Oxygen Or Ozone Sorbed Patents (Class 95/138)
  • Patent number: 6436171
    Abstract: The present invention provides for novel solid state O2-selective metal complex-based adsorbents and their utility for separating oxygen from a gas stream. In particular, the invention provides for an adsorption complex which contains four-coordinate O2-selective metal complexes including oligomeric/polymeric metal complexes, and organic base-containing polymers supported on porous materials.
    Type: Grant
    Filed: June 12, 2000
    Date of Patent: August 20, 2002
    Assignee: The BOC Group, Inc.
    Inventors: Qing Min Wang, Dongmin Shen, Miu Ling Lau, Martin Bülow, Frank R. Fitch, Norberto O. Lemcoff, Philip Connolly
  • Patent number: 6436872
    Abstract: An oxygen-absorbing composition containing particulate annealed electrolytically reduced iron of between about 100 mesh and 325 mesh in an amount of about up to 63% by weight, a salt such as sodium chloride in an amount by weight of about up to 3.5%, and a water-supplying component comprising activated carbon. with liquid water therein of a mesh size of between about 20 mesh and 50 mesh in an amount by weight of up to about 85% in an envelope which will resist the passage of liquid water out of the envelope but will permit flow of oxygen into the envelope at a satisfactory rate.
    Type: Grant
    Filed: May 2, 2001
    Date of Patent: August 20, 2002
    Assignee: Multisorb Technologies, Inc.
    Inventor: George E. McKedy
  • Publication number: 20020064494
    Abstract: Partial oxidation of hydrocarbons to produce hydrogen and carbon monoxide is carried out by a fixed bed or a fluidized bed process which includes the steps of passing steam and/or carbon dioxide through a perovskite-type ceramic mixed conductor in an adsorption zone at an elevated temperature, thereby at least partially saturating the mixed conductor with oxygen and producing hydrogen and/or carbon monoxide, and subsequently contacting the hot, at least partially oxygen-saturated mixed conductor with a hydrocarbon in a partial oxidation reaction zone. During the partial oxidation reaction phase of the process, the sorbed oxygen reacts with the hydrocarbon, thereby producing hydrogen and carbon monoxide.
    Type: Application
    Filed: May 13, 1999
    Publication date: May 30, 2002
    Inventors: YONGXIAN ZENG, DONALD L. MACLEAN, SATISH S. TAMHANKAR, NARAYANAN RAMPRASAD, FRANK R. FITCH, KIRK WALTON LIMBACH
  • Patent number: 6361584
    Abstract: A pressure swing adsorption system for processing an oxygen-containing feed gas mixture to extract oxygen therefrom, comprising an adsorbent bed arranged for elevated temperature sorption/desorption operation, wherein the adsorbent bed comprises a ceramic adsorbent having affinity for oxygen when the ceramic adsorbent is at elevated temperature. Suitable ceramic adsorbents include lanthanum calcium cobalt ferrites and other oxygen ionic transport ceramic metal oxide compositions. As applied to the separation of air or other oxygen/nitrogen mixtures, the PSA system is effective to produce oxygen-rich as well as nitrogen-rich product gases.
    Type: Grant
    Filed: November 2, 1999
    Date of Patent: March 26, 2002
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Ward C. Stevens, Delwyn Cummings, Philip Chen
  • Publication number: 20020033095
    Abstract: A component gas concentrator includes an air compressor, an air-tight first container containing a molecular sieve bed, the first container in fluid communication with the compressor through a first gas conduit, and an air-tight second container in fluid communication with the first container through a second gas conduit. A gas flow controller such as PLC controls actuation of valves mounted to the gas conduits.
    Type: Application
    Filed: August 2, 2001
    Publication date: March 21, 2002
    Inventor: John Lee Warren
  • Patent number: 6344070
    Abstract: A method of removing individual gas components of a mixture of gases within a controlled environment container uses apparatus which comprises first and second chambers which are arranged in parallel for the gas mixture to flow through them from their inlet ends to their outlet ends. The chambers contain adsorbent material with different affinities for the gas components of the mixture. The method comprises supplying the gas mixture to the first chamber so as to pressurize it while allowing a purge stream to flow from the outlet end of the first chamber to the second chamber to purge adsorbed gas from the adsorbent material in the second chamber. A purge pulse of gas is then supplied from the outlet end of the first chamber to the second chamber to purge adsorbed gas from the adsorbent material in the second chamber, the rate of flow of the purge stream being less than that of the purge pulse.
    Type: Grant
    Filed: June 26, 2000
    Date of Patent: February 5, 2002
    Assignee: Domnick Hunter Ltd
    Inventor: Robert Banks
  • Publication number: 20010055554
    Abstract: Method for treating atmospheric pollutants by contacting the atmosphere with a catalyst composition or adsorptive material coated on the surface of a substrate in which the catalyst composition or adsorptive material is protected from degradation by harmful contaminants contained in the atmosphere by a coating of at least one porous protective material and a device useful therefor.
    Type: Application
    Filed: August 2, 2001
    Publication date: December 27, 2001
    Applicant: ENGELHARD CORPORATION
    Inventors: Jeffrey B. Hoke, Ronald M. Heck, Fred M. Allen
  • Publication number: 20010042439
    Abstract: The system and method for molecular contamination control permits purging a SMIF pod to desired levels of relative humidity, oxygen, or particulates. The SMIF pod includes an inlet port including a check valve and filter assembly for supplying a clean, dry gaseous working fluid to maintain low levels of moisture, oxygen, and particulate content around materials contained in the SMIF pod. The SMIF pod outlet port, which also includes a check valve and filter assembly, is connected with an evacuation system. Flow of purge gas inside the SMIF pod can be directed with one or more nozzle towers to encourage laminar flow inside the pod, and one or more outlet towers, having a function similar to that of the inlet tower, may also be provided. The purge gas can be dried by exposure to a desiccant, heated to temperatures between about 100° C. and about 120° C., and can be tested for baseline constituent levels prior to or after introduction into a SMIF pod.
    Type: Application
    Filed: February 21, 2001
    Publication date: November 22, 2001
    Inventors: Glenn A. Roberson, Robert M. Genco, Robert B. Eglinton, Wayland Comer, Gregory K. Mundt
  • Patent number: 6315814
    Abstract: A gas separation plant includes, downstream of the line for feeding the gas separation module with a compressed gas mixture, a liquid particle separation device which includes a liquid detector, for example, of the optronic type, delivering an output signal, connected to an alarm device and to a central control unit of the plant.
    Type: Grant
    Filed: November 17, 1999
    Date of Patent: November 13, 2001
    Assignee: L'Air Liquide, Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Lionel Barry, Patrice Goeler
  • Patent number: 6311719
    Abstract: The present invention relates to a rotary valve assembly for a pressure swing adsorption system. The rotary valve assembly includes a first valve member and a second valve member relatively rotatable about a common center of rotation to provide valving action for selectively transferring fluids therethrough. The second valve member has a first fluid section with at least one aperture adapted for transferring a first fluid of a first pressure and composition therethrough and a second fluid section with at least one aperture adapted for transferring a second fluid of a second pressure and composition therethrough. The first valve member has a first fluid section with at least one passage for transferring the first fluid in the valve assembly and a second fluid section with at least one passage for transferring the second fluid in the valve assembly.
    Type: Grant
    Filed: August 10, 1999
    Date of Patent: November 6, 2001
    Assignee: Sequal Technologies, Inc.
    Inventors: Theodore B. Hill, Charles C. Hill, Adam C. Hansen
  • Patent number: 6293997
    Abstract: A method for delivering at least two working gases from a common air supply comprising the steps of depleting the air in O2 in order to obtain a first gas mixture having an O2 content less than or equal to t1; delivering at least a portion of this first gas mixture as a first working gas; depleting another portion of this first gas mixture in O2 in order to obtain the second gas mixture having an O2 content less than or equal to t2, wherein t1 is greater than t2; and delivering the second gas mixture as a second working gas.
    Type: Grant
    Filed: November 9, 1999
    Date of Patent: September 25, 2001
    Assignee: L'Air liquide, Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Denis Verbockhaven, Claude Bonet, Thierry Sindzingre
  • Publication number: 20010022135
    Abstract: An ozone storage apparatus is disclosed for storing ozone efficiently. A process for efficient water treatment is also disclosed. The ozone storage container has a generally U-shape and is filled with an absorbent. The ozone is supplied and discharged from the same opening. The temperature of the absorbent is kept between 0° C. and −30° C. The generated ozone from an ozone generating means is cooled by a cooling device and is supplied to a storage device.
    Type: Application
    Filed: March 1, 2001
    Publication date: September 20, 2001
    Inventor: Akira Murai
  • Patent number: 6277174
    Abstract: The invention maintains a nearly constant cycle pressure ratio along with a balancing of the adsorbent vessel effluents in a pressure swing adsorption process. The invention monitors cycle pressure ratio and subsequently alters the cycle step times and flows to sustain its value, thereby maximizing plant performance and avoiding unnecessary shutdowns. Maintaining a nearly constant pressure ratio assures that the plant production is optimized and that power consumption is minimized. The balancing of the adsorbent vessel effluents, using the corresponding waste purities, is used to further improve plant production.
    Type: Grant
    Filed: January 7, 2000
    Date of Patent: August 21, 2001
    Assignee: Praxair Technology, Inc.
    Inventors: Bernard Thomas Neu, James Smolarek, Michael Kenneth Rogan
  • Patent number: 6273939
    Abstract: A process, particularly of the TSA type, for separating impurities of the nitrogen protoxide (N2O) and possibly carbon dioxide (CO2) or ethylene (C2H4) type which are contained in a gas stream, such as air. The impurities of nitrogen protoxide type are removed on a faujasite zeolite having a Si/Al ratio of 1 to 1.5 and containing from 0 to 35% of K+ cations, between 1 and 99% of Na+ cations and between 1 and 99% of Ca2+ cations, preferably at least 50% of Ca2+ cations. The separation is preferably carried out at a temperature of approximately −40° C. to +80° C., preferably at room temperature. Advantageously, the process is employed for prepurifying atmospheric air before cryogenic distillation of the air thus prepurified.
    Type: Grant
    Filed: October 20, 1999
    Date of Patent: August 14, 2001
    Assignee: L'Air Liquide, Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Cyrille Millet, Serge Moreau, Georges Kraus, Jean-Pierre Gabillard
  • Patent number: 6261343
    Abstract: The present invention provides a pressure swing adsorption process. The process includes providing a pressure swing adsorption apparatus having a discharge end adsorption layer of activated carbon, feeding through the apparatus a feed gas including hydrogen, carbon monoxide and at least one of argon and oxygen, and collecting a product gas from the apparatus, wherein the product gas is high purity hydrogen. Also provided is a method for decreasing an amount of impurities in a product gas from a pressure swing adsorption process for separating hydrogen from impurities including carbon monoxide, and at least one of argon and oxygen.
    Type: Grant
    Filed: March 2, 1999
    Date of Patent: July 17, 2001
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Timothy Christopher Golden, Thomas Stephen Farris, Robin Joyce Maliszewskyj, Tracey A Cook
  • Patent number: 6251164
    Abstract: Separation of one or more fluidic components from a feed fluid containing a plurality of components is accomplished by adsorbent powder entrained in a stream of fluid, such as gas, and preferably is operated as a temperature swing adsorption process using waste thermal energy from a plant.
    Type: Grant
    Filed: August 27, 1999
    Date of Patent: June 26, 2001
    Assignee: Praxair Technology, Inc.
    Inventors: Frank Notaro, Jeffert John Nowobilski, Dariush Habibollih Zadeh
  • Publication number: 20010003950
    Abstract: A process and composition for selectively adsorbing oxygen from a gaseous mixture. The chemisorption is carried out by a porous three-dimensional transition element complex comprised of intermolecularly bound TEC units, said units further comprised of at least one multidentate ligand forming at least one five- or six-membered chelate ring on each unit.
    Type: Application
    Filed: November 30, 2000
    Publication date: June 21, 2001
    Inventors: Delong Zhang, Neil Andrew Stephenson
  • Patent number: 6248690
    Abstract: An oxygen-absorbing composition containing particulate annealed electrolytically reduced iron of between about 100 mesh and 325 mesh in an amount of about up to 63% by weight, a salt such as sodium chloride in an amount by weight of about up to 3.5%, and a water-supplying component comprising activated carbon with liquid water therein of a mesh size of between about 20 mesh and 50 mesh in an amount by weight of up to about 85% in an envelope which will resist the passage of liquid water out of the envelope but will permit flow of oxygen into the envelope at a satisfactory rate.
    Type: Grant
    Filed: October 27, 1994
    Date of Patent: June 19, 2001
    Assignee: Multisorb Technologies, Inc.
    Inventor: George E. McKedy
  • Patent number: 6241955
    Abstract: A process and apparatus for the decontamination of gaseous contaminants (especially oxygen, carbon dioxide and water vapor) from hydride gases (including their lower alkyl analogs) down to ≦100 ppb contaminant concentration are described. The critical component is a high surface area metal oxide substrate with reduced metal active sites, which in various physical forms is capable of decontaminating such gases to ≦100 ppb, ≦50 ppb or ≦10 ppb level without being detrimentally affected by the hydride gases. The surface area of the substrate will be ≧100 m2/g, and preferably 200-800 m2/g. Oxides of various metals, especially manganese or molybdenum, can be used, and mixtures of integrated oxides, or one type of oxide coated on another, may be used. The substrate is preferably retained in a hydride-gas-resistant container which is installed in a gas supply line, such as to a gas- or vapor-deposition manufacturing unit.
    Type: Grant
    Filed: October 2, 1998
    Date of Patent: June 5, 2001
    Assignee: Aeronex, Inc.
    Inventor: Daniel Alvarez, Jr.
  • Patent number: 6206113
    Abstract: A method for enhancing gas or oil production by delivering a nitrogen rich gas produced from a non-cryogenic source into the well and/or reservoir where the gas and/or oil is located.
    Type: Grant
    Filed: September 8, 1999
    Date of Patent: March 27, 2001
    Assignee: MG Nitrogen Services, Inc
    Inventor: Keith P. Michael
  • Patent number: 6171373
    Abstract: An adsorptive monolith made by extruding a mixture of activated carbon, a ceramic forming material, a flux material, and water, drying the extruded monolith, and firing the dried monolith at a temperature and for a time period sufficient to react the ceramic material together and form a ceramic matrix. The extrudable mixture may also comprise a wet binder. The monolith has a shape with at least one passage therethrough and desirably has a plurality of passages therethrough to form a honeycomb. The monolith may be dried by vacuum drying, freeze drying, or control humidity drying. The monolith is useful for removing volatile organic compounds and other chemical agents such as ozone from fluid streams. Particularly useful applications include adsorptive filters for removing ozone from xerographic devices and other appropriate office machines and volatile organic compounds from automobile engine air intake systems.
    Type: Grant
    Filed: March 10, 1999
    Date of Patent: January 9, 2001
    Assignees: Applied Ceramics, Inc., Westvaco Corporation
    Inventors: Minwoo Park, Frank R. Rhodes, Jack H. L'Amoreaux, Frederick S. Baker, Robert K. Beckler, John C. McCue
  • Patent number: 6139603
    Abstract: Method for recovering oxygen from a medium containing O.sub.2 using polynitrogenated compounds that have five coordinating functions which are capable of binding a metal atom, particularly a cobalt atom. In the recovery method, oxygen is first absorbed by the metal complex and then desorbed from the complex and recovered in an appropriate vessel.
    Type: Grant
    Filed: June 2, 1994
    Date of Patent: October 31, 2000
    Assignee: L'Air Liquide, Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Brigitte Boisselier-Cocolios, Roger Guilard, Christophe Jean, Laurent Taurin
  • Patent number: 6113673
    Abstract: This invention is directed to the synthesis of high bulk density high gas absorption capacity adsorbents for gas storage applications. Specifically, this invention is concerned with novel gas absorbents with high gravimetric and volumetric gas adsorption capacities which are made from fullerene-based materials. By pressing fullerene powder into pellet form using a conventional press, then polymerizing it by subjecting the fullerene to high temperature and high inert gas pressure, the resulting fullerene-based materials have high bulk densities and high gas adsorption capacities. By pre-chemical modification or post-polymerization activation processes, the gas adsorption capacities of the fullerene-based adsorbents can be further enhanced. These materials are suitable for low pressure gas storage applications, such as oxygen storage for home oxygen therapy uses or on-board vehicle natural gas storage.
    Type: Grant
    Filed: September 16, 1998
    Date of Patent: September 5, 2000
    Assignee: Materials and Electrochemical Research (MER) Corporation
    Inventors: Raouf O. Loutfy, Xiao-Chun Lu, Weijiong Li, Michael G. Mikhael
  • Patent number: 6099619
    Abstract: Industrial grade carbon dioxide may contain unacceptable amounts of sulfur-containing materials, oxygen, and organic materials particularly detrimental to food-related uses of carbon dioxide. These can be effectively removed by a bed of silver-exchanged faujasite and an MFI-type molecular sieve. This permits an on-site, on-demand method of purifying carbon dioxide ranging from laboratory to tank car seals.
    Type: Grant
    Filed: October 13, 1998
    Date of Patent: August 8, 2000
    Assignee: UOP LLC
    Inventors: James R. Lansbarkis, Jon S. Ginrich
  • Patent number: 6096277
    Abstract: A catalyst system useful at room temperature for the destruction of ozone (O.sub.3), which is comprised of a washcoat of high surface area support containing Mn/Cu catalyst deposited on a macroporous carrier, such as a honeycomb monolith, optionally with the addition of noble metal (such as Pt) washcoat to remove carbon monoxide.
    Type: Grant
    Filed: November 24, 1997
    Date of Patent: August 1, 2000
    Assignee: Goal Line Environmental Technologies LLC
    Inventors: Larry E. Campbell, Michele W. Sanders
  • Patent number: 6086772
    Abstract: A method for preventing biofouling in a cooling water system wherein ozone of high density is intermittently injected into a circulating line of a cooling water system in which cooling water is made to circulate in a closed system which includes a cooling tower and a heat exchanger. There is further disclosed an apparatus for preventing biofouling in a cooling water system, comprising an ozone generator for producing ozone, an ozone reservoir for temporarily storing the produced ozone, and an ozone injector for injecting the stored ozone into a circulating line of a cooling water system. Biofouling can be economically and reliably prevented.
    Type: Grant
    Filed: July 8, 1998
    Date of Patent: July 11, 2000
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Yasuhiro Tanimura, Junji Hirotsuji, Shigeki Nakayama, Hisao Amitani, Hiroshi Yuge, Tateki Ozawa
  • Patent number: 6087289
    Abstract: The invention relates to the manufacture of novel molecular sieve adsorbents which are selective towards oxygen from its gaseous mixture with argon and/or nitrogen. More particularly, this invention relates to the manufacture of novel molecular sieve adsorbents useful for the separation of oxygen-argon-nitrogen gaseous mixture.
    Type: Grant
    Filed: March 9, 1998
    Date of Patent: July 11, 2000
    Assignee: Indian Petrochemical Corporation Limited
    Inventors: Nettem Venkateshwarlu Choudary, Raksh Vir Jasra, Sodankoor Garadi Thirumaleshwar Bhat
  • Patent number: 6083301
    Abstract: Process for purifying an inert fluid, in particular argon or helium, with respect to at least one of its impurities nitrogen (N.sub.2), oxygen (O.sub.2), carbon dioxide (CO.sub.2), carbon monoxide (CO) and hydrocarbons, in which at least some of the impurities are removed using a first adsorbent of the X zeolite type having a silica to aluminum ratio less than or equal to 1.15, and a purified inert fluid containing at most 10 ppb, preferably at most 1 ppb of impurities is recovered.
    Type: Grant
    Filed: December 3, 1998
    Date of Patent: July 4, 2000
    Assignee: L'Air Liquide, Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Daniel Gary, Rene Lardeau
  • Patent number: 6068682
    Abstract: Novel gas separation agents with precisely and predictably controlled pore sizes within the range of 3-4 Angstrom units and their preparation from ETS-4 by exchange with cations, particularly multivalent cations such as strontium followed by drying and calcination to effect controlled pore shrinkage is disclosed. These novel materials have utility in gas separation processes particularly the separation of nitrogen from a mixture of the same with methane.
    Type: Grant
    Filed: December 11, 1998
    Date of Patent: May 30, 2000
    Assignee: Engelhard Corporation
    Inventors: Steven M. Kuznicki, Valerie A. Bell, Ivan Petrovic, Bipin T. Desai
  • Patent number: 6059858
    Abstract: Oxygen is removed from gas streams by subjecting the gas stream to a pressure swing adsorption process carried out at temperature in the range of 300 to 1400.degree. C. using as adsorbent a perovskite material having the structural formula A.sub.1-x M.sub.x BO.sub.3-.delta., where A is a rare earth ion, M is Na, Ca, Sr, Ba or mixtures of these, B is Co, Mn, Cr or Fe, x varies from 0.1 to 1 and .delta. is the deviation from stoichiometric composition resulting from the substitution of Sr, Ca and Ba for rare earth ions.
    Type: Grant
    Filed: October 20, 1998
    Date of Patent: May 9, 2000
    Assignee: The BOC Group, Inc.
    Inventors: Yue-Sheng Lin, Donald L. MacLean, Yongxian Zeng
  • Patent number: 6030598
    Abstract: An ozone containing gas stream is produced from oxygen by subjecting oxygen to an electric discharge and the ozone is then adsorbed on to a solid adsorbent, such as zeolite, the oxygen containing stream leaving the adsorbent is recycled to the ozonising process. Periodically, oxygen adsorbed on the adsorbent is desorbed by co-currently passing a purge gas over the adsorbent and the desorbed oxygen is also recycled to the ozoniser. Lastly ozone is desorbed from the adsorbent by a counter-current flow of purge gas and used in an ozone demanding process.
    Type: Grant
    Filed: June 8, 1998
    Date of Patent: February 29, 2000
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Anthony K. J. Topham, Rodney J. Allam
  • Patent number: 6017382
    Abstract: A method of processing semiconductor manufacturing exhaust gases for recovering at least hexafluoroethane in which a feed stream composed of the exhaust gases is passed through an adsorbent bed selected to adsorb oxygen, and also nitrogen if present, but not to appreciably adsorb the hexafluoroethane. As a result, a product stream, discharged from the adsorbent bed, has a higher concentration of hexafluoroethane than in the feed stream. In one embodiment, only a single adsorbent such as carbon molecular sieve is provided to adsorb the oxygen or a modified 4A zeolite could be used to adsorb both oxygen and nitrogen. When nitrogen is a potential constituent, layers of carbon molecular sieve and zeolite are provided to adsorb the oxygen and then the nitrogen, respectively. A third adsorbent, preferably 5A zeolite may be provided in addition to the foregoing two adsorbents to also adsorb any carbon tetrafluoride produced as a by-product.
    Type: Grant
    Filed: March 30, 1998
    Date of Patent: January 25, 2000
    Assignee: The BOC Group, Inc.
    Inventors: Wenchang Ji, Dongmin Shen, Ravi Jain, Arthur I. Shirley, Atul M. Athalye, Piotr J. Sadkowski
  • Patent number: 6004377
    Abstract: SF.sub.6 gas is collected from the inside of a gas insulated machine during maintenance and inspection and is refined. Compositions of the refined SF.sub.6 gas are analyzed and confirmed to be reusable at the site. In the process of SF.sub.6 gas collecting and refining, acidic gases are neutralized and removed by a dry method using filters and the refined SF.sub.6 gas is collected in a collecting tank. In particular, after the refining, the composition of the collected SF.sub.6 gas is measured and confirmed by analysis equipment to quantitatively confirm whether or not the refined SF.sub.6 gas is reusable.
    Type: Grant
    Filed: June 16, 1998
    Date of Patent: December 21, 1999
    Assignees: Hitachi Engineering & Services Co., Ltd., Showa Denko K.K.
    Inventors: Shin Tamata, Toru Tsubaki, Akio Nadamura, Koji Ito, Toshio Ohi, Hiromoto Ohno
  • Patent number: 5985001
    Abstract: A thermodynamic pressure swing adsorption cycle utilizing "loudspeaker" diaphragms or pistons which are located at the top and bottom of a column containing a bed of adsorbent. The diaphragms are vibrated out of phase with each other so as to provide a displacement wave in the gas mixture within the bed of adsorbent. In addition to this displacement wave the gas is compressed prior to upward displacement and the gas pressure is lowered before the downward displacement by way of a second set of "loudspeakers" which form the side walls of the column. The second set of loudspeakers vibrate in phase with each other and operate at the same frequency as the displacement speakers.
    Type: Grant
    Filed: May 19, 1998
    Date of Patent: November 16, 1999
    Assignee: The Boc Group PLC
    Inventors: Michael Ernest Garrett, Alberto I. LaCava
  • Patent number: 5925168
    Abstract: A method for separating gases or other fluids involves placing a magnetic field on a monolithic carbon fiber composite sorption material to more preferentially attract certain gases or other fluids to the sorption material to which a magnetic field is applied. This technique may be combined with the known "pressure swing adsorption" technique utilizing the same sorption material.
    Type: Grant
    Filed: January 31, 1997
    Date of Patent: July 20, 1999
    Inventors: Roddie R. Judkins, Timothy D. Burchell
  • Patent number: 5906674
    Abstract: A process for separating oxygen and nitrogen using an adsorption system comprising at least one main adsorption vessel containing an adsorbent selective for one component and at least one auxiliary adsorption vessel containing an adsorbent selective for the same component, the auxiliary vessel(s) being operated under conditions which result in the production of a product gas of lower purity than the product gas from the main adsorption vessel(s). The lower purity product gas from the auxiliary vessel is used to purge or pressurize the main adsorption vessel(s).
    Type: Grant
    Filed: December 16, 1997
    Date of Patent: May 25, 1999
    Assignee: The BOC Group, Inc.
    Inventors: Ziming Tan, Karl O. Toppel
  • Patent number: 5895769
    Abstract: Applicant has discovered a new zeolite containing composition and a process for preparing the same. The composition is unique in that the zeolite crystals making up one layer of the composition pack in a manner such that the composition is essentially continuous with no large scale voids even when the zeolite layer is <10 .mu.m thick. Thus, the present invention is directed toward a composition comprised of a porous substrate and a layer of zeolite crystals wherein said layer of zeolite crystals is a polycrystalline layer with at least 99% of said zeolite crystals having at least one point between adjacent crystals that is .ltoreq.20 .ANG. and wherein at least 90% of said crystals have widths of from about 0.2 to about 100 microns (preferably about 2 to about 50 microns) and wherein at least 75% of said crystals have a thickness of within 20% of the average crystal thickness. Preferably the composition has at most 1 Volume % voids in the zeolite layer. Use of the composition is also described.
    Type: Grant
    Filed: July 29, 1997
    Date of Patent: April 20, 1999
    Assignee: Exxon Research and Engineering Company
    Inventor: Wenyih Frank Lai
  • Patent number: 5891220
    Abstract: Process for the purification of a chemically inert gas, containing at least one of the O.sub.2 and/or CO impurities, from at least one of the impurities, characterized in that:a) the gas to be purified is passed through an adsorbent comprising at least one porous metal oxide, the gas having a temperature greater than or equal to -40.degree. C.,b) a gas which is substantially purified from at least one of the O.sub.2 and CO impurities is recovered. Device for implementation of the process.
    Type: Grant
    Filed: July 16, 1997
    Date of Patent: April 6, 1999
    Assignee: L'Air Liquide, Societe Anonyme Pour L'Etude et L'Exploitation des Procedes Georges Claude
    Inventor: Daniel Gary
  • Patent number: 5891217
    Abstract: A rotary valve system which includes of a pair of valve assemblies each of which has valve parts with flat faces which, when pressed together and rotated, provide valving action between various ports incorporated in one valve part of each assembly. The first valve part of each assembly contains a circular array of through openings, each of which is connected to a conduit. The second valve part of each assembly contains several passages which provide communication between various openings of the first valve part and valve apertures located in the second valve part of each assembly. The second valve part of each assembly also contains one or more passages which provide communication between members of one or the other array of openings. The valve system can be effectively used to automate operation of a gas or liquid adsorption system comprising two or more adsorption vessels, the number of vessels being equivalent to the total number of openings in either array.
    Type: Grant
    Filed: January 21, 1997
    Date of Patent: April 6, 1999
    Assignee: The BOC Group, Inc.
    Inventors: Norberto O. Lemcoff, Mario A. Fronzoni, Michael E. Garrett, Brian C. Green, Timothy D. Atkinson, Alberto I. La Cava
  • Patent number: 5888271
    Abstract: An ozone storage system which allows energy required for producing and storing ozone to be reduced and which supplies ozone as stored to an ozone consumer stably in continuation.
    Type: Grant
    Filed: February 28, 1997
    Date of Patent: March 30, 1999
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Yasuhiro Tanimura, Masaki Kuzumoto, Junji Hirotsuji, Shigeki Nakayama
  • Patent number: 5871565
    Abstract: This invention relates to a VPSA method for the production of a product that is enriched with a more preferred gas from a mixture of the more preferred gas and a less preferred gas and, preferably to a VPSA method for the production of an oxygen-enriched product from air, using an oxygen-preferential adsorbent under equilibrium conditions. In a preferred embodiment the process uses a desorption purge at a nearly constant pressure that is selected to produce a steady stream of oxygen having a purity from 30% to 60% at a pressure in the range of 60 kPa to 20 kPa.
    Type: Grant
    Filed: January 15, 1997
    Date of Patent: February 16, 1999
    Assignee: Praxair Technology, Inc.
    Inventor: Frederick Wells Leavitt
  • Patent number: 5858068
    Abstract: Industrial grade carbon dioxide may contain unacceptable amounts of sulfur-containing materials, oxygen, and organic materials particularly detrimental to food-related uses of CO.sub.2. These can be effectively removed by a bed of silver-exchanged faujasite and an MFI-type molecular sieve. This permits an on-site, on-demand method of purifying CO.sub.2 ranging from laboratory to tank car seals.
    Type: Grant
    Filed: October 9, 1997
    Date of Patent: January 12, 1999
    Assignee: UOP LLC
    Inventors: James R. Lansbarkis, Jon S. Gingrich
  • Patent number: 5853457
    Abstract: The invention relates to a filter material and to a process for removing ozone from gases and liquids, in which a gas stream or a liquid is brought into contact with a filter material made of an unsaturated cycloolefin polymer or cycloolefin copolymer. The filter material can be used with all ozone-containing gas streams and liquids. Thus, for example, it is used in the removal of the ozone used in sterilization or formed by a copier machine, in addition for removing and detoxifying ozone in liquids.
    Type: Grant
    Filed: May 5, 1997
    Date of Patent: December 29, 1998
    Assignee: Ticona GmbH
    Inventors: Jorg Eysmondt, Frank Osan, Andreas Schleicher
  • Patent number: 5846298
    Abstract: Ozone is recovered from an ozone-oxygen mixture by adsorption using an adsorbent which comprises a zeolite selected from the group consisting of L type zeolite, Y type zeolite, ZSM-5, and mordenite in which at least 90% of the exchangeable cation content is in the ammonium form and the molar ratio of potassium to aluminum is less than about 0.25. Alternatively, a proton-exchanged L type zeolite can be used in which at least 90% of the exchangeable cation content is in the proton form and the molar ratio of potassium to aluminum is less than about 0.25.
    Type: Grant
    Filed: May 9, 1997
    Date of Patent: December 8, 1998
    Assignee: Air Products and Chemicals, Inc.
    Inventor: Edward Landis Weist, Jr.
  • Patent number: 5837036
    Abstract: A process in which a gas containing ozone and an organic substance is brought into contact with an ozone-binding polymer to remove the ozone and activated carbon to remove the organic substance. The process preferably makes use of a filter containing an ozone-binding polymer and activated carbon.
    Type: Grant
    Filed: April 7, 1997
    Date of Patent: November 17, 1998
    Assignee: Ticona GmbH
    Inventors: Andreas Schleicher, Jorg Von Eysmondt, Georg Frank
  • Patent number: 5833738
    Abstract: A method and apparatus are disclosed showing a system for continuous purification of bulk source specialty gases to less than 10 part per billion levels. Corrosive and non-corrosive specialty gases are purified using this system. Depending on whether corrosive or non-corrosive gases are being purified and the contaminants of concern, the purification beds contain an absorber and/or getter. A dual bed system allows one bed to purify at ambient temperatures while a second bed undergoes regeneration, providing continuous purification for a bulk source specialty gas.
    Type: Grant
    Filed: March 1, 1996
    Date of Patent: November 10, 1998
    Assignee: D.D.I. Ltd.
    Inventors: Giovanni Carrea, Brian D. Warrick, Lewis J. Wickman
  • Patent number: 5820656
    Abstract: A rotary valve system which includes of a pair of valve assemblies each of which has valve parts with flat faces which, when pressed together and rotated, provide valving action between various ports incorporated in one valve part of each assembly. The first valve part of each assembly contains a circular array of through openings, each of which is connected to a conduit. The second valve part of each assembly contains several passages which provide communication between various openings of the first valve part and valve apertures located in the second valve part of each assembly. The second valve part of one assembly also contains one or more passages which provide communication between members of one or the other array of openings. The valve system can be effectively used to automate operation of a gas or liquid adsorption system comprising two or more adsorption vessels, the number of vessels being equivalent to the total number of openings in either array.
    Type: Grant
    Filed: January 21, 1997
    Date of Patent: October 13, 1998
    Assignee: The BOC Group, Inc.
    Inventors: Norberto O. Lemcoff, Mario A. Fronzoni, Michael E. Garrett, Brian C. Green, Timothy D. Atkinson, Alberto I. La Cava
  • Patent number: 5814131
    Abstract: A rotary valve assembly which includes a pair of valve parts with flat faces which, when pressed together and rotated, provide valving action between various ports incorporated in one of the valve parts. The first valve part contains two circular arrays of through openings, each of which is connected to a conduit. The second valve part contains several passages which provide communication between various openings of the first valve part and valve ports located in the second valve part. The second valve part also contains one or more passages which provide communication between members of one array of openings and between members of the other array of openings. The valve assembly can be effectively used to automate operation of a gas or liquid adsorption system comprising two or more adsorption vessels, the number of vessels being equivalent to the total number of openings in either array.
    Type: Grant
    Filed: September 27, 1996
    Date of Patent: September 29, 1998
    Assignee: The BOC Group, Inc.
    Inventors: Norberto O. Lemcoff, Mario A. Fronzoni, Michael E. Garrett, Brian C. Green, Tim Atkinson, Alberto I. La Cava
  • Patent number: 5814130
    Abstract: A rotary valve assembly which includes of a pair of valve parts with flat faces which, when pressed together and rotated, provide valving action between various ports incorporated in one of the valve parts. The first valve part contains two circular arrays of through openings, each of which is connected to a conduit. The second valve part contains several passages which provide communication between various openings of the first valve part and valve ports located in the second valve part. The second valve part also contains one or more passages which provide communication between two openings of one array of openings and one opening of the other array of openings. The valve assembly can be effectively used to automate operation of a gas or liquid adsorption system comprising two or more adsorption vessels, the number of vessels being equivalent to the total number of openings in either array.
    Type: Grant
    Filed: September 27, 1996
    Date of Patent: September 29, 1998
    Assignee: The BOC Group, Inc.
    Inventors: Norberto O. Lemcoff, Mario A. Fronzoni, Michael E. Garrett, Brian C. Green, Tim Atkinson, Alberto I. La Cava
  • Patent number: 5810910
    Abstract: An improved adsorbent for ozone comprises a crystalline aluminosilicate in which at least 90% of the exchangeable cation content is in the acid form and further which contains between 0.5 and 20 wt % of one or more adsorbed components which are non-reactive with ozone. Preferably the adsorbed component is water, and the total non-framework metal content expressed as metal oxide is less than 0.4 mole %.
    Type: Grant
    Filed: October 6, 1995
    Date of Patent: September 22, 1998
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Keith Alan Ludwig, Charles Gardner Coe, James Edward MacDougall, Arne Baumgartl