The Polynucleotide Confers Pathogen Or Pest Resistance Patents (Class 800/279)
-
Patent number: 12084669Abstract: This disclosure concerns synthetic polynucleotides encoding a polypeptide of interest that are particularly well-suited for expression in target plants.Type: GrantFiled: August 8, 2022Date of Patent: September 10, 2024Assignee: Corteva AgriSciences LLCInventors: Aaron Woosley, Sarah Worden
-
Patent number: 12077763Abstract: Disclosed herein are compositions and methods that involve recombinant polynucleotide molecules, such as single or double-stranded DNA or RNA molecules, also referred to “triggers”, that are useful for controlling or preventing E. necator infection, or recombinant DNA constructs for making such RNA molecules or for making transgenic grape plants resistant to E. necator infection. In some embodiments, polynucleotide triggers are provided as topically applied agents for controlling or preventing infection of a plant by E. necator.Type: GrantFiled: March 8, 2022Date of Patent: September 3, 2024Assignees: GREENLIGHT BIOSCIENCES, INC., UNITED STATES, AS REPRESENTED BY THE SECRETARY OF AGRICULTUREInventors: Adriana Puralewski, Christopher Lawrence, Upendra Kumar Devisetty, Sambit Kumar Mishra, Krishnakumar Sridharan, Lance E. Cadle Davidson, Anna N. Underhill, Yufeng Fang, Wimalanathan Kokulapalan
-
Patent number: 12037584Abstract: An isolated polynucleotide includes: (a) a polynucleotide sequence as shown in SEQ ID NO: 1; or (b) a polynucleotide sequence comprising at least 15 or 17 or 19 or 21 contiguous nucleotides of SEQ ID NO: 1, wherein the ingestion, by Coleoptera insect pests, of a double-stranded RNA comprising at least one strand complementary to the polynucleotide sequence inhibits the growth of the Coleoptera insect pests; or (c) any one of the polynucleotide sequence as shown in SEQ ID NO: 3 to SEQ ID NO: 6; or (d) a polynucleotide sequence hybridized with the polynucleotide sequence defined in (a), (b) or (c) mentioned above under stringent conditions. Multiple target sequences of the target gene c46312 control the Coleoptera insect pest Monolepta hieroglyphica.Type: GrantFiled: May 29, 2019Date of Patent: July 16, 2024Assignee: BEIJING DABEINONG BIOTECHNOLOGY CO., LTD.Inventors: Aihong Zhang, Derong Ding, Qing Tao, Xiaojiao Li
-
Patent number: 12012605Abstract: Compositions and methods for obtaining plant cells with modified Ht1 nucleotide sequences, modified NLB18 sequences, or both, are provided herein. The methods involve introducing double-strand breaks into the maize genome in an endogenous Ht1 encoding sequence, an endogenous NLB18 encoding sequence, or both, to modify the genomic sequence in order to enhance northern leaf blight resistance of a plant produced from the plant cell. Further provided are methods that introduce resistant alleles of Ht1 and/or NLB18 into specific sites in the genome. Plants produced by the plant cells, and seeds produced from the plants are also included. Guide polynucleotides are also provided for the use of the CRISPR-Cas system in inducing double strand breaks.Type: GrantFiled: October 10, 2017Date of Patent: June 18, 2024Assignee: PIONEER HI-BRED INTERNATIONAL, INC.Inventors: Huirong Gao, Bailin Li, Robert B Meeley, Leandro Daniel Perugini, Girma M Tabor
-
Patent number: 11974574Abstract: Provided herein are methods and compositions for modulating the fitness of a host invertebrate (e.g., insect, mollusk, or nematode) by altering interactions between the host and one or more micoorganisms resident in the host. The invention features a composition including a modulating agent (e.g., a polypeptide, nucleic acid, small molecule, or combinations thereof) that can induce changes in the host's microbiota in a manner that modulates (e.g., increases or decreases) host fitness. The modulating agent described herein may modulate the fitness of a variety of invertebrates that are important for agriculture, commerce, and/or public health.Type: GrantFiled: February 23, 2018Date of Patent: May 7, 2024Assignee: Flagship Pioneering Innovations V, Inc.Inventors: Ignacio Martinez, Zachary Garo Armen, Barry Andrew Martin, Maier Steve Avendano Amado
-
Patent number: 11946058Abstract: Herein is disclosed synthetic oligonucleotides comprising 2?F-ANA nucleosides that can be utilized to control plant-chewing and phloem-feeding insects, bacteria present in such insects, and bacteria present in plants. The novel approaches and materials provided herein allow for reduction of pesticide and antibiotic use without the need to create genetically modified plants.Type: GrantFiled: January 5, 2022Date of Patent: April 2, 2024Assignees: The United States of America, as represented by the Secretary of Agriculture, AUM LifeTech, Inc.Inventors: Wayne B. Hunter, Veenu Aishwarya
-
Patent number: 11945843Abstract: Disclosed are double stranded RNA molecules that are toxic to coleopteran insects. In particular, interfering RNA molecules capable of interfering with pest target genes and that are toxic to the target pest are provided. Further, methods of making and using the interfering RNA, for example in transgenic plants or as the active ingredient in a composition, to confer protection from insect damage are disclosed.Type: GrantFiled: August 1, 2017Date of Patent: April 2, 2024Assignee: SYNGENTA PARTICIPATIONS AGInventors: Kevin L. Donohue, Yann Naudet, Pascale Feldmann, Lies Degrave, Isabelle Maillet
-
Patent number: 11939588Abstract: Described herein are modified plants, plant cells, and plant seeds that have at least one mutant loss-of-function JAZ gene and at least one loss-of-function cdk8 gene. Such plants are highly resistant to pests and environmental stress and have restored growth and increased seed yield compared to plant lines with a jazD genetic background.Type: GrantFiled: October 15, 2020Date of Patent: March 26, 2024Assignee: Board of Trustees of Michigan State UniversityInventors: Gregg A. Howe, Qiang Guo
-
Patent number: 11932863Abstract: The invention provides recombinant DNA molecules and constructs, as well as their nucleotide sequences, useful for modulating gene expression in plants. The invention also provides transgenic plants, plant cells, plant parts, and seeds comprising the recombinant DNA molecules operably linked to heterologous transcribable DNA molecules, as are methods of their use.Type: GrantFiled: January 11, 2021Date of Patent: March 19, 2024Assignee: Monsanto Technology LLCInventors: Charles L Armstrong, Andrei Y. Kouranov, Brent A. O'Brien
-
Patent number: 11851669Abstract: The present disclosure provides maize plants exhibiting broad spectrum resistance to Northern Leaf Blight (NLB). Maize plants with multiple NLB resistance loci located in cis linkage on chromosome 8 are provided. Compositions, including novel polymorphic markers and methods for producing, breeding, identifying, and selecting plants or germplasm with a disease resistance phenotype are further provided.Type: GrantFiled: October 12, 2020Date of Patent: December 26, 2023Assignee: SEMINIS VEGETABLE SEEDS, INC.Inventors: Bart Willem Brugmans, Jonathan Tyler Eckard, David Elon Fisher, Tim J. Gustafson, Chad Kramer
-
Patent number: 11781151Abstract: The disclosure provides nucleic acids, and variants and fragments thereof, derived from strains of Bacillus thuringiensis encoding variant polypeptides having increased pesticidal activity against insect pests, including Lepidoptera and Coleopteran. Particular embodiments of the disclosure provide isolated nucleic acids encoding pesticidal proteins, pesticidal compositions, DNA constructs, and transformed microorganisms and plants comprising a nucleic acid of the embodiments. These compositions find use in methods for controlling pests, especially plant pests.Type: GrantFiled: April 12, 2017Date of Patent: October 10, 2023Inventors: Caroline Horn, Sabina Lau, Michi Izumi Willcoxon, Takashi Yamamoto, Yi Zheng
-
Patent number: 11697820Abstract: Compositions and methods and for enhancing the resistance of plants to a plant disease caused by a Phytophthora species are provided. The compositions comprise nucleic acid molecules encoding resistance (R) gene products and variants thereof and plants, seeds, and plant cells comprising such nucleic acid molecules. The methods for enhancing the resistance of a plant to a plant disease caused by a Phytophthora species comprise introducing a nucleic acid molecule encoding an R gene product into a plant cell. Additionally provided are methods for using the plants in agriculture to limit plant disease.Type: GrantFiled: May 6, 2016Date of Patent: July 11, 2023Assignee: Two Blades FoundationInventors: Kamil Witek, Jonathan D. G. Jones
-
Patent number: 11640642Abstract: The present application provides a method and system for dynamically predicting a deoxynivalenol content of wheat at harvest, including: on the basis of historical data, screening out by particle swarm optimization algorithm combined factors suitable for establishing a prediction model, and establishing the prediction model by using the combined factors; on the basis of data of a current year, predicting a second flowering date and a second harvest date of wheat in the current year by an agricultural model; then obtaining a weather forecast on the basis of the second flowering date and the second harvest date, and combining the weather forecast and geographic data into correlated factors; and finally predicting the deoxynivalenol content of wheat at harvest by means of the prediction model and the correlated factors.Type: GrantFiled: June 22, 2022Date of Patent: May 2, 2023Assignee: ACADEMY OF NATIONAL FOOD AND STRATEGIC RESERVES ADMINISTRATIONInventors: Songxue Wang, Jin Ye, Sen Li, Di Cai, Bingjie Li
-
Patent number: 11540520Abstract: Compositions having pesticidal activity and methods for their use are provided. Compositions include isolated and recombinant polypeptide sequences having pesticidal activity, recombinant and synthetic nucleic acid molecules encoding the pesticidal polypeptides, DNA constructs comprising the nucleic acid molecules, vectors comprising the nucleic acid molecules, host cells comprising the vectors, and antibodies to the pesticidal polypeptides. Nucleotide sequences encoding the polypeptides provided herein can be used in DNA constructs or expression cassettes for transformation and expression in organisms of interest, including microorganisms and plants. The compositions and methods provided herein are useful for the production of organisms with enhanced pest resistance or tolerance. Transgenic plants and seeds comprising a nucleotide sequence that encodes a pesticidal protein of the invention are also provided. Such plants are resistant to insects and other pests.Type: GrantFiled: September 1, 2020Date of Patent: January 3, 2023Assignee: AGBIOME, INC.Inventors: Jessica Parks, Kira Bulazel Roberts, Rebecca E. Thayer
-
Patent number: 11535862Abstract: The invention provides nucleic acids, polypeptides, transgenic plants, compositions and methods for conferring pesticidal activity (e.g., insecticidal activity) to bacteria, plants, plant cells, tissues and seeds. Nucleic acids encoding the insecticidal proteins can be used to transform prokaryotic and eukaryotic organisms to express the insecticidal proteins. The recombinant organisms or compositions containing the recombinant organisms or insecticidal proteins or in combination with an appropriate agricultural carrier can be used to control an insect pest in various environments.Type: GrantFiled: November 29, 2017Date of Patent: December 27, 2022Assignee: Syngenta Participations AGInventor: Hyunsook Sarah Chae
-
Patent number: 11484030Abstract: The invention provides nucleic acids, polypeptides, transgenic plants, compositions and methods for conferring pesticidal activity (e.g., insecticidal activity) to bacteria, plants, plant cells, tissues and seeds. Nucleic acids encoding the insecticidal proteins can be used to transform prokaryotic and eukaryotic organisms, including plants, to express the insecticidal proteins. The recombinant organisms and compositions containing the recombinant organisms or insecticidal proteins can be used to control a pest (e.g., an insect).Type: GrantFiled: October 1, 2018Date of Patent: November 1, 2022Assignee: Syngenta Participations AGInventors: Christopher Fleming, Richard Sessler
-
Patent number: 11479787Abstract: The present invention discloses methods for prevention and prophylactic treatment of plant diseases by application of glyphosate to a plant in need of treatment. In certain embodiments, soybean plants in need of treatment at vegetative and reproductive growth stages prior to or subsequent to infection, may be treated with glyphosate in order to prevent infection or suppress disease development, symptomatology, and yield loss. Application of a fungicide (e.g. a strobilurin fungicide such as pyraclostrobin or picoxystrobin) together with glyphosate, is also contemplated. Soybean diseases that may be treated in this manner include Soybean Sudden Death, Brown Stem Rot, Stem Canker, and Charcoal Rot, among others.Type: GrantFiled: December 30, 2019Date of Patent: October 25, 2022Assignee: MONSANTO TECHNOLOGY, LLCInventors: Frank C. Kohn, Michael S. South
-
Patent number: 11441151Abstract: This disclosure concerns synthetic polynucleotides encoding a polypeptide of interest that are particularly well-suited for expression in target plants.Type: GrantFiled: September 15, 2020Date of Patent: September 13, 2022Assignee: Dow AgroSciences LLCInventors: Aaron Woosley, Sarah Worden
-
Patent number: 11414672Abstract: The invention provides corn event MON 87411, and plants, plant cells, seeds, plant parts, and commodity products comprising event MON 87411. The invention also provides polynucleotides specific for event MON 87411 and plants, plant cells, seeds, plant parts, and commodity products comprising polynucleotides specific for event MON 87411. The invention also provides methods related to event MON 87411.Type: GrantFiled: May 6, 2019Date of Patent: August 16, 2022Assignee: Monsanto Technology LLCInventors: Wen C. Burns, Catherine A. Chay, Cheryl L. Cloninger, Mingqi Deng, Stanislaw Flasinski, Kunsheng Wu
-
Patent number: 11408003Abstract: The invention provides compositions and methods for reducing expression of a target gene in a cell, involving contacting a cell with an isolated double stranded nucleic acid (dsNA) in an amount effective to reduce expression of a target gene in a cell. The dsNAs of the invention possess a single stranded extension (in most embodiments, the single stranded extension comprises at least one modified nucleotide and/or phosphate back bone modification). Such single stranded extended Dicer-substrate siRNAs (DsiRNAs) were demonstrated to be effective RNA inhibitory agents compared to corresponding double stranded DsiRNAs.Type: GrantFiled: August 20, 2021Date of Patent: August 9, 2022Assignee: Dicerna Pharmaceuticals, Inc.Inventor: Bob Dale Brown
-
Patent number: 11382291Abstract: Corn plants exhibiting broad-spectrum resistance to Exserohilum turcicum are provided, together with methods of producing, identifying, or selecting plants or germplasm with a Exserohilum turcicum resistance phenotype. Such plants include sweet corn plants as well as agronomically elite dent corn plants comprising introgressed genomic regions conferring disease resistance. Compositions, including novel polymorphic markers and methods for producing, breeding, identifying, and selecting plants or germplasm with a disease resistance phenotype are further provided.Type: GrantFiled: December 19, 2019Date of Patent: July 12, 2022Assignee: SEMINIS VEGETABLE SEEDS, INCInventors: Jonathan Tyler Eckard, David Elon Fisher, Tim J. Gustafson
-
Patent number: 11365423Abstract: Disclosed is a method for obtaining multileaflet Medicago sativa materials by means of MsPALM1 artificial site-directed mutants. The method comprises: selecting a target site from an exon region of a compound leaf developmental regulatory gene MsPALM1 of Medicago sativa and constructing a plant CRISPR/Cas9 editing recombinant vector MsCRISPR/Cas9::PALM1 and introducing the vector into Medicago sativa cells and regenerating into plants, cutting and repairing to cause a loss-of-function mutation in the MsPALM1 gene of Medicago sativa cells, and then screening the mutant plants by restriction endonuclease digestion and/or targeted deep sequencing of the target sites of the regenerated plants to obtain lines carrying four MsPALM1 allelic genes with simultaneous loss of function mutation. After phenotypic identification, it was confirmed that the compound leaves of the regenerated plants changed from three leaflets to five leaflets.Type: GrantFiled: January 5, 2021Date of Patent: June 21, 2022Assignee: GUANGDONG SANJIE FORAGE BIOTECHNOLOGY CO., LTDInventors: Haitao Chen, Wen Wang, Xiongping Xie, Qiang Qiu, Zhanhuan Shang, Kexian Su, Hui He
-
Patent number: 11365421Abstract: Provided are isolated polynucleotides comprising a nucleic acid sequence encoding a polypeptide at least 80% identical to SEQ ID NO: 422, 362-421, 423-601, 2429-4085 and 4086, such as a polynucleotide which is at least 80% identical to SEQ ID NO: 260, 1-259, 261-361, 602-2427 and 2428, nucleic acid constructs comprising same, plant cells comprising same, transgenic plants expressing same, and methods of generating thereof for increasing the yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality, nitrogen use efficiency and/or abiotic stress tolerance of a plant.Type: GrantFiled: August 4, 2020Date of Patent: June 21, 2022Assignee: Evogene Ltd.Inventors: Noa Matarasso, Hagai Karchi
-
Patent number: 11286495Abstract: Provided are methods of increasing nitrogen use efficiency, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality and/or abiotic stress tolerance of a plant by expressing within the plant an exogenous polynucleotide comprising a nucleic acid sequence at least 80% identical to SEQ ID NO:1-467, 785-3047; or an exogenous polynucleotide encoding a polypeptide at least 80% identical to SEQ ID NO:468-784, 3048-4333, 4335-4682. Also provided isolated polynucleotide comprising a nucleic acid sequence selected from the group consisting of SEQ ID NOs:1-467, 785-3047, which can be used to increase nitrogen use efficiency, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality and/or abiotic stress tolerance of a plant.Type: GrantFiled: July 23, 2020Date of Patent: March 29, 2022Assignee: Evogene Ltd.Inventors: Basia Judith Vinocur, Alex Diber, Hagai Karchi
-
Patent number: 11253626Abstract: Provided is a use for a peptide in surface-treating a medical device or medical material to be used in contact with blood, with which it is possible to obtain a medical device or medical material that can achieve highly efficient vascular endothelialization through the use of a peptide uniquely binding to vascular endothelial cells. Also provided are: a peptide suitable for use in said surface treatment; a method for producing a medical device or medical material surfaced-treated with said peptide and to be used in contact with blood; and a surface treatment agent including said peptide, said agent to be used in surface-treating a medical device or medical material to be used in contact with blood. In the present invention, a medical device or medical material is surface-treated using a peptide that includes any one of ten specific amino acid sequences and uniquely binds to the surface of endothelial progenitor cells.Type: GrantFiled: January 30, 2018Date of Patent: February 22, 2022Assignees: NATIONAL CEREBRAL AND CARDIOVASCULAR CENTER, JMS CO., LTD.Inventors: Tetsuji Yamaoka, Maria Chiara Munisso, Atsushi Mahara, Takashi Yamamoto
-
Patent number: 11254950Abstract: Nucleotide sequences are disclosed encoding novel, insecticidal TIC4747 and related proteins exhibiting Hemipteran and Lepidopteran inhibitory activity, as well as fragments thereof. Particular embodiments provide compositions and transformed plants, plant parts, and seeds containing a polynucleotide construct encoding one or more of the toxin proteins within the TIC4747-related protein toxin class.Type: GrantFiled: February 28, 2020Date of Patent: February 22, 2022Assignee: Monsanto Technology LLCInventors: David J. Bowen, Catherine A. Chay, Arlene R. Howe, Jennifer L. Lutke, Eric Van Fleet
-
Patent number: 11254945Abstract: Herein is disclosed synthetic oligonucleotides comprising 2?F-ANA nucleosides that can be utilized to control plant-chewing and phloem-feeding insects, bacteria present in such insects, and bacteria present in plants. The novel approaches and materials provided herein allow for reduction of pesticide and antibiotic use without the need to create genetically modified plants.Type: GrantFiled: July 3, 2019Date of Patent: February 22, 2022Assignees: The United States of America, as represented by The Secretary of Agriculture, AUM Lifetech, Inc.Inventors: Wayne B. Hunter, Veenu Aishwarya
-
Patent number: 11225672Abstract: A pesticidal protein class exhibiting toxic activity against Coleopteran and Lepidopteran pest species is disclosed, and includes, but is not limited to, TIC7040, TIC7042, TIC7381, TIC7382, TIC7383, TIC7386, TIC7388, and TIC7389. DNA constructs are provided which contain a recombinant nucleic acid sequence encoding the TIC7040, TIC7042, TIC7381, TIC7382, TIC7383, TIC7386, TIC7388, and TIC7389 pesticidal proteins. Transgenic plants, plant cells, seed, and plant parts resistant to Coleopteran and Lepidopteran infestation are provided which contain recombinant nucleic acid sequences encoding the TIC7040, TIC7042, TIC7381, TIC7382, TIC7383, TIC7386, TIC7388, and TIC7389 pesticidal proteins of the present invention.Type: GrantFiled: October 21, 2019Date of Patent: January 18, 2022Assignee: Monsanto Technology LLCInventors: David J. Bowen, Catherine A. Chay, Todd A. Ciche, Stanislaw Flasinski, Arlene R. Howe, Krishnakumar Sridharan
-
Patent number: 11198888Abstract: Insecticidal proteins exhibiting toxic activity against Coleopteran and Lepidopteran pest species are disclosed, and include, but are not limited to, TIC3668, TIC3669, TIC3670, TIC4076, TIC4078, TIC4260, TIC4346, TIC4826, TIC4861, TIC4862, TIC4863, and TIC-3668-type proteins. DNA molecules and constructs are provided which contain a polynucleotide sequence encoding one or more of the disclosed TIC3668-type proteins. Transgenic plants, plant cells, seed, and plant parts resistant to Lepidopteran and Coleopteran infestation are provided which contain polynucleotide sequences encoding the insecticidal proteins of the present invention. Methods for detecting the presence of the polynucleotides or the proteins of the present invention in a biological sample, and methods of controlling Coleopteran and Lepidopteran species pests using any of the TIC3668-type insecticidal proteins are also provided.Type: GrantFiled: November 14, 2019Date of Patent: December 14, 2021Assignee: Monsanto Technology LLCInventors: Gregory J. Bean, David J. Bowen, Catherine A. Chay, Arlene R. Howe, Jason S. Milligan, Yong Yin
-
Patent number: 11198887Abstract: The invention provides a transgenic corn event MON 95379, plants, plant cells, seeds, plant parts, progeny plants, and commodity products comprising event MON 95379. The invention also provides polynucleotides specific for event MON 95379 and methods for using and detecting event MON 95379 as well as plants, plant cells, seeds, plant parts, progeny plants, and commodity products comprising event MON 95379.Type: GrantFiled: July 29, 2019Date of Patent: December 14, 2021Assignee: Monsanto Technology LLCInventors: Heather M. Anderson, Sarah L. Brown, Renato A. Carvalho, Ancideriton A. Castro, Katherine M. Dunkmann, Adam J. Evans, Stanislaw Flasinski, Cara L. Griffith, Tianxiang Shen, Todd R. Smith, Heidi M. Windler
-
Patent number: 11193138Abstract: Insecticidal proteins exhibiting toxic activity against Coleopteran and Lepidopteran pest species are disclosed, and include, but are not limited to, TIC3668, TIC3669, TIC3670, TIC4076, TIC4078, TIC4260, TIC4346, TIC4826, TIC4861, TIC4862, TIC4863, and TIC-3668-type proteins. DNA molecules and constructs are provided which contain a polynucleotide sequence encoding one or more of the disclosed TIC3668-type proteins. Transgenic plants, plant cells, seed, and plant parts resistant to Lepidopteran and Coleopteran infestation are provided which contain polynucleotide sequences encoding the insecticidal proteins of the present invention. Methods for detecting the presence of the polynucleotides or the proteins of the present invention in a biological sample, and methods of controlling Coleopteran and Lepidopteran species pests using any of the TIC3668-type insecticidal proteins are also provided.Type: GrantFiled: November 14, 2019Date of Patent: December 7, 2021Assignee: Monsanto Technology LLCInventors: Gregory J. Bean, David J. Bowen, Catherine A. Chay, Arlene R. Howe, Jason S. Milligan, Yong Yin
-
Patent number: 11186837Abstract: The present invention provides methods for controlling invertebrate pest infestations, for instance in plants, and related compositions and polynucleotides useful in such methods. More specifically, the present invention provides polynucleotides and methods of use thereof for modifying the expression of genes in an invertebrate pest, for instance through RNA interference.Type: GrantFiled: December 8, 2016Date of Patent: November 30, 2021Assignee: Monsanto Technology LLCInventors: James A. Baum, Lex Evan Flagel, Gerrit Cornelis Segers, James K. Roberts
-
Patent number: 11180795Abstract: Methods for conveying soy cyst nematode (SCN) resistance into non-resistant soybean germplasm are provided. In some embodiments, the methods include introgression SCN resistance into a non-resistant soybean using one or more nucleic acid markers for marker-assisted breeding among soybean lines to be used in a soybean breeding program, wherein the markers are linked to and/or associated with SCN resistance. Also provided are single nucleotide polymorphisms (SNPs) associated with resistance to SCN. Soybean plants and seeds produced by any of the disclosed methods are provided.Type: GrantFiled: June 2, 2016Date of Patent: November 23, 2021Assignee: Syngenta Participations AGInventors: Ainong Shi, Becky Welsh Breitinger, Ju-Kyung Yu, Azhaguvel Perumal
-
Patent number: 11161914Abstract: The present invention provides a human-derived molecularly modified insecticidal protein, and a preparation method and application thereof, and belongs to the field of genetic engineering and biological control. The present invention provides a human-derived molecularly modified insecticidal protein, and the amino acid sequence of the insecticidal protein CCL-CCL_scFv is shown as SEQ ID No. 1. The insecticidal protein CCL-CCL_scFv shows significantly higher affinity with midgut BBMV of Plutella xylostella than Cry1Ab toxin, competes with Cry1Ab and Cry1Ac toxins for binding the midgut BBMV of Plutella xylostella, and is a mimic of Cry1Ab and Cry1Ac toxins. Through Plutella xylostella indoor insecticidal biological activity assay, the insecticidal protein shows a good insecticidal effect, and can effectively replace Cry1Ac or Cry1Ab toxin for biological control of insect pest.Type: GrantFiled: August 8, 2019Date of Patent: November 2, 2021Assignee: Jiangsu Academy of Agricultural SciencesInventors: Xianjin Liu, Yajing Xie, Chongxin Xu, Xiao Zhang, Meijing Gao, Xin He, Yuan Liu, Cunzheng Zhang
-
Patent number: 11130964Abstract: Insecticidal proteins exhibiting toxic activity against Coleopteran and Lepidopteran pest species are disclosed, and include, but are not limited to, TIC3668, TIC3669, TIC3670, TIC4076, TIC4078, TIC4260, TIC4346, TIC4826, TIC4861, TIC4862, TIC4863, TIC11239, TIC11243, TIC11256, TIC4544, TIC4545, TIC6871, TIC7429, TIC7497, TIC7511, TIC7513, TIC7518, TIC7524, TIC7526, TIC7528, TIC7535 and TIC-3668-type proteins. DNA molecules and constructs are provided which contain a polynucleotide sequence encoding one or more of the disclosed TIC3668-type proteins. Transgenic plants, plant cells, seed, and plant parts resistant to Lepidopteran and Coleopteran infestation are provided which contain polynucleotide sequences encoding the insecticidal proteins of the present invention.Type: GrantFiled: November 30, 2018Date of Patent: September 28, 2021Assignee: Monsanto Technology LLCInventors: Gregory J. Bean, David J. Bowen, Catherine A. Chay, Arlene R. Howe, Jason S. Milligan, Yong Yin
-
Patent number: 11124802Abstract: Methods are provided for modulating an abiotic stress response to drought in a plant, for example by introducing a heritable change to the plant, which alters the expression in the plant of an endogenous or exogenous protein that is a member of a particular gene family, the Kanghan genes. Similarly, plants and plants cells having such heritable changes are provided.Type: GrantFiled: September 14, 2018Date of Patent: September 21, 2021Assignee: National Research Council of CanadaInventors: Jitao Zou, Wenyun Shen, Peng Gao
-
Patent number: 11124792Abstract: Disclosed herein are polynucleotides, compositions, and methods for controlling insect pests, especially flea beetles, such as Phyllotreta spp. and Psylliodes spp., particularly in plants. More specifically, polynucleotides such as double-stranded RNA triggers and methods of use thereof for modifying the expression of genes in flea beetles.Type: GrantFiled: June 27, 2019Date of Patent: September 21, 2021Assignee: MONSANTO TECHNOLOGY LLCInventors: Michael John Crawford, Brian Donovan Eads
-
Patent number: 11118189Abstract: Described are methods and materials for the genetic modification of plants by specific gene targeting and precise editing of nucleic acid sequences in a plant. The methods and materials provided herein enable one to edit the plant genome by design to control the expression of endogenous genes and/or control the transmission and expression of transgenic traits. Provided are also methods of producing plants having a desirable agronomic trait by crossing a transgenic plant expressing a gRNA with a plant expressing a Cas enzyme, and selecting a progeny plant having the desirable agronomic trait or a seed thereof.Type: GrantFiled: December 2, 2016Date of Patent: September 14, 2021Assignee: Ceres, Inc.Inventors: Roger I. Pennell, Richard Hamilton, Delin Liang
-
Patent number: 11091772Abstract: Compositions and methods for conferring pesticidal activity to bacteria, plants, plant cells, tissues and seeds are provided. Compositions comprising a coding sequence for a toxin polypeptide are provided. The coding sequences can be used in DNA constructs or expression cassettes for transformation and expression in plants and bacteria. Compositions also comprise transformed bacteria, plants, plant cells, tissues, and seeds. In particular, isolated toxin nucleic acid molecules are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed, and antibodies specifically binding to those amino acid sequences. In particular, the present invention provides for isolated nucleic acid molecules comprising nucleotide sequences encoding the amino acid sequence shown in SEQ ID NO:2, or the nucleotide sequence set forth in SEQ ID NO: 1, as well as variants and fragments thereof.Type: GrantFiled: November 22, 2017Date of Patent: August 17, 2021Assignee: BASF Agricultural Solutions Seed US LLCInventors: James Doroghazi, Duane Lehtinen, Elyse Ann Rodgers-Vieira, Jongmin Baek
-
Patent number: 11091520Abstract: The present invention is directed to the vegetative insecticidal proteins (Vips) modified to comprise heterologous bacterial carbohydrate binding modules and the methods of use thereof. Expression of modified proteins resulted in variations to activity against lepidopteran pest species of agricultural importance such as Corn earworm and Fall armyworm conveying broad spectrum insect control.Type: GrantFiled: August 7, 2019Date of Patent: August 17, 2021Assignee: Syngenta Participations AGInventor: Joseph M. Watts
-
Patent number: 11085051Abstract: The present invention relates to methods of increasing pathogen resistance in a plant or a part of a plant. In one aspect, the method comprises contacting the plant or the part of the plant with a double-stranded RNA or a small RNA duplex that targets a fungal dicer-like (DCL) gene, wherein the plant or the part of the plant has increased resistance to a fungal pathogen compared to a control plant or control plant part that has not been contacted with the double-stranded RNA or small RNA duplex.Type: GrantFiled: April 27, 2016Date of Patent: August 10, 2021Assignee: The Regents of the University of CaliforniaInventor: Hailing Jin
-
Patent number: 11085052Abstract: Provided herein are plants that reduce growth of a fungal pathogen, increase resistance of the plant to a fungal pathogen, or a combination thereof. The plant includes a polynucleotide that reduces expression of a coding region present in a fungal pathogen, such as Sclerotinia sclerotiorum or Botrytis cinerea. The polynucleotide can be present on the surface of the plant, expressed by a plant, or a combination thereof. Also provided are methods of making and methods of using the plants.Type: GrantFiled: May 3, 2017Date of Patent: August 10, 2021Assignee: University of ManitobaInventors: Steve Whyard, Mark Belmonte
-
Patent number: 11046974Abstract: The disclosure presents a platform for discovering novel insecticidal proteins from highly heterogeneous environmental sources. The methodology utilizes metagenomic enrichment procedures and unique genetic amplification techniques, which enables access to a broad class of unknown microbial diversity and their resultant proteome. The disclosed insecticidal protein discovery platform (IPDP) can be computationally driven and is able to integrate molecular biology, automation, and advanced machine learning protocols. The platform will enable researchers to rapidly and accurately access the vast repertoire of untapped insecticidal proteins produced by uncharacterized and complex microbial environmental samples. Also presented herein are a group of newly discovered pore-forming toxins (PFT) from a rare class of insecticidal proteins, which were discovered utilizing the insecticidal protein discovery platform.Type: GrantFiled: September 1, 2020Date of Patent: June 29, 2021Assignee: Zymergen Inc.Inventors: William W. Hwang, Jeffrey Kim, Oliver Liu, Jennifer Shock
-
Patent number: 11046972Abstract: This disclosure concerns nucleic acid molecules and methods of use thereof for control of insect pests through RNA interference-mediated inhibition of target coding and transcribed non-coding sequences in insect pests, including coleopteran pests. The disclosure also concerns methods for making transgenic plants that express nucleic acid molecules useful for the control of insect pests, and the plant cells and plants obtained thereby.Type: GrantFiled: May 27, 2016Date of Patent: June 29, 2021Assignees: Dow AgroSciences LLC, Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.Inventors: Kenneth E. Narva, Sarah E. Worden, Meghan Frey, Murugesan Rangasamy, Premchand Gandra, Wendy Lo, Elane Fishilevich, Andreas Vilcinskas, Eileen Knorr
-
Patent number: 11033622Abstract: This disclosure provides peptides which have a strong affinity for the checkpoint receptor “programmed death 1” (PD-1). These peptides block the interaction of PD-1 with its ligand PD-L1 as well as the interaction of CTLA4 with CD86 and can therefore be used for various therapeutic purposes, such as inhibiting the progression of a hyperproliferative disorder, including cancer; treating infectious diseases; enhancing a response to vaccination; treating sepsis; and promoting hair re-pigmentation or lightening of pigmented skin lesions.Type: GrantFiled: May 25, 2018Date of Patent: June 15, 2021Assignee: Leidos, Inc.Inventors: Gabriel M. Gutierrez, Vinayaka Kotraiah, Timothy W. Phares, James Pannucci
-
Patent number: 11028134Abstract: The present invention is directed to the vegetative insecticidal proteins (Vips) modified to comprise heterologous bacterial carbohydrate binding modules and the methods of use thereof. Expression of modified proteins resulted in variations to activity against lepidopteran pest species of agricultural importance such as Corn earworm and Fall armyworm conveying broad spectrum insect control.Type: GrantFiled: August 7, 2019Date of Patent: June 8, 2021Assignee: Syngenta Participations AGInventor: Joseph M. Watts
-
Patent number: 11015207Abstract: Provided are pathogen-resistant plants comprising a heterologous expression cassette, the expression cassette comprising a promoter operably linked to a polynucleotide that is complementary to, or mediates destruction, of a plant immunity suppressing sRNA of a pathogen, wherein the plant is less susceptible to the pathogen compared to a control plant lacking the expression cassette. Methods of making and cultivating pathogen-resistant plants are also provided.Type: GrantFiled: September 24, 2018Date of Patent: May 25, 2021Assignee: The Regents of the University of CaliforniaInventor: Hailing Jin
-
Patent number: 11008371Abstract: The disclosure provides nucleic acids, and variants and fragments thereof, obtained from strains of Bacillus thuringiensis encoding polypeptides having pesticidal activity against insect pests, including Lepidoptera. Particular embodiments of the disclosure provide isolated nucleic acids encoding pesticidal proteins, pesticidal compositions, DNA constructs, and transformed microorganisms and plants comprising a nucleic acid of the embodiments. These compositions find use in methods for controlling pests, especially plant pests.Type: GrantFiled: September 25, 2017Date of Patent: May 18, 2021Inventors: Andre Roger Abad, Andrew Carl Crow, Brad Poland, Jimei Wang
-
Patent number: 10941413Abstract: The present invention relates to a method of increasing resistance against fungal pathogens of the order Pucciniales, preferably the family Phacopsoraceae, in plants and/or plant cells. This is achieved by increasing the expression of a CASAR protein or fragment thereof in a plant, plant part and/or plant cell in comparison to wild type plants, wild type plant parts and/or wild type plant cells. Furthermore, the invention relates to transgenic plants, plant parts, and/or plant cells having an increased resistance against fungal pathogens, in particular, pathogens of the order Pucciniales, preferably the family Phacopsoraceae, and to recombinant expression vectors comprising a sequence that is identical or homologous to a sequence encoding a CASAR protein.Type: GrantFiled: July 13, 2018Date of Patent: March 9, 2021Assignee: BASF PLANT SCIENCE COMPANY GMBHInventors: Holger Schultheiss, Nadine Tresch, Ralf Flachmann
-
Patent number: 10939656Abstract: The invention relates to the novel cotton variety designated 16R228NRB2XF. Provided by the invention are the seeds, plants, plant parts and derivatives of the cotton variety 16R228NRB2XF. Also provided by the invention are methods of using cotton variety 16R228NRB2XF and products derived therefrom. Still further provided by the invention are methods for producing cotton plants by crossing the cotton variety 16R228NRB2XF with itself or another cotton variety and plants and seeds produced by such methods.Type: GrantFiled: December 5, 2018Date of Patent: March 9, 2021Assignee: Monsanto Technology LLCInventors: Vivek Sharma, Robert E. McGowen