Cartesian (x-y-z Arm) Patents (Class 901/16)
  • Patent number: 8121732
    Abstract: A target position detection apparatus for a robot includes: a robot including an arm configured to be freely moved in at least two directions of X and Y axes, the arm having a wrist axis provided at a distal end of the arm and configured to be freely moved in a horizontal direction, and the wrist axis being provided with an end effector; and a control unit adapted for driving a memory to store a teaching point therein and controlling an operation of the robot such that the end effector will be moved toward the teaching point stored in the memory.
    Type: Grant
    Filed: September 17, 2008
    Date of Patent: February 21, 2012
    Assignee: Kawasaki Jukogyo Kabushiki Kaisha
    Inventors: Yasuhiko Hashimoto, Nobuyasu Shimomura, Takao Yamaguchi, Tetsuya Yoshida
  • Patent number: 8113083
    Abstract: The invention relates to a device for displacing and positioning an object in a space, having at least three actuating arms that can pivot about a transmission axis. Each arm is connected to a motor unit/transmission unit. A carrier element is provided in order to arrange at least one gripping element for gripping the object. Each actuating arm, on the free ends thereof, has a first articulated axis that is parallel to the transmission axis with first articulated parts arranged at a distance from each other, of a first ball joint. The carrier element has a second articulated axis associated with each actuating arm with first articulated parts that are arranged at a distance in relation to each other, of a second ball joint. The first articulated axis is connected to the second articulated axis by a pair of connecting bars which include terminal second articulated parts.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: February 14, 2012
    Assignee: Robert Bosch GmbH
    Inventor: Michael Breu
  • Patent number: 8077963
    Abstract: A robotic system that includes a mobile robot and a remote input device. The input device may be a joystick that is used to move a camera and a mobile platform of the robot. The system may operate in a mode where the mobile platform moves in a camera reference coordinate system. The camera reference coordinate system is fixed to a viewing image provided by the camera so that movement of the robot corresponds to a direction viewed on a screen. This prevents disorientation during movement of the robot if the camera is panned across a viewing area.
    Type: Grant
    Filed: July 13, 2004
    Date of Patent: December 13, 2011
    Inventors: Yulun Wang, Charles S. Jordan, Keith P. Laby, Jonathan Southard, Marco Pinter, Brian Miller
  • Publication number: 20110272126
    Abstract: A fiber application machine for the production of composite material parts, comprising a system for displacing a fiber application head, a fiber storage, and a fiber conveyor for conveying the fibers from the fiber storage to the application head, the fiber conveyor being placed in the internal passage of at least one flexible tubular sheath, the machine further comprising a cooling system adapted to inject cold gas in the internal passage of the sheath.
    Type: Application
    Filed: October 27, 2009
    Publication date: November 10, 2011
    Applicant: CORIOLIS COMPOSITES
    Inventors: Alexander Hamlyn, Yvan Hardy
  • Patent number: 8050797
    Abstract: A automation equipment control system comprises a general purpose computer with a general purpose operating system in electronic communication with a real-time computer subsystem. The general purpose computer includes a program execution module to selectively start and stop processing of a program of equipment instructions and to generate a plurality of move commands. The real-time computer subsystem includes a move command data buffer for storing the plurality of move commands, a move module linked to the data buffer for sequentially processing the moves and calculating a required position for a mechanical joint. The real-time computer subsystem also includes a dynamic control algorithm in software communication with the move module to repeatedly calculate a required actuator activation signal from a joint position feedback signal.
    Type: Grant
    Filed: July 26, 2005
    Date of Patent: November 1, 2011
    Assignee: C.H.I. Development Mgnt. Ltd. XXIV, LLC
    Inventor: John R. Lapham
  • Patent number: 8014982
    Abstract: A simulation method and a simulation system for a construction crane are disclosed. The simulation system includes an input device, a processing device, and a display device. The input device is used for inputting an instruction. Furthermore, the processing device includes a computation unit, a collision detection unit, a storage unit, and a graphic unit. The computation unit is used for computing the position and the direction of each part of the construction crane and the suspension parts. The collision detection model is used for detecting whether each part of the construction crane and the suspension parts will be in collision. Besides, the data obtained from the simulation method performed in the simulation system is saved in the storage unit. The graphic unit displays the 3D dynamics images of the construction crane and the suspension parts on the display device, corresponding to the data obtained from the computation unit.
    Type: Grant
    Filed: December 8, 2008
    Date of Patent: September 6, 2011
    Assignee: National Taiwan University
    Inventors: Shih-Chung Kang, Hung-Lin Chi, Wei-Hang Hung
  • Patent number: 7988912
    Abstract: A microtiter plate transport device is configured to grip a microtiter plate in a first location. The microtiter plate transport device is configured to make a vertical approach to the microtiter plate and grip the microtiter plate in either a portrait orientation or a landscape orientation along either the opposing longer sides or the opposing shorter sides of the microtiter plate. The device comprises a Cartesian coordinate robot including a first gripping member and a second gripping member opposed to the first gripping member. The first gripping member and the second gripping member are supported by an arm configured to move along a vertical axis which extends between the first gripping member and the second gripping member. The first gripping member and the second gripping member are configured to rotate about the vertical axis.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: August 2, 2011
    Assignee: Beckman Coulter, Inc.
    Inventors: Samuel H. Rizzotte, Paul N. Avgerinos, Donald A. Turner
  • Patent number: 7972252
    Abstract: An ergonomic tool lifting machine and method particularly useful for manipulating a machine tool or another heavy object. In one embodiment of the invention, the machine tool is a large milling cutter. The ergonomic tool lifting machine generally includes an articulating arm attached at a fixed end to a vertical lift mechanism, and at a free end to a grasping device or tool holder adapted for gripping and retaining an object of interest. When the object is a milling cutter, the ergonomic tool lifting machine may be used to transfer the cutter between a stored position and an installed position in a milling machine. Consequently, the tool holder of this embodiment is preferably able to rotate between a pick-up/drop-off position and an installation/removal position associated with the cutter. In general, the ergonomic tool lift machine allows heavy loads to be accurately moved with very little effort required on the part of an operator.
    Type: Grant
    Filed: March 28, 2006
    Date of Patent: July 5, 2011
    Assignee: Honda Motor Co., Ltd.
    Inventor: Freedus McDermitt, Jr.
  • Publication number: 20110150319
    Abstract: A three-dimensional (3D) pose of a 3D object in an environment is determined by extracting features from an image acquired of the environment by a camera. The features are matched to a 3D model of the environment to determine correspondences. A camera reference frame of the image and a world reference frame of the environment are transformed to a corresponding intermediate camera reference frame and a corresponding world reference frame using the correspondences. Geometrical constraints are applied to the intermediate camera reference frame and the intermediate world reference frame to obtain a constrained intermediate world reference frame and a constrained world reference frame. The 3D pose is then determined from parameters of the constrained intermediate world reference frame and the constrained world reference frame.
    Type: Application
    Filed: June 28, 2010
    Publication date: June 23, 2011
    Inventor: Srikumar Ramalingam
  • Patent number: 7963188
    Abstract: Since the rotating unit is disposed so that the drive part, which constitutes the rotating unit, is located in the inner side of the bent portion with the curved surface of the CABLEVEYOR in the side of the straight axis, there is no problem occurs by locating the drive part connected with the rotating unit in the inner side of the bent portion of the CABLEVEYOR. Therefore, the dead space formed in the inner side of the bent portion of the CABLEVEYOR can be used effectively.
    Type: Grant
    Filed: November 12, 2008
    Date of Patent: June 21, 2011
    Assignee: Denso Wave Incorporated
    Inventor: Shigeru Takeda
  • Patent number: 7963017
    Abstract: The method is used for automated tightening of a screwed joint (16), which is fitted to a component (10) in advance and contains a screw (12) and a nut (14), using a programmable industrial robot system (18). In this case, the invention provides that the industrial robot system (18) has a first robot (20) with a screw driving head (22) and a second robot (24) with a mating holding head (26). In order to tighten the screwed joint (16) on the component (10), the screw driving head (22) is positioned in a defined screw driving position, and the mating holding head (26) is positioned in a defined mating holding position in order to produce an interlocking connection, which is suitable for tightening of the screwed joint (16), between the mating holding head (26) and the nut (14), as well as between the screw driving head (22) and the screw (12). The screwed joint (16) on the component (10) is tightened with a predeterminable fixing torque. The interlocking connections are then disconnected.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: June 21, 2011
    Assignee: Daimler AG
    Inventors: Jürgen Ehleiter, Willi Klumpp, Uwe Pfister, Thomas Prager, Michael Schunko
  • Publication number: 20110061596
    Abstract: An arrangement for fetching a teat cup from a teat cup magazine in which each teat cup has a respective fixed position includes a reference entity in a fixed spatial relationship to the teat cup magazine and each teat cup stored therein; a remote detecting element that registers wireless energy reflected by the reference entity, and based thereon determines a respective position for the teat cup relative to a robotic arm. The robotic arm carries a gripper element configured to hold the teat cup during removal thereof from the teat cup magazine. The reference entity is configured to allow the remote detecting element to receive wireless energy reflected against the reference entity while moving the robotic arm towards the least one teat cup for removing the at least teat cup from the teat cup magazine.
    Type: Application
    Filed: March 19, 2009
    Publication date: March 17, 2011
    Applicant: DELAVAL HOLDING AB
    Inventors: Mats Nilsson, Anders Hallstrom
  • Publication number: 20110022216
    Abstract: The present invention relates to a method and an apparatus for calibration of an industrial robot system including at least one robot (1) having a robot coordinate system (xr1,yr1,zr1) and a positioner (2) having a positioner coordinate system (xp,yp,zp) and adapted to hold and change the orientation of a workpiece by rotating it about a rotational axis. Target points for the robot are programmed with respect to an object coordinate system (xo1,yo1,zo1). The apparatus comprising a robot controller (3), at least three calibration objects (24a-c) arranged on the positioner, and a calibration tool (26) held by the robot. The positions of the calibration objects are known in the object coordinate system.
    Type: Application
    Filed: November 25, 2008
    Publication date: January 27, 2011
    Inventor: Björn E. Andersson
  • Publication number: 20100268370
    Abstract: A conveyance system. The conveyance system includes a movable device for conveying an article, and a robot selected from the group consisting of an articulated robot and an orthogonal robot. The movable device is configured to be both vertically and horizontally movable; and, the robot is mounted on the movable device. The robot includes a hand and a gripper disposed on the hand. The gripper is configured to hold the article. The movable device and the robot are configured to convey the article in conveyance operations that include an extraction, a conveyance, and an installation, of the article; the range of the conveyance operations lies within a working range of the robot from a present position that is selected with priority. The movable device is configured to remain in a stationary state when the article is conveyed by the robot using the conveyance operations within the working range.
    Type: Application
    Filed: October 22, 2009
    Publication date: October 21, 2010
    Inventors: Shigeto Nishiuchi, Masashi Tsuyama, Takahiro Nakagawa, Youichi Nonaka
  • Publication number: 20100255195
    Abstract: A substrate holder and method for using it to move a substrate. The holder comprises a frame having an inner periphery defining a first opening for receiving the substrate, and a shoulder projecting laterally inward from the inner periphery of the frame for supporting the substrate in the first frame opening. The shoulder has an inner periphery defining a second opening smaller than the first opening for receiving a substrate support. The holder and a substrate therein is moved to a position above the substrate support and then lowered to a position in which the shoulder of the holder is positioned below a top surface of the substrate support and the substrate is deposited on the top surface of the substrate support.
    Type: Application
    Filed: May 7, 2007
    Publication date: October 7, 2010
    Applicant: SYMYX SOLUTIONS, INC.
    Inventors: Stephen Mark Lambert, Cuong Manh Ta, Dennis Mullins
  • Publication number: 20100228374
    Abstract: A semiconductor substrate processing apparatus and a method for processing semiconductor substrates are provided. The method may include providing a semiconductor substrate having a surface and a plurality of features on the surface, each feature being positioned on the surface at a first respective point in a first coordinate system, plotting the position of each feature at a second respective point in a second coordinate system; and generating a translation between the first and the second coordinate systems. The generating of the translation may include calculating an offset between the first and the second coordinate systems. The calculating of the offset may include calculating an offset distance between a reference point of the first coordinate system and a reference point of the second coordinate system and calculating an offset angle between an axis of the first coordinate system and an axis of the second coordinate system.
    Type: Application
    Filed: May 17, 2010
    Publication date: September 9, 2010
    Inventor: Alger C. Pike
  • Patent number: 7766596
    Abstract: An attachment for a telescopic material handler supplies five degrees of freedom (DOF) for the task of picking, manipulating and aiding in the installation of vertical and horizontal wall cladding and other construction materials. The cladding can be of a size up to 1.3×8.0 m and a mass of 350 kg. The control and positioning of the load is accomplished through standard operation of the telehandler in conjunction with wireless control of the five DOF of the device. Hydraulic power for the device functions may be supplied through the telehandler auxiliary circuit. The auxiliary flow also powers a hydraulic generator, which supplies the device with electrical power for both system logic and control and vacuum generation. The cladding panels are handled by the vacuum system.
    Type: Grant
    Filed: March 30, 2005
    Date of Patent: August 3, 2010
    Assignee: JLG Industries, Inc.
    Inventors: Daniel Allen Smith, Korry D. Kobel, Ignacy Puszkiewicz, Christopher A. Haught, Todd Bradley Wyant
  • Publication number: 20100119413
    Abstract: A microtiter plate transport device is configured to grip a microtiter plate in a first location. The microtiter plate transport device is configured to make a vertical approach to the microtiter plate and grip the microtiter plate in either a portrait orientation or a landscape orientation along either the opposing longer sides or the opposing shorter sides of the microtiter plate. The device comprises a Cartesian coordinate robot including a first gripping member and a second gripping member opposed to the first gripping member. The first gripping member and the second gripping member are supported by an arm configured to move along a vertical axis which extends between the first gripping member and the second gripping member. The first gripping member and the second gripping member are configured to rotate about the vertical axis.
    Type: Application
    Filed: October 6, 2009
    Publication date: May 13, 2010
    Applicant: Beckman Coulter, Inc.
    Inventors: Samuel H. Rizzotte, Paul N. Avgerinos, Donald A. Turner
  • Publication number: 20100114338
    Abstract: A system and method for multi-goal path planning of welding robots with automatic sequencing. Input parameters associated with a number of goal points are obtained. The robot is moved through the multiple goal points based on the obtained inputs. One or more allowed cyclic paths are identified based on the obtained inputs. Weights are assigned to pre-defined attributes for path segments for each of the allowed cyclic paths. A cumulative score based on the values and assigned weights of the pre-defined attributes is calculated. An optimal path for the movement of robot across the goal points is identified based on the cumulative score.
    Type: Application
    Filed: October 31, 2008
    Publication date: May 6, 2010
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: SANDIPAN BANDYOPADHYAY, ASHISH GUPTA
  • Patent number: 7707907
    Abstract: A planar parallel mechanism having a platform movable in a plane along three degrees of freedom is described Existing technology fails to provide a manipulator with three degrees of freedom, wherein the mechanisms for moving the manipulator move in a decoupled fashion A manipulator and method of supporting and displacing an object which provides a solution to this problem comprises a base (1) and a moving portion (2) and articulated support legs (A1,A2,A3) between the moving portion (2) and the base (1) The articulated support legs (A1,A2,A3) are connected to the base (1) by a first translational joint, and jointly restrict movement of the moving portion to displacements in a plane in two translational degrees of freedom and one rotational degree of freedom A decoupled displacement of the moving portion (2) along a first of the two translational degrees of freedom and a decoupled displacement of the moving portion (2) along the rotational degree of freedom both result from actuation of at most two of the firs
    Type: Grant
    Filed: November 17, 2006
    Date of Patent: May 4, 2010
    Assignee: Socovar, Société en Commandite
    Inventor: Ilian Bonev
  • Publication number: 20100086380
    Abstract: A method and apparatus for a transfer robot that may be used in a vacuum environment is described. The transfer robot includes a lift assembly comprising a first platform and a second platform coupled to the first platform by a plurality of support members, the plurality of support members comprising a first pair of support members and a second pair of support members, a first drive assembly coupled to a portion of the plurality of support members, the first drive assembly providing a motive force to the plurality of support members to move the second platform in a first linear direction relative to the first platform, and an end effector disposed on the second platform and movable in a second linear direction by a second drive assembly, the second linear direction being orthogonal to the first linear direction.
    Type: Application
    Filed: October 7, 2008
    Publication date: April 8, 2010
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Shinichi Kurita, Takayuki Matsumoto, Suhail Anwar
  • Patent number: 7684896
    Abstract: A method for estimating joint load at a joint of a segment. The method comprises the steps of receiving kinematic data, determining a modified acceleration using at least the kinematic data, estimating a joint load using at least the modified acceleration; and determining simulated kinematic data for the segment using at least the joint load. The present disclosure thus addresses the problems with conventional inverse dynamics analysis by providing a forward dynamics solution for estimation of joint loads that is stable, guaranteed to converge, computationally efficient, and does not require acceleration computations. According to one embodiment, a joint load is estimated using an approach of closed form dynamics.
    Type: Grant
    Filed: January 19, 2005
    Date of Patent: March 23, 2010
    Assignee: Honda Motor Co., Ltd.
    Inventor: Behzad Dariush
  • Patent number: 7673537
    Abstract: A manipulator for supporting and displacing an object comprises a base. A moving portion supports the object. Two articulated mechanisms each having five rotational joints between links, with each articulated mechanism being connected to the base by two of the rotational joints. The moving portion is connected to both the articulated mechanisms by moving-portion joints. The articulated mechanisms and moving-portion joints are arranged with respect to each other between the base and the moving portion so as to constrain movement of the moving portion to displacements in two translational degrees of freedom and two rotational degrees of freedom with respect to the base. Four actuators are each operatively connected to a different one of the rotational joints between the base and the articulated mechanisms so as to selectively control the displacements of the moving portion in any one of the four degrees of freedom of the moving portion.
    Type: Grant
    Filed: June 2, 2008
    Date of Patent: March 9, 2010
    Assignee: Socovar, Société En Commandite
    Inventors: Simon Lessard, Ilian Bonev, Pascal Bigras
  • Patent number: 7664570
    Abstract: The safety in robotic operations is enhanced and the floor space in a factory or the like is effectively utilized. A virtual safety barrier 50 including the trajectory of movement of a work or tool 7 mounted on a wrist 5 of a robot 1 in operation is defined in a memory. At least two three-dimensional spatial regions S (S1 to S3) including a part of the robot including the work or tool are defined. Predicted positions of the defined three-dimensional spatial regions obtained by trajectory calculations are matched with the virtual safety barrier 50, and if the predicted position of any one of the defined three-dimensional spatial regions based on trajectory calculations is included in the virtual safety barrier 50, a control is effected to stop the movement of the robot arms 3 and 4.
    Type: Grant
    Filed: April 22, 2004
    Date of Patent: February 16, 2010
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kazutsugu Suita, Morihiko Okura
  • Publication number: 20100036525
    Abstract: A method for operating a system including at least two robots for handling parts and a robot control unit arranged for control of said at least two robots. Each of the robots is arranged with a parts handler device including a rigid arm with one end connected to the end element of an arm of the robot by a first swivel arranged for radial movement of the rigid arm in relation to the end element. Each of the robots is also arranged with a gripper connected to the rigid arm by a second swivel arranged for free, passive rotation of the gripper in relation to the rigid arm. The method includes generating instructions for the at least two robots to pick and/or move and/or place a part and sending the instructions to each robot simultaneously.
    Type: Application
    Filed: December 19, 2007
    Publication date: February 11, 2010
    Applicant: ABB RESEARCH LTD.
    Inventors: Ramon Casanelles, Francisco Cortes Grau
  • Patent number: 7660665
    Abstract: Autonomous mobile equipment includes a position-of-object and own position detecting system and a moving unit, and autonomously moves. The position-of-object and own position detecting system includes a database in which pieces of information on the superficial shape and position of an object are recorded. The superficial shape of the object detected by a position measuring unit is collated with the superficial shape of the object recorded in the database. If the collated superficial shapes agree with each other, the pieces of information on the object recorded in the database are transmitted to a traveling planning unit. If the collated superficial shapes disagree with each other, the information on the object acquired by the position measuring unit is transmitted to the traveling planning unit.
    Type: Grant
    Filed: November 16, 2005
    Date of Patent: February 9, 2010
    Assignee: Hitachi, Ltd.
    Inventors: Junichi Tamamoto, Yuji Hosoda, Saku Egawa, Toshihiko Horiuchi
  • Patent number: 7623944
    Abstract: A method for estimating joint load at a joint of a segment. The method comprises the steps of receiving kinematic data, determining a modified acceleration using at least the kinematic data, estimating a joint load using at least the modified acceleration; and determining simulated kinematic data for the segment using at least the joint load. The method addresses the problems with conventional inverse dynamics analysis by providing a forward dynamics solution for estimation of joint loads that is stable, guaranteed to converge, computationally efficient, and does not require acceleration computations. According to one embodiment, a joint load is estimated recursively.
    Type: Grant
    Filed: January 19, 2005
    Date of Patent: November 24, 2009
    Assignee: Honda Motor Co., Ltd.
    Inventor: Behzad Dariush
  • Patent number: 7610108
    Abstract: A method for providing independent static and dynamic models in a prediction, control and optimization environment utilizes an independent static model (20) and an independent dynamic model (22). The static model (20) is a rigorous predictive model that is trained over a wide range of data, whereas the dynamic model (22) is trained over a narrow range of data. The gain K of the static model (20) is utilized to scale the gain k of the dynamic model (22). The forced dynamic portion of the model (22) referred to as the bi variables are scaled by the ratio of the gains K and k. The bi have a direct effect on the gain of a dynamic model (22). This is facilitated by a coefficient modification block (40). Thereafter, the difference between the new value input to the static model (20) and the prior steady-state value is utilized as an input to the dynamic model (22). The predicted dynamic output is then summed with the previous steady-state value to provide a predicted value Y.
    Type: Grant
    Filed: February 21, 2006
    Date of Patent: October 27, 2009
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Eugene Boe, Stephen Piche, Gregory D. Martin
  • Patent number: 7592768
    Abstract: A robot joint structure ? is composed of a metacarpal member 30 and a proximal member 40 swingably connected through a hinge 31 to a side end portion of the metacarpal member 30. The proximal member 40 includes a linear guide device 44 for an MP joint having a moving member movable in association with a self swing motion thereof, and by connecting a rod 32a and the moving member through a link mechanism 50, a driving force of an air-cylinder 32 is transmitted to the proximal member 40. On the other hand, a second robot joint structure ? is also provided with linear guide devices 48, 66, 74 and link mechanisms 69, 75, to which a driving force of the air-cylinder 62 is transmitted through a drive shaft 63 in association with a rod 62a. A robot finger is constructed by the first and second robot joint structures. According to such structures, smooth joint motion can be realized, and the robot joint structure and the robot finger having improved gripping force can be provided.
    Type: Grant
    Filed: November 1, 2005
    Date of Patent: September 22, 2009
    Assignee: THK Co., Ltd.
    Inventors: Takeki Shirai, Kaoru Hoshide, Koji Ozawa
  • Publication number: 20090190826
    Abstract: A working apparatus comprises a working unit which executes work on a work subject, and a calibration jig on which a plurality of markers is arranged in a radial pattern from a center point of markers, the plurality of markers being arranged in three dimensions, and the calibration jig being attached to a working unit such that a calibration reference point set of a working unit coincides with a center point of markers. According to such a composition, it becomes possible to calibrate a position of a working unit even when a portion of the jig containing a center point of markers is occluded during image measurement.
    Type: Application
    Filed: January 22, 2009
    Publication date: July 30, 2009
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Shunta Tate, Masato Aoba
  • Patent number: 7563067
    Abstract: A robot for gripping and handling one or more objects, which robot includes a stationary base with a first guide extending in a first direction, and an arm including a second guide extending in a second direction at an angle relative to the first direction, preferably perpendicularly to the first direction, which arm is connected to the base by way of the first guide in such a way that the arm is movable in the first direction. A slide is provided on the second guide and is movable in the second direction. A gripper supported by the slide, for gripping one or more objects, is movable in a third direction intersecting the plane of the first and second directions, preferably perpendicularly. A number of stationary actuators are provided on the base, for driving the arm, the slide and the gripper by means of pulling elements, for example drive belts, which are connected to the arm, the slide and the gripper respectively.
    Type: Grant
    Filed: June 29, 2004
    Date of Patent: July 21, 2009
    Assignee: Roboxis B.V.
    Inventor: Ronald Walter Neutel
  • Patent number: 7558647
    Abstract: In a robot arm controlling device, a mechanical impedance set value of the arm is set by an object property-concordant impedance setting device based on information of an object property database in which information associated with properties of an object being gripped by the arm is recorded, and a mechanical impedance value of the arm is controlled to the set mechanical impedance set value by an impedance controlling device.
    Type: Grant
    Filed: December 12, 2006
    Date of Patent: July 7, 2009
    Assignee: Panasonic Corporation
    Inventor: Yasunao Okazaki
  • Patent number: 7551979
    Abstract: A robot calibration system and method for robots in semiconductor wafer processing systems is disclosed. The calibration system comprises a calibration array, a dummy wafer and a control system programmed with a calibration routine. The calibration array has an plurality of inductive proximity sensors to determine parallelism of the robot relative to a station and a center locating sensor to determine the center of the station.
    Type: Grant
    Filed: November 17, 2006
    Date of Patent: June 23, 2009
    Assignee: Strasbaugh
    Inventor: Daniel P. Saraliev
  • Publication number: 20090142844
    Abstract: The present invention relates to a method of preparing analyses of total blood samples and to a device that is useful for implementing the method, said samples being conserved in tubes including at least one identification means for identifying the sample, the device comprising: at least one compartment constituting a said storage zone for storing said tubes before and after analysis; and at least one said read means for reading said identification means of said tubes; and at least one preparation zone for preparing said blood samples prior to analysis and including means for verifying and/or treating said tubes containing said samples, and in particular at least one agitator means for agitating said tubes; and at least one access zone giving access to at least one automatic analyzer of total blood, said access zone enabling a said tube to be placed in said analyzer; and robotic gripper and displacement means controlled by an automatic controller and suitable for taking hold of and replacing said tubes ind
    Type: Application
    Filed: July 4, 2006
    Publication date: June 4, 2009
    Applicant: HORIBA ABX SAS
    Inventor: Roger Le Comte
  • Publication number: 20090110532
    Abstract: An apparatus for centering a substrate in a track lithography tool includes a processing chamber having an opening large enough to admit the substrate. The processing chamber includes a substrate support member. The substrate is characterized by a diameter and comprises a mounting surface, a process surface, and an edge. The apparatus also includes a clamped robot blade including a substrate support surface adapted to support the mounting surface of the substrate, two edge contact regions, and a base contact region. The clamped robot blade also includes a clamping system adapted to move at least one of the two edge contact regions or the base contact region from an unclamped position to a clamped position, thereby making contact between the edge of the substrate and the two edge contact regions and the base contact region in the clamped position. The apparatus further includes a robot arm coupled to the clamped robot blade.
    Type: Application
    Filed: October 29, 2007
    Publication date: April 30, 2009
    Applicant: SOKUDO CO., LTD.
    Inventor: Mohsen S. Salek
  • Publication number: 20090093908
    Abstract: A target position detection apparatus for a robot includes: a robot including an arm configured to be freely moved in at least two directions of X and Y axes, the arm having a wrist axis provided at a distal end of the arm and configured to be freely moved in a horizontal direction, and the wrist axis being provided with an end effector; and a control unit adapted for driving a memory to store a teaching point therein and controlling an operation of the robot such that the end effector will be moved toward the teaching point stored in the memory.
    Type: Application
    Filed: September 17, 2008
    Publication date: April 9, 2009
    Applicant: KAWASAKI JUKOGYO KABUSHIKI KAISHA
    Inventors: Yasuhiko Hashimoto, Nobuyasu Shimomura, Takao Yamaguchi, Tetsuya Yoshida
  • Publication number: 20090088912
    Abstract: Systems and methods of positioning a tool using a linear motor with a plurality of stages on a single path. A single rail and a plurality of trucks containing stages can comprise a linear motor. The trucks can connect to a tool through a linkage such as a four bar linkage or a scissor jack. The global position of the stages can be manipulated to effectuate motion along the path; the relative position, velocity, and acceleration of the trucks can be manipulated to effectuate motion in another direction such as a direction perpendicular to the path.
    Type: Application
    Filed: September 28, 2007
    Publication date: April 2, 2009
    Applicant: ANORAD CORPORATION
    Inventor: Devarajan Rajaraman
  • Publication number: 20090082895
    Abstract: An integrated high speed robotic mechanism is disclosed for improving transport equipment, integrating an object movement with other functionalities such as alignment or identification. The disclosed integrated robot assembly typically comprises an end effector for moving the object in and out of a chamber, a rotation chuck incorporated on the robot body to provide centering and theta alignment capability, and an optional identification subsystem for identifying the object during transport. The present invention also discloses a transfer robot system, employing a plurality of integrated robot assemblies; a transfer system where a transfer robot system can service a plurality of connected chambers such as FOUP or FOSB; a front end module (FEM); or a sorter system. Through the use of these incorporated capabilities into the moving robot, single object transfer operations can exceed 500 parts per hour.
    Type: Application
    Filed: September 22, 2007
    Publication date: March 26, 2009
    Applicant: Dynamic Micro Systems, Semiconductor Equipment GmbH
    Inventors: David Barker, Robert Thomas LoBianco, Sai Mantripragada, Farzad Tabrizi
  • Patent number: 7507199
    Abstract: A system for performing minimally invasive cardiac procedures includes a pair of surgical instruments that are coupled to a pair of robotic arms. The instruments have end effectors that can be manipulated to hold and suture tissue. The robotic arms are coupled to a pair of master handles by a controller. The handles can be moved by the surgeon to produce a corresponding movement of the end effectors. The system may also have a robotically controlled endoscope which allows the surgeon to remotely view the surgical site.
    Type: Grant
    Filed: December 11, 2002
    Date of Patent: March 24, 2009
    Assignee: Intuitive Surgical, Inc.
    Inventors: Yulun Wang, Darrin R. Uecker, Keith Phillip Laby, Jeff Wilson, Steve Jordan, James Wright
  • Publication number: 20090074979
    Abstract: A method for controlling a painting system including an industrial robot or manipulator arm arranged with a wrist section and carrying a paint applicator arranged on the robot wrist is described. Paint is applied by the applicator to a substantially circular or elliptical area on the surface, the center of the area being defined as a Tool Center Point. The wrist section is arranged capable of moving and orienting the paint applicator. In the method, the paint applicator is moved by the manipulator arm so that the Tool Center Point moves along a planned path so coating a part of the surface. The planned path may include one or more bends. The path taken by the robot wrist may be controlled to follow a different path from the path taken by the Tool Center Point. A system and a computer program for carrying out the method are also described.
    Type: Application
    Filed: November 18, 2008
    Publication date: March 19, 2009
    Inventors: Arnulf Krogedal, Jan Inge Tjolsen
  • Patent number: 7476072
    Abstract: A transport apparatus includes a table capable of making a lateral reciprocating movement; a column arranged upright on the table so as to be capable of making normal and reverse rotation; an arm protruding sidewise from the column, the arm being capable of making a lateral reciprocating movement and ascending and descending along the column; a head mounted to the tip of the arm so as to be capable of making normal and reverse rotation; and a jig mounting stage mounted to the head so as to be capable of making normal and reverse rotation, thus allowing six-axis movements. A welding robot or a workpiece can be carried on the jig mounting stage and transported while being grasped, and the six-axis movements can be stopped at desired positions, making it possible to perform positioning on the welding robot or the workpiece in terms of orientation, height, etc.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: January 13, 2009
    Assignee: Line Works Co., Ltd.
    Inventor: Shuji Tamura
  • Patent number: 7469166
    Abstract: A method of predicting kinematic data for a segment. The method comprises the steps of determining a modified acceleration using at least original kinematic data, estimating a joint load for a joint of the segment by using at least the modified acceleration, and predicting kinematic data for the segment based on one or more modified parameters. Therefore, various embodiments advantageously allow for prediction of novel motion.
    Type: Grant
    Filed: January 19, 2005
    Date of Patent: December 23, 2008
    Assignee: Honda Motor Co., Ltd.
    Inventor: Behzad Dariush
  • Patent number: 7442030
    Abstract: A molded component retrieving apparatus and a molding machine with the molded component retrieving apparatus include first and second units. The first unit includes a base, first to third arms and a first lift arm. The second unit includes fourth to sixth arms and a second lift arm. The second unit is removably mounted on the third arm through an intermediate base member. Rotary shafts of the arms are parallel. A holding unit to hold and retrieve the molded component or the runner is arranged at the forward end of the first and second lift arms. The third and sixth arms can be kept in position even when the drive sources are reduced in number and other arms are pivoted using a belt and a pulley.
    Type: Grant
    Filed: March 8, 2005
    Date of Patent: October 28, 2008
    Assignee: Fanuc Ltd.
    Inventors: Satoshi Kinoshita, Mitsuhiro Yasumura, Hikaru Yamashiro
  • Publication number: 20080258669
    Abstract: In a robot with two or more leg links having ankle joint respectively and pivotably linked to a torso, the robot walks naturally by making the ankle joint of a grounded leg link rotate freely by using passive movement. A controller executes controlling operation of calculating target joint angles of remaining joints other than the ankle joint of the grounded leg link based upon the measured joint angles of the ankle joint of the grounded leg link in the lateral and forward direction. The target joint angles of the remaining joints are calculated so as to satisfy the following condition that a tilting angle of the torso matches a target tilting angle determined based upon the measured joint angle of the ankle joint of the grounded leg link in the forward direction, a cycle period of the idle leg link from lifting to grounding, and a target stride of the idle leg link.
    Type: Application
    Filed: September 13, 2005
    Publication date: October 23, 2008
    Inventors: Toshio Fukuda, Yasuhisa Hasegawa, Masahiro Doi, Keisuke Suga, Yoshimi Kajitani
  • Patent number: 7433759
    Abstract: A method for calibrating a controller of a robotic arm in a microelectronics manufacturing apparatus that includes storing a default position for an edge detector, moving a blade on the robotic arm based on the default position of the edge detector such that at least three edge points on the blade pass through and are detected by the edge detector, generating a plurality of arm position measurements from an arm position sensor by measuring a position with the arm position sensor of the robotic arm at each position of the robotic arm at which an edge point of the blade is detected by the edge detector, and determining at least one of an actual position of the edge detector and an offset for measurements of the arm position sensor based on the plurality of arm position measurements.
    Type: Grant
    Filed: July 23, 2004
    Date of Patent: October 7, 2008
    Assignee: Applied Materials, Inc.
    Inventor: Roy C. Nangoy
  • Publication number: 20080237983
    Abstract: A portable robotic board game playing system is disclosed, which comprises: a chessboard unit; a fetching unit and a control unit. The chessboard unit is composed of a board frame and a plurality of game pieces. The fetching unit is movable for grasping any one of the plural game pieces. The control unit, being electrically connected to the chessboard unit and the fetching unit, is capable of detecting statuses of the chessboard unit and the fetching unit so as to generate a control signal accordingly. With the aforesaid portable robotic board game playing system, a board game can be played by a user using actual game pieces with lifelike sense of realization against the robotic board game playing system itself or a remote user. In addition, the portable robotic board game playing system can be used exactly as an ordinary chessboard.
    Type: Application
    Filed: May 10, 2007
    Publication date: October 2, 2008
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventor: Jung-Mao Chien
  • Publication number: 20080215181
    Abstract: A method and system for performing invasive procedures includes a surgical robot which is controlled by a guidance system that uses time of flight calculations from RF transmitters embedded in the robot, surgical instrument, and patient anatomy. Sensors around the room detect RF transmissions emitted by the RF transmitters and drive the robot according to a preprogrammed trajectory entered into the guidance system.
    Type: Application
    Filed: August 27, 2007
    Publication date: September 4, 2008
    Applicant: Catholic Healthcare West (d/b/a St. Joseph's Hospital and Medical Center)
    Inventors: DAVID W. SMITH, Regina DeSanctis-Smith, Alan M. Pitt, Nicholas Theodore, Neil Crawford
  • Patent number: 7421314
    Abstract: A method for controlling a robot during an interpolation of a trajectory or motion to any prescribed position, comprises the steps of a) ignoring at least one of the three originally prescribed or interpolated tool center point orientation values; b) finding new tool center point orientation values that place the wrist center point of the robot closest to its base while c) maintaining the originally prescribed or interpolated tool center point location values and d) maintaining the original prescribed or interpolated tool center point orientation values not ignored. Said method can preferably be used for carrying a load with a plurality of robots. Its main advantage is an increase of the available working volume.
    Type: Grant
    Filed: November 4, 2004
    Date of Patent: September 2, 2008
    Assignee: KUKA Roboter GmbH
    Inventors: Kenneth A. Stoddard, David Martin
  • Publication number: 20080163403
    Abstract: Plural wok pairs composed of a plurality of works are stored in work storing means. A movable sensor 45 fitted to a conveyance robot 5 detects the position of one of the work pairs in the work storing means, and the work gripping means 25 takes out a plurality of works at one time from the work storing means. One of the plurality of works is held temporally by temporal work holding means 6 or 7 while the other work is conveyed to a jig Y. In the course of conveyance, a fixed sensor 63 detects the relative positional relationship between the work and the work gripping means 25. If the relative positional relationship deviates from the regular positional relationship, the movement of a robot arm 31 is corrected.
    Type: Application
    Filed: December 28, 2006
    Publication date: July 3, 2008
    Inventor: Makoto Tominaga
  • Publication number: 20080161677
    Abstract: A method of operating a surgical system. The method includes obtaining a magnetic resonance imaging (MRI) scan in which magnetic resonance (MR) visible targets are located; registering a robotic arm to the MRI scan using a digitizing tool, the robotic arm including: multiple joints and multiple degrees of freedom; an MR-compatible structural material; multiple MR-compatible joint motors; multiple MR-compatible joint encoders; and an end effector holding an MR-compatible surgical tool having a tool tip; and displaying a location of the tool tip relative to an image from the MRI scan.
    Type: Application
    Filed: February 6, 2008
    Publication date: July 3, 2008
    Inventors: Garnette Roy Sutherland, Deon Francois Louw, Paul Bradley McBeth, Tim Fieding, Dennis John Gregoris