintering and can be of a thickness of 0.01 to 1 mm with a density gradually decreasingly inwardly or a thickness up to 1 mm and having locally distributed compacts therein or which can be a layer of a thickness of 1 to 10 mm of a substantially pure metal or which can have a binder metal removed to a depth of about half the grain thickness of a hard material such as WC.Type: GrantFiled: May 26, 1999Date of Patent: May 8, 2001Assignee: Widia GmbHInventors: Monika Willert-Porada, Thorsten Gerdes, Klaus Dreyer, Klaus Rödiger, Udo König
-
Patent number: 6214079Abstract: A method for fabricating a triphasic composite such as a WC/Co/diamond composite with a high volume fraction of diamond in a WC/Co matrix. The method involves sintering of a WC/Co powder compact to develop a porous preform, which displays some rigidity and strength, infiltrating the porous preform with a controlled distribution of carbon, and high pressure/high temperature treatment of the carbon-containing WC/Co preform to transform the carbon to diamond. The distribution of diamond in the composite can be functionally graded to provide a WC/Co core and a diamond-enriched surface, wherein all three phases form an interconnected structure in three dimensions. Such a tricontinuous structure combines high strength and toughness with superior wear resistance, making it attractive for applications in machine tools and drill bits.Type: GrantFiled: December 21, 1999Date of Patent: April 10, 2001Assignee: Rutgers, The State UniversityInventors: Bernard H. Kear, Rajendra K. Sadangi, Larry E. McCandlish, Oleg Voronov