Cartesian (x-y-z Arm) Patents (Class 901/16)
  • Publication number: 20080154389
    Abstract: A method and system for performing invasive procedures includes a surgical robot which is controlled by a guidance system that uses time of flight calculations from RF transmitters embedded in the robot, surgical instrument, and patient anatomy. Sensors around the room detect RF transmissions emitted by the RF transmitters and drive the robot according to a preprogrammed trajectory entered into the guidance system.
    Type: Application
    Filed: August 13, 2007
    Publication date: June 26, 2008
    Applicant: Catholic Healthcare West (d/b/a St. Joseph's Hospital and Medical Center)
    Inventors: David W. Smith, Regina DeSanctis-Smith, Alan M. Pitt, Nicholas Theodore, Neil R. Crawford
  • Patent number: 7387485
    Abstract: Storage library systems and methods of operating and assembling library systems are provided. The storage library system may include a stationary support member having a first axis and a cartridge transport assembly. The cartridge transport assembly includes a cartridge retrieving mechanism configured to retrieve a removable media cartridge, said cartridge transport assembly being coupled to the support member, wherein the cartridge retrieving mechanism is positionable in four degrees of freedom. The method of operating a tape library may include transmitting instruction signals to a robotics controller disposed on a cartridge transport assembly, translating the cartridge transport assembly along a stationary support member, and positioning the cartridge retrieving mechanism in four degrees of freedom relative to the stationary support member.
    Type: Grant
    Filed: September 29, 2003
    Date of Patent: June 17, 2008
    Assignee: Quantum Corporation
    Inventors: Peter Dickey, Raoul Standt, John Edward Maroney
  • Patent number: 7386366
    Abstract: Apparatus and methods are provided for estimating joint forces and moments in human beings. A forward dynamics module determines simulated kinematic data. An error correction controller forces tracking error between the simulated kinematic data and measured (or desired) kinematic data to approach zero. The error correction controller generates a modified acceleration for input into an inverse dynamics module. The estimated joint forces and moments track the measured (or desired) kinematics without the errors associated with computing higher order derivatives of noisy kinematic data.
    Type: Grant
    Filed: July 5, 2006
    Date of Patent: June 10, 2008
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventor: Behzad Dariush
  • Patent number: 7386408
    Abstract: A parallel kinematic machine has a parallel kinematic mechanism including an end effecter and a parallel link mechanism. A numerical control device controls a position and orientation of the end effecter based on kinematics of the parallel kinematic mechanism. A posture setter sets an adjustment tool on the end effecter in a known posture in a reference coordinate system defined outside the parallel kinematic mechanism based on a measurement method. A data acquirer acquires data in accordance with a measurement method selecting code for designating the measurement method used by the posture setter in setting the adjustment tool in the known posture, and defines a correlation between kinematic parameters for the parallel kinematic mechanism and the reference coordinate system. A calculator calculates the kinematic parameters based on the acquired data by using a relational expression describing forward kinematics of the parallel kinematic mechanism.
    Type: Grant
    Filed: September 25, 2006
    Date of Patent: June 10, 2008
    Inventors: Nobutaka Nishibashi, Kazuaki Yagi
  • Publication number: 20080133056
    Abstract: The present invention provides a robot system which can move a robot hand with ease and enable fine adjustment, as well as can prevent collision of the hand with surrounding structures. In this invention, a robot system 10 includes a robot body 11 and a control section 20 for controlling the robot body 11. The robot body 11 includes a first hand 12, a J1 axis along which the first hand 12 is driven in a direction defined from a proximal end 12a of the first hand 12 to its distal end 12b, a J4 axis about which the J1 axis is rotated in a horizontal plane, a J3 axis along which the J4 axis is shifted in the vertical direction, and a J5 axis along which the J3 axis is shifted in a direction in a horizontal plane. The J1 axis, J3 axis, J4 axis and J5 axis are synchronously driven by the control section 20, whereby the first hand 12 can be moved on the X axis, Y axis and C axis in a tool coordinate system, on the basis of the center of the first hand 12.
    Type: Application
    Filed: October 16, 2007
    Publication date: June 5, 2008
    Applicant: TOSHIBA KIKAI KABUSHIKI KAISHA
    Inventor: Yasunori Nishihara
  • Patent number: 7357049
    Abstract: Machine for machining large parts of the type that comprises a parallel kinematics machining device that moves freely in the X, Y and Z Cartesian axes, characterized in that the said device is mounted on a platform which moves in the Z axis and is in turn mounted on a bridge that slides along corresponding guides in the X and Y axes. The invention put forward affords the significant advantage of combining the high machining precision and speed of the parallel kinematics machine with the fact that the machine can access large work areas owing to the support platform which is mounted on the bridge.
    Type: Grant
    Filed: March 8, 2002
    Date of Patent: April 15, 2008
    Assignee: Loxin 2002, S.L.
    Inventor: Julian Biagorri Hermoso
  • Publication number: 20080066207
    Abstract: A computer in a transport system includes: a shooting part for shooting a first calibration tray by controlling a camera; a tray position computing part for computing a tray position of the first calibration tray within a captured image which the shooting part shot; a hand position acquisition part for acquiring a hand position indicative of a position of the hand robot of when the hand robot installs onto the first calibration tray a first transported article used for calibration; a calibration part for computing a calibration data based on the tray position and the hand position; and a transported article installing part which, when the mobile robot reached a predetermined arrival area, controls, based on the calibration data, the hand robot so as to install a second transported article onto a second tray, the second tray which the mobile robot being provided with.
    Type: Application
    Filed: December 28, 2006
    Publication date: March 13, 2008
    Inventors: Fumiko Beniyama, Toshio Moriya, Nobutaka Kimura, Kosei Matsumoto
  • Patent number: 7340323
    Abstract: An industrial robot that uses a simulated force vector to allow a work piece held by the robot end effector to be mated with a work piece whose location and orientation is not precisely known to the robot. When the end effector makes contact with the location and orientation in which the other work piece is held the robot provides a velocity command to minimize the force of the contact and also provides a search pattern in all directions and orientations to cause the end effector to bring the work piece it is holding in contact with the other work piece. The search pattern and the velocity command are continued until the two work pieces mate.
    Type: Grant
    Filed: January 16, 2007
    Date of Patent: March 4, 2008
    Assignee: ABB Research Ltd.
    Inventors: Hui Zhang, Zhongxue Gan, Torgny Brogardh, Jianjun Wang
  • Patent number: 7330774
    Abstract: An operation control unit of a reception system includes a visitor ID information DB for storing therein visitor comparison information and visitor ID information including a phone number of a receiver of a visitor; an identifying unit for identifying the visitor when visitor information obtained by a camera or the like of the robot is identical to the visitor comparison information; a phone calling module for calling the phone number of a mobile terminal of the receiver via a phone network, when the visitor is identified; an informing content determining unit for determining an informing content to the receiver based on the visitor ID information, when the visitor is identified; and a speech generating part for converting the received information into a voice. The informing content is sent to the mobile terminal of the receiver via the phone network.
    Type: Grant
    Filed: December 11, 2006
    Date of Patent: February 12, 2008
    Assignee: Honda Motor Co., Ltd.
    Inventors: Sachie Hashimoto, Kimio Takahashi
  • Patent number: 7330775
    Abstract: A legged mobile robot, a legged mobile robot controller and a legged mobile robot control method are provided to perform a loading operation to load a gripped object in parallel on a target place having a height where a stretchable range of arm portions of the legged mobile robot is enhanced with no operator's handling. The legged mobile robot includes the arm portions having links for gripping an object, and leg portions having links for moving, and the arm and the leg portions are joined to a body thereof. The legged mobile robot controller includes a data acquisition unit, a whole-body cooperative motion control unit and a loading detection unit, and controls motions of the legged mobile robot based on posture/position data regarding a posture/position of each link of the legged mobile robot and on an external force data regarding an external force affecting the arm portions.
    Type: Grant
    Filed: December 11, 2006
    Date of Patent: February 12, 2008
    Assignee: Honda Motor Co., Ltd.
    Inventors: Atsuo Orita, Tadaaki Hasegawa, Kenichiro Sugiyama
  • Patent number: 7324872
    Abstract: An external force estimation system for estimating an external force acting upon a robot apparatus which includes a machine body which in turn includes a plurality of movable joints is disclosed which includes a distribution type contacting state detection section, an actuator current state measurement section, a motion state measurement section, a motion equation setting section, a known term calculation section, and an external force estimation section.
    Type: Grant
    Filed: July 21, 2006
    Date of Patent: January 29, 2008
    Assignee: Sony Corporation
    Inventor: Kenichiro Nagasaka
  • Patent number: 7321808
    Abstract: When braking of a motion of a part of a first robot is assumed to be started at points in time, a first stop position of the first robot part is estimated at each point in time. When braking of a motion of a part of a second robot is assumed to be started at the points in time, an estimated second stop position of the second robot part is obtained at each point in time. When it is determined that the first stop position of the first robot part at one of the points in time and either the actual position or the second stop position of the second robot part for each interval at the one of the points in time are contained in the shared workspace, the first robot part is braked.
    Type: Grant
    Filed: November 22, 2006
    Date of Patent: January 22, 2008
    Assignee: Denso Wave Incorporated
    Inventor: Kenji Nagamatsu
  • Patent number: 7260450
    Abstract: An internal pressure of a hydropneumatic drive actuator is measured by a pressure measurement device, a displacement amount of a movable mechanism is measured, a desired value and a measurement value of the displacement are inputted so that a position error is compensated by a position error compensation device, a desired value of a pressure difference of the actuator to which antagonistic driving is performed by the desired value is calculated by a desired pressure difference calculation device, outputs from the position error compensation device, the desired pressure difference calculation device, and the pressure measurement device are inputted, and a pressure difference error is compensated by pressure difference error compensation device.
    Type: Grant
    Filed: January 18, 2007
    Date of Patent: August 21, 2007
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Yasunao Okazaki, Masaki Yamamoto, Yuji Adachi, Katsuhiko Asai
  • Patent number: 7226270
    Abstract: An apparatus for transferring semiconductor devices in a semiconductor device handler is provided which simplifies set up procedures when a species of device to be tested, and the associated change kit, is changed. A reference picker and three variable pickers are positioned within the framing structure of the handler, with the motion of the third variable picker synchronized relative to the motion of the first and second variable pickers. A plurality of sensors determine an initial position of the variable pickers, and then motion of the variable pickers is monitored by respective scanning heads and linear scales until a new setup position which corresponds to the new device species is attained. In this manner, the procedure and structure for varying position and pitch of the various pickers can be simplified, thus reducing processing time and cost.
    Type: Grant
    Filed: December 11, 2002
    Date of Patent: June 5, 2007
    Assignee: Mirae Corporation
    Inventors: Hyun Joo Hwang, Ji Hyun Hwang
  • Patent number: 7189049
    Abstract: The present invention relates to a method for rapid transfer of a work object in both the horizontal and vertical directions using a robot unit (10) having a gripping mechanism (12) preferably from one workstation (3) to another (4), the work piece (2) weighing between one kilo and forty kilos and the transfer in the horizontal direction being at least one meter but less than ten meters and at least partially being effected along an essentially horizontally extending beam unit (20), and the gripping mechanism (12) being arranged in such a way that, at least in one end situation (E1) along the beam (20), it can collect and/or deliver a work object (2) in a position (E2) situated beyond the end situation (E1) along the said horizontal beam (20), which robot unit is controlled by means of a control unit (50) and is driven by means of a belt member (24) and at least two motors (26, 27) comprising rotor units connected to drive wheels (26A, 27A) for the said belt member (24), the said motors (26, 27) being immovab
    Type: Grant
    Filed: July 5, 2000
    Date of Patent: March 13, 2007
    Assignee: Binar Aktiebolag (publ)
    Inventors: Stefan Blomgren, Ingemar Pettersson
  • Patent number: 7185410
    Abstract: An apparatus and method for mounting a valve stem to the rim of an vehicle wheel includes engaging a valve stem with a robotic manipulator, moving the valve stem relative to the rim along a programmable path of travel, coaxially aligning the valve stem with the aperture in the rim, and inserting the valve stem through the aperture in the rim. Preferably, the aperture location in the rim is determined at a gauging station by a machine vision system. If necessary, a power-actuated nut runner is used to tighten a nut over the valve stem. Alternately, the gauging station can use a table which rotates the wheel about a central axis, and an optical sensor detects the location of the aperture. Optionally, a probe mounted on the gauging station can be extended into the aperture to confirm the aperture position and to reposition the rim slightly if required.
    Type: Grant
    Filed: April 6, 2005
    Date of Patent: March 6, 2007
    Assignee: Burke E. Porter Machinery Company
    Inventors: Lawrence Lawson, Karl D Sachs
  • Patent number: 7184858
    Abstract: An internal pressure of a hydropneumatic drive actuator is measured by a pressure measurement device, a displacement amount of a movable mechanism is measured, a desired value and a measurement value of the displacement are inputted so that a position error is compensated by a position error compensation device, a desired value of a pressure difference of the actuator to which antagonistic driving is performed by the desired value is calculated by a desired pressure difference calculation device, outputs from the position error compensation device, the desired pressure difference calculation device, and the pressure measurement device are inputted, and a pressure difference error is compensated by pressure difference error compensation device.
    Type: Grant
    Filed: March 21, 2006
    Date of Patent: February 27, 2007
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Yasunao Okazaki, Masaki Yamamoto, Yuji Adachi, Katsuhiko Asai
  • Patent number: 7181314
    Abstract: An industrial robot that has uses a simulated force vector to allow a work piece held by the robot end effector to be mated with a work piece whose location and orientation is not precisely known to the robot. When the end effector makes contact with the location and orientation in which the other work piece is held the robot provides a velocity command to minimize the force of the contact and also provides a search pattern in all directions and orientations to cause the end effector to bring the work piece it is holding in contact with the other work piece. The search pattern and the velocity command are continued until the two work pieces mate.
    Type: Grant
    Filed: November 24, 2003
    Date of Patent: February 20, 2007
    Assignees: ABB Research Ltd., ABB Automation Technologies AB Robotics
    Inventors: Hui Zhang, Zhongxue Gan, Torgny Brogardh, Jianjun Wang
  • Patent number: 7168910
    Abstract: A device is used for transporting a horizontal stack from a stack support to an intermediate deposit, where the stack is formed in a gathering device with upright, lined-up signatures. The device is comprised of a horizontally and vertically displaceable clamp arranged above the stack support, wherein the clamp compresses the stack at the ends and transfers a strapped stack from the stack support to an adjacent intermediate deposit.
    Type: Grant
    Filed: July 1, 2003
    Date of Patent: January 30, 2007
    Assignee: Muller Martini Holding AG
    Inventor: Christof Keller
  • Patent number: 7162329
    Abstract: Applicants' automated data storage system includes a first media storage library having a first rail system, a garage having a movable rail system, said garage being disposed adjacent the media storage library, and a plurality of accessors movably disposed on either the first rail system or the movable rail system. In another embodiment, Applicants' automated data storage system further includes a second media storage library, having a second rail system, disposed adjacent the garage, such that the plurality of accessors is movably disposed on the first rail system, the second rail system, or the movable rail system. Applicants' invention further includes a method to move an accessor from the first media storage library into the garage, or from the first media storage library, through the garage, and into the second media storage library. Applicants' invention further includes a method to balance the workload of a plurality of data drives disposed within Applicants' automated data storage system.
    Type: Grant
    Filed: January 10, 2001
    Date of Patent: January 9, 2007
    Assignee: International Business Machines Corporation
    Inventors: Kamal Emile Dimitri, John Edward Kulakowski, Rodney Jerome Means, Daniel James Winarski
  • Patent number: 7127962
    Abstract: The present invention relates to a manipulating device (A) for producing Schönflies motions comprising a parallel array of at least two legs (B), each leg (B) including an actuator unit (C) having first and second ends and producing a pan-tilt motion, each leg (B) also including a passive unit (D) having first and second ends, the first end of the passive unit (D) being coupled to the first end of the actuator unit (C) such that the passive unit (D) reacts to the pan-tilt motion, a base (1) connected to the second end of each actuator unit (C), all second ends having a constant relative position with respect to one another; and a common end-effector (36) connected to the second end of all passive units (D) such that the common end-effector (36) is provided with a Schönflies motion by the legs (B).
    Type: Grant
    Filed: May 6, 2005
    Date of Patent: October 31, 2006
    Assignee: McGill University
    Inventors: Jorge Angeles, Alexei Morozov
  • Patent number: 7124660
    Abstract: A hex-axis horizontal movement dynamic simulator is aimed at Modular Design without hydraulic or pneumatic system but which were conventionally used in the so called Stewart Platform; this dynamic simulator comprises three sets of movement control unit with symmetrical structure located at the positions relative to each other forming three sides of an equilateral triangle, and a load-carrying platform which connected to the three movement control by means of three sets of universal-joint yoke mechanism each relative position located on the load-carrying platform are each other arranged to form as three sides of an equilateral triangle too; with this type of arrangement, this dynamic simulator have a 6-degree of freedom motion when a sets of movement control unit makes different rectilinear motion, the load-carrying platform will generate a combination of spatial translation motion and angular motion.
    Type: Grant
    Filed: July 21, 2003
    Date of Patent: October 24, 2006
    Inventor: Johnson Chiang
  • Patent number: 7110859
    Abstract: A temporary operation path is set by connecting a plurality of welding points in a virtual space generated by a computer to investigate whether an end effector can be operated along the temporary operation path. If the operation cannot be operated, a path to avoid interference with a workpiece is set automatically while extracting a portion in which the workpiece exists in the internal space surrounded by the end effector in order to set a narrow-area operation path for withdrawing the end effector from a welding point. Next, in order to set a wide-area operation path for making movement between withdrawing points, a template operation is applied, in which the end effector is moved by a prescribed distance in a prescribed direction.
    Type: Grant
    Filed: November 22, 2001
    Date of Patent: September 19, 2006
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Kaoru Shibata, Ryo Nakajima, Masakatsu Kaneko
  • Patent number: 7021173
    Abstract: A remote center of motion robotic system including a base unit and a plurality of linking units. The base unit is rotatable about a first axis. The plurality of linking units are coupled with one another. At least two of the linking units are kept parallel to each another during motion. The plurality of linking units are coupled with that base unit at a first end. The plurality of linking units are rotatable about a second axis by changing an angle between each of the plurality of links.
    Type: Grant
    Filed: February 6, 2003
    Date of Patent: April 4, 2006
    Assignee: The John Hopkins University
    Inventors: Dan Stoianovici, Louis L. Whitcomb, Dumitru Mazilu, Russell H. Taylor, Louis R. Kavoussi
  • Patent number: 7013744
    Abstract: The invention concerns a device for the non-contact measurement of the position of the teeth (13) of a workpiece (14) with precut teeth on a gear finishing machine. The measuring probe, retractable from the measuring position into a position of rest protected against soiling, is arranged in a holder (5) for radial and axial adjustment relative to the workpiece, the said holder (5) being a kinematic member of a parallelogram linkage (A) and by means of a hydraulic, pneumatic or electromechanical swivel drive (11) is swivellable from stop to stop between measuring position and position of rest in a plane containing the workpiece axis, such that in the advancement action from the lower end position to the top end position motions of the measuring probe (1) tangential to the workpiece circumference are completely avoided. The parallelogram kinematics moreover afford adequate protection against swarf and grinding dust, and lends the device a high stiffness and reliability.
    Type: Grant
    Filed: October 31, 2003
    Date of Patent: March 21, 2006
    Assignee: Reishauer AG
    Inventor: Walter Wirz
  • Patent number: 6981727
    Abstract: Diode-type nanotweezers including a first arm and a second arm that project from a holder and are opened and closed by an electrostatic force so as to hold a nanosubstance. The first arm is formed by a gate nanotube fastened at its base end to the holder, and its tip end protrudes from the holder. The second arm is formed by a nanotube diode fastened at its two base ends to the holder and have a diode characteristic portion at its tip end. Diode current and diode voltage applied between the base ends of the arms shows a non-linear diode characteristic such as varistor and rectification. When a gate voltage is applied between the gate nanotube and the nanotube diode, the arms are controlled and a grip strength for a nanosubstance held by the arms is detected by changes in the gate voltage or the diode current.
    Type: Grant
    Filed: January 31, 2003
    Date of Patent: January 3, 2006
    Assignees: Daiken Chemical Co., Ltd.
    Inventors: Yoshikazu Nakayama, Akio Harada
  • Patent number: 6934606
    Abstract: In one embodiment, a wafer-handling robot in a wafer processing system is automatically calibrated by determining an orientation of the robot relative to a chassis of the wafer processing system, determining hand-off coordinates of a load port in the wafer processing system, and determining hand-off coordinates of a load lock in the wafer processing system. Also disclosed is a calibration fixture for automatically calibrating the wafer-handling robot to the load port.
    Type: Grant
    Filed: June 20, 2003
    Date of Patent: August 23, 2005
    Assignee: Novellus Systems, Inc.
    Inventors: Damon Genetti, Wayne Tang, Mikhail Bojinov, Stephan Minard
  • Patent number: 6923085
    Abstract: A robotic portion 1 has X-axis, Y-axis and Z-axis modules 2, 3, 4 and can move in three axial directions. This robotic portion 1 is mounted in such a manner as to move on a second base 10 in the X-axis direction. Furthermore, the second base is mounted in such a manner as to move on a first base 12 in the Y-axis direction. Then, the robotic portion 1 can be moved on either the first or second base 12, 10 on pins 7, 8 provided on the Z-axis module 4 which act as fulcrums by moving the robotic portion 1 in the Y-axis direction or the X-axis direction with the pins 7, 8 being inserted into hole portions 14, 11 formed in the first or second base 12, 10.
    Type: Grant
    Filed: March 8, 2002
    Date of Patent: August 2, 2005
    Assignee: DENSO Corporation
    Inventor: Tomoaki Nakano
  • Patent number: 6922611
    Abstract: A automation equipment control system comprises a general purpose computer with a general purpose operating system in electronic communication with a real-time computer subsystem. The general purpose computer includes a program execution module to selectively start and stop processing of a program of equipment instructions and to generate a plurality of move commands. The real-time computer subsystem includes a move command data buffer for storing the plurality of move commands, a move module linked to the data buffer for sequentially processing the moves and calculating a required position for a mechanical joint. The real-time computer subsystem also includes a dynamic control algorithm in software communication with the move module to repeatedly calculate a required actuator activation signal from a joint position feedback signal.
    Type: Grant
    Filed: December 30, 2003
    Date of Patent: July 26, 2005
    Assignee: Robotic Workspace Technologies, Inc.
    Inventor: John R. Lapham
  • Patent number: 6886231
    Abstract: An apparatus and method for mounting a valve stem to the rim of an automotive vehicle wheel includes rims being supplied in series by a conveyor to a gauging station where the type and/or size of the rim and the location and alignment of an aperture for receiving the valve stem is determined by a machine vision system. An electronic control system directs a robotic manipulator to grasp either the valve stem or the rim, move the valve stem or the rim to a mounting station, position the valve stem or the rim with respect to the other such that the aperture in the rim is in coaxial alignment with the valve stem, and insert the valve stem through the aperture in the rim. If necessary, a power-actuated nut runner, mounted on the robotic manipulator or adjacent the mounting station, is used to tighten a nut over the valve stem.
    Type: Grant
    Filed: October 4, 2002
    Date of Patent: May 3, 2005
    Assignee: Burke E. Porter Machinery Company
    Inventors: Lawrence Lawson, Karl D. Sachs
  • Patent number: 6889119
    Abstract: A robotic device for moving at least one object between locations, including a servo motor system having a single servo axis for effecting motion in at least two directions of motion. The robotic device includes a link arm rotationally coupled to said servo motor system for lifting and placing said at least one object, a head assembly having gripper arms for gripping and releasing said at least one object at said locations. The head assembly includes a leveling mechanism for maintaining said at least one object in a desired orientation, and a split ring sensing mechanism, disposed between said gripper arms, for determining the presence of said at least one object.
    Type: Grant
    Filed: October 31, 2002
    Date of Patent: May 3, 2005
    Assignee: Thermo CRS, Ltd.
    Inventors: Michael Paul Riff, Thomas Ian Hatherley
  • Patent number: 6877215
    Abstract: A compliance mechanism for manipulating a control object by an end effector supported by a robotic arm. The robotic arm is supported by a combination of linear slides for two-axis freedom of movement. A locking arm is attached to the robotic arm and the locking arm is moveable between a locked and an unlocked position. The locking arm is biased in the locked position to restrict movement of the robotic arm along the two axes. A plunger extends adjacent the end effector. Upon engagement with an alignment feature associated with the control object, the plunger moves the locking arm from the locked to the unlocked position, thereby introducing compliance along the two axes manipulation of the control object.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: April 12, 2005
    Assignee: Seagate Technology LLC
    Inventor: Michael W. Pfeiffer
  • Patent number: 6848633
    Abstract: In an aspirating and dispensing/spraying device, a holder is screwed onto a tube, connected to a liquid supply line, in such a way that it is displaceable along the tube by rotation. The tube is surrounded at a distance by a coaxial sleeve, which is solidly anchored in the holder, having a discharge opening on its front end, which is conically narrowed, whose edge surrounds the front end of the tube, which carries a outlet opening, separated by a narrow annular gap from the tube. The sleeve carries a connecting piece laterally, to which a pressurized gas supply line is connected and which discharges eccentrically into the space between the sleeve and the tube, so that pressurized gas flowing in receives angular momentum. When the gas flows out of the annular gap, it mixes intensively with the liquid coming out of the outlet opening and forms a discharge cone made of a fine, symmetrical aerosol with the liquid.
    Type: Grant
    Filed: April 25, 2002
    Date of Patent: February 1, 2005
    Assignee: Tecan Trading AG
    Inventor: Daniel Ryser
  • Patent number: 6845295
    Abstract: A method of controlling a robot (32) includes the steps of selecting an initial configuration from at least one of a first, second, and third sets to position a TCP at a starting point (44) along a path (33) and selecting a final configuration different than the initial configuration to position the TCP at an ending point (46). Next, the TCP moves from the starting point (44) while maintaining the initial configuration, approaches the singularity between a first point (48) and a second point (50), and selects one of the axes in response to reaching the first point (48). The angle for the selected axis is interpolated from the first point (48) to the second point (50). After the interpolation, the angles about the remaining axes are determined and positions the arms in the final configuration when the TCP reaches the second point (50) and moves to the ending point (46) while maintaining the final configuration.
    Type: Grant
    Filed: March 6, 2003
    Date of Patent: January 18, 2005
    Assignee: FANUC Robotics America, Inc.
    Inventors: Sai-Kai Cheng, Di Xiao, Chi-Keng Tsai, H. Dean McGee, Min-Ren Jean
  • Patent number: 6805390
    Abstract: To provide nanotweezers and a nanomanipulator which allow great miniaturization of the component and are capable of gripping various types of nano-substances such as insulators, semiconductors and conductors and of gripping nano-substances of various shapes. Electrostatic nanotweezers 2 are characterized in that the nanotweezers 2 are comprised of a plurality of nanotubes whose base end portions are fastened to a holder 6 so that the nanotubes protrude from the holder 6, coating films which insulate and cover the surfaces of the nanotubes, and lead wires 10, 10 which are connected to two of the nanotubes 8, 9; and the tip ends of the two nanotubes are freely opened and closed by means of an electrostatic attractive force generated by applying a voltage across these lead wires.
    Type: Grant
    Filed: April 4, 2003
    Date of Patent: October 19, 2004
    Assignees: Yoshikazu Nakayama, Daiken Chemical Co., Ltd.
    Inventors: Yoshikazu Nakayama, Seiji Akita, Akio Harada, Takashi Okawa
  • Patent number: 6802549
    Abstract: To provide nanotweezers and a nanomanipulator which allow great miniaturization of the component and are capable of gripping various types of nano-substances such as insulators, semiconductors and conductors and of gripping nano-substances of various shapes. Electrostatic nanotweezers 2 are characterized in that the nanotweezers 2 are comprised of a plurality of nanotubes whose base end portions are fastened to a holder 6 so that the nanotubes protrude from the holder 6, coating films which insulate and cover the surfaces of the nanotubes, and lead wires 10, 10 which are connected to two of the nanotubes 8, 9; and the tip ends of the two nanotubes are freely opened and closed by means of an electrostatic attractive force generated by applying a voltage across these lead wires.
    Type: Grant
    Filed: April 4, 2003
    Date of Patent: October 12, 2004
    Assignees: Daiken Chemical Co., Ltd.
    Inventors: Yoshikazu Nakayama, Seiji Akita, Akio Harada, Takashi Okawa
  • Patent number: 6766711
    Abstract: The present invention concerns an industrial robot according to the delta concept with an arm system (2) intended for rotation in space that comprises a base section (4), a movable plate (6), several jointed struts (8) and a telescopic shaft (10, 40) arranged between the base section and the movable plate, in which opposite ends (12, 14) of the struts and the telescopic shaft are connected to the base section and to the movable plate, respectively, and in which the telescopic shaft (10, 40) comprises a first telescopic arm (16, 46) and a second telescopic arm (18, 48) that are arranged longitudinally displaceable relative to each other, that each telescopic arm (16, 18; 46, 48) comprises at least two rods (20, 22; 50, 52) that are attached to holders (24-27; 54-57) at their respective end sections. The present invention also includes a method and an application.
    Type: Grant
    Filed: September 26, 2002
    Date of Patent: July 27, 2004
    Assignee: ABB AB
    Inventors: HÃ¥kan Hvittfeldt, Pierre Mikaelsson
  • Patent number: 6761522
    Abstract: An automated cell for the handling of workpieces is disclosed that comprises a working space within which a two-dimensional gantry that comprises a first and a second linear axis which are coupled to each other. A first gripping device is movable across the working space horizontally and also vertically. A gantry extends above the working space and protrudes towards a machine tool. Along the gantry a second gripping device is displaceable for moving workpieces between the working space of the automated cell and the machine tool. Both linear axes of the two-dimensional gantry are driven by linear motor drives, to allow a fast movement of workpieces and also to allow the performing of supplementary functions without slowing down the machine tool supplied by the automated cell.
    Type: Grant
    Filed: January 15, 2002
    Date of Patent: July 13, 2004
    Assignee: Felsomat GmbH & Co.
    Inventor: Helmut F. Jäger
  • Patent number: 6729202
    Abstract: A manipulator having three support legs each extending between the platform and a ground. The support legs are connected to the ground by a first joint member and to the platform by a second joint member, and these joint members are interconnected by a third joint member. The support legs each have a rotational degree of freedom and have constraints in the joint members operable to restrict the platform to translational motion and to constrain a relationship between linear displacement of the first joint members and output of the platform to be linear. With three actuators each controlling exclusively one of three translational degrees of freedom of the platform, the manipulator is said to be decoupled. With the relationship being equal for a linear displacement of any one of the first joint members and a displacement output of the platform, the decoupled manipulator is said to be isotropic.
    Type: Grant
    Filed: July 8, 2002
    Date of Patent: May 4, 2004
    Assignee: Université Laval
    Inventors: Clément Gosselin, Xianwen Kong
  • Patent number: 6695120
    Abstract: A controlled material transport system (MTS) for carrying materials to and from workstations, test equipment, and processing and assembly tools in a common facility. The present invention includes a rigid robot vehicle mountable to a passive track system, which can be routed to service all processing tools on the factory floor. The robot vehicle includes a hoist assembly and gripper assembly, which together perform such functions as picking up magazines, placing magazines, and loading magazines into the processing tools. The hoist assembly is capable of functioning in an operational envelope, which includes any target location within a 3-axis Cartesian coordinate system, to the extent of the range of motion of the hoist assembly. The hoist assembly also provides rigid and controlled z-axis travel, while being compact when retracted. The gripper assembly facilitates loading of the magazines, especially chute style magazines, which are commonly found on many existing processing tools.
    Type: Grant
    Filed: June 22, 2000
    Date of Patent: February 24, 2004
    Assignee: Amkor Technology, Inc.
    Inventor: Harold L. Trammell
  • Patent number: 6675069
    Abstract: An arm operation mechanism for an industrial robot includes a support, a first arm, a second arm, a link base, a parallel link and a conversion mechanism. The first arm has a base end pivotally connected to the support for rotation relative to the support. The second arm has a base end pivotally connected to a tip end of the first arm for rotation relative to the first arm. The link base is pivotally connected to the first arm for rotation relative to the first arm. The parallel link keeps a constant posture of the link base upon the rotation of the first arm. The conversion mechanism converts the rotation of the link base relative to the first arm into the rotation of the second arm relative to the link base.
    Type: Grant
    Filed: April 23, 2002
    Date of Patent: January 6, 2004
    Assignee: Daihen Corporation
    Inventor: Takafumi Uratani
  • Patent number: 6675070
    Abstract: A automation equipment control system comprises a general purpose computer with a general purpose operating system in electronic communication with a real-time computer subsystem. The general purpose computer includes a program execution module to selectively start and stop processing of a program of equipment instructions and to generate a plurality of move commands. The real-time computer subsystem includes a move command data buffer for storing the plurality of move commands, a move module linked to the data buffer for sequentially processing the moves and calculating a required position for a mechanical joint. The real-time computer subsystem also includes a dynamic control algorithm in software communication with the move module to repeatedly calculate a required actuator activation signal from a joint position feedback signal.
    Type: Grant
    Filed: August 26, 2002
    Date of Patent: January 6, 2004
    Assignee: Robotic Workspace Technologies, Inc.
    Inventor: John R. Lapham
  • Patent number: 6669256
    Abstract: To provide nanotweezers and a nanomanipulator which allow great miniaturization of the component and are capable of gripping various types of nano-substances such as insulators, semiconductors and conductors and of gripping nano-substances of various shapes. Electrostatic nanotweezers 2 are characterized in that the nanotweezers 2 are comprised of a plurality of nanotubes whose base end portions are fastened to a holder 6 so that the nanotubes protrude from the holder 6, coating films which insulate and cover the surfaces of the nanotubes, and lead wires 10, 10 which are connected to two of the nanotubes 8, 9; and the tip ends of the two nanotubes are freely opened and closed by means of an electrostatic attractive force generated by applying a voltage across these lead wires.
    Type: Grant
    Filed: November 7, 2001
    Date of Patent: December 30, 2003
    Assignees: Daiken Chemical Co., Ltd.
    Inventors: Yoshikazu Nakayama, Seiji Akita, Akio Harada, Takashi Okawa
  • Patent number: 6658962
    Abstract: A controlled relative motion system having first and second support structures with a controlled output position joint connecting them, and with similar joints on these support structures. One joint is coupled to another controlled relative motion system having an output carrier rotatable in two perpendicular directions through the use of gears therein. This output carrier supports two articulated manipulating systems of which one has a single axis rotatable subbase supporting a rotatable gripping extension, and the other has a shackle connected to a base effector which shackle is supported on a fixed pedestal and another shackle connected to a base effector which shackle is supported on a moveable pedestal.
    Type: Grant
    Filed: October 31, 2002
    Date of Patent: December 9, 2003
    Assignee: Ross-Hime Designs, Incorporated
    Inventor: Mark E. Rosheim
  • Publication number: 20030159535
    Abstract: A robot drive assembly for moving a working tool in x, y, z and theta directions comprising three independent, coaxially nested tubes, each tube being driven around a common central axis by drive belts attached to separate drive motors located in a mounting flange associated with the outermost tube. The motors, and the tubes which they drive, provide horizontal rotary motion to a robot arm attached to the upper end of the outer tube and the wrist and elbow of that arm. A fourth motor controls vertical motion of the whole assembly. The robot system also includes motor position adjustment structure and belt tension structure designed for ease of use and to eliminate movement of tensioned components once locked in position.
    Type: Application
    Filed: March 3, 2003
    Publication date: August 28, 2003
    Inventors: Gaylen Grover, Dennis Wightman, Tomas Melendez
  • Patent number: 6597784
    Abstract: An automatic main distributing frame, which can easily maintain the size accuracy required to insert into a through hole of the conductive pin is provided. The main distributing frame includes a frame body, plural matrix switch boards accommodated in the frame body, each having matrix switch sections and input/output connectors on a rear section, a back wire board provided on a rear section of the frame body, having connectors connected to the input/output connectors on each rear section of the plural matrix switch boards, and plural robots, each positioned between a pair of two matrix switch board sections of the plural matrix switch boards, each having a hand section for inserting connection pins to the matrix switch sections of the two matrix switch boards.
    Type: Grant
    Filed: April 8, 1999
    Date of Patent: July 22, 2003
    Assignee: Fujitsu Limited
    Inventors: Eiichi Kakihara, Koji Honda
  • Patent number: 6592315
    Abstract: A robotic self-feeding device uses a multiplicity of dishes, utensils and control methods to handle a wide variety of food, including sandwiches. Its operating sequence has a hover mode in which a utensil is automatically steered over a food holder and is constrained from moving away from the food holder. The user points to the desired food with the utensil and triggers pickup which is automatically accomplished. Its gripper can operate tong utensils to grasp food. It can cut food. The process of eating is thus easy and intuitive for people who may have a wide variety of severe paralysis disabilities.
    Type: Grant
    Filed: May 7, 2001
    Date of Patent: July 15, 2003
    Inventor: William Joseph Osborne, Jr.
  • Patent number: 6591161
    Abstract: A robot wafer alignment tool uses a reflector mounted on a multi-axis robot to determine the position of the robot or other objects within a chamber. The reflector reflects images to at least one camera from an area or object of interest in the chamber.
    Type: Grant
    Filed: January 31, 2001
    Date of Patent: July 8, 2003
    Assignee: WaferMasters, Inc.
    Inventors: Woo Sik Yoo, Kitaek Kang
  • Patent number: 6585476
    Abstract: A surface mounting device is provided on which work can be performed more efficiently and correctly by providing one or more moving means movable together or independently to a predetermined portion of a X-Y gantry. The surface mounting device includes one or more X frames configured to be driven in a predetermined direction together or independently; main driving means for driving the one or more X frames; one or more moving means disposed on a selected portion of the X frames and having one or more manipulators movable in a predetermined direction together or independently; sub driving means configured to drive the one or more manipulators together or independently; one or more head and vision portions disposed on the one or more moving means; and a component supplying portion configured to supply a component to the head.
    Type: Grant
    Filed: November 18, 1999
    Date of Patent: July 1, 2003
    Assignee: Mirae Corporation
    Inventor: Yun Hyung Yi
  • Patent number: 6584378
    Abstract: When determining coordinates of a point of an object (2) in a reference system of coordinates and the orientation of the object in the space in a measuring position assumed by the object, the object is moved from a start position having known coordinates and a known orientation to a measuring position while detecting this movement. Said coordinates and the orientation of the object in the measuring position are calculated from information from this detection and about the start position. Furthermore, the acceleration and retardation of the object are measured during the movement, and the coordinates and the orientation of the object in the measuring position are calculated from information from this measurement.
    Type: Grant
    Filed: April 22, 2002
    Date of Patent: June 24, 2003
    Assignee: ABB Flexible Automation
    Inventor: Ole Arnt Anfindsen