Degasification Of Liquid Patents (Class 95/46)
  • Patent number: 8414684
    Abstract: A degas assembly including a low pressure fluid channel for carrying a wash fluid at a first pressure, a pressurized channel for carrying eluent including a gas at a second pressure higher than the first pressure, and a degas separator defining a fluid barrier between the low pressure fluid channel and pressurized fluid channel, the separator configured to retain liquid in the pressurized fluid channel and allow gas to flow through the separator to the low pressure fluid channel. The pressurized fluid channel may extend along an outer periphery of the low pressure fluid channel. The eluent may be received from an eluent generator at a pressure of at least about 3300 psi, and in various embodiments up to about 5000 psi. A liquid chromatography system and method are also disclosed.
    Type: Grant
    Filed: June 1, 2010
    Date of Patent: April 9, 2013
    Assignee: Dionex Corporation
    Inventors: Yan Liu, Christopher A. Pohl, Michael McAdams, Hamish Small, Zhongqing Lu, Milton Liu, Khosro Moshfegh
  • Patent number: 8414685
    Abstract: The present invention relates to a system and method for removing dissolved gas from makeup water in a water-cooled nuclear reactor. The present invention includes a storage tank for containing the makeup water that includes the dissolved gas, a membrane system positioned downstream of the storage tank to at least partially remove the dissolved gas from the makeup water; and a transport mechanism to transfer the makeup water from an outlet of the membrane system for use in the water-cooled nuclear reactor. The dissolved gas can include at least one of dissolved oxygen, dissolved nitrogen, dissolved argon and mixtures thereof.
    Type: Grant
    Filed: September 8, 2010
    Date of Patent: April 9, 2013
    Assignee: Westinghouse Electric Company LLC
    Inventor: George G. Konopka
  • Publication number: 20130061748
    Abstract: An elongated flow-through degassing apparatus includes an elongated gas permeable outer shell and one or more gas-permeable, liquid-impermeable elongated inner conveyance members extending within the outer shell and at least partially through a chamber defined within the outer shell. The apparatus also includes inlet and outlet junctions for securing the outer shell to the inner conveyance member. The outer shell exhibits a first permeance that is substantially greater than a second permeance of the inner conveyance member. The degassing apparatus may be sufficiently flexible so as to be readily manipulatable into desired configurations.
    Type: Application
    Filed: September 12, 2012
    Publication date: March 14, 2013
    Inventors: Carl W. Sims, Yuri Gerner, Quan Liu
  • Publication number: 20130059365
    Abstract: Capturing a target gas includes contacting a gas mixture including a target species with an aqueous solution including a buffer species, and transferring some of the target species from the gas mixture to the aqueous solution. The target species forms a dissolved target species in the aqueous solution, and the aqueous solution is processed to yield a first aqueous stream and a second aqueous stream, where the equilibrium partial pressure of the target species over the second aqueous stream exceeds the equilibrium partial pressure of the target species over the first aqueous stream. At least some of the dissolved target species in the second aqueous stream is converted to the target species, and the target species is liberated from the second aqueous stream. The target species can be collected and/or compressed for subsequent processing or use.
    Type: Application
    Filed: September 7, 2012
    Publication date: March 7, 2013
    Applicant: CARBON ENGINEERING LIMITED PARTNERSHIP
    Inventors: Matthew Alex Henderson, David William Keith, Arvinder Pal Singh KAINTH, Kenton Robert HEIDEL, Jane Anne Ritchie
  • Publication number: 20130055732
    Abstract: An improved system for making ice for recreational use. The system using water de-gassed by double filtration. The de-gassed water removes the insulator factor from ice that causes ice dehydration, makes it possible to operate with ice at a temperature 2-3° F. above that of existing recreational ice facilities while maintaining a high quality sheet of ice, produces an ice that is denser, more resilient to cuts and ruts and produces less snow development, all while lowering your energy consumption, permits ice to freeze faster and shows all painted lines and logos in the ice with greater clarity, and reduces carbon footprint, and benefits from decreased labour and refrigeration costs.
    Type: Application
    Filed: September 1, 2011
    Publication date: March 7, 2013
    Applicant: JOE JOHNSON EQUIPMENT INC.
    Inventors: Stephen Andrew DAWE, Joseph Michael JOHNSON
  • Publication number: 20130047845
    Abstract: A fuel stabilization unit includes a fuel inlet and outlet, an oxygen permeable membrane and a vacuum source. The vacuum source employs an ejector and a high pressure fluid to generate an oxygen partial pressure differential across the membrane. A fuel deoxygenation system includes a fuel stabilization unit and a vacuum source. The fuel stabilization unit has a fuel flow path, a vacuum chamber and an oxygen permeable membrane separating the fuel flow path and the vacuum chamber. The vacuum source employs an ejector and a high pressure fluid to reduce pressure in the vacuum chamber to generate an oxygen partial pressure differential across the oxygen permeable membrane. A method for deoxygenating a fuel includes delivering a high pressure fluid to an ejector, generating an oxygen partial pressure differential across an oxygen permeable membrane using only the ejector and removing oxygen from the fuel using the oxygen partial pressure differential.
    Type: Application
    Filed: August 31, 2011
    Publication date: February 28, 2013
    Applicant: UNITED TECHNOLOGIES CORPORATION
    Inventor: Parthasarathy Sampath
  • Patent number: 8360567
    Abstract: There is provided a liquid ejecting apparatus that is used for ejecting a liquid. The liquid ejecting apparatus includes a head unit that ejects the liquid, a liquid supplying path that is used for leading the liquid to the head unit, a defoaming chamber that is disposed in the liquid supplying path and is used for eliminating air bubbles inside the liquid, a broaden chamber that is disposed in the liquid supplying path and can collect the liquid due to having a cross-section area larger than that of the liquid supplying path, and a decompression unit that is used for decompressing the defoaming chamber and the broaden chamber.
    Type: Grant
    Filed: August 18, 2009
    Date of Patent: January 29, 2013
    Assignee: Seiko Epson Corporation
    Inventor: Hiroyuki Ito
  • Patent number: 8361197
    Abstract: There is provided a zeolite separation membrane-provided article having gaps or pores larger than pores inherent to zeolite crystals and controlled within an appropriate range and being capable of achieving both high permeability and high separability for components with small difference in adsorption properties or a component having a smaller molecular diameter than the diameter of the pores, a method for producing the same, a method for separating mixed fluids, and a device for separating mixed fluids. The zeolite separation membrane-provided article is provided with a zeolite membrane having an N2 gas permeation speed at room temperature of 1.0×10?6 mol·m?2·s?1·Pa?1 or more and a permeation speed ratio of 1,3,5-trimethylbenzene/N2 at room temperature of 0.17 or more and being free from dyeing caused by the impregnation with Rhodamine B.
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: January 29, 2013
    Assignee: NGK Insulators, Ltd.
    Inventors: Masaaki Kawai, Toshihiro Tomita, Nobuhiko Mori, Aya Satoh
  • Patent number: 8323379
    Abstract: A method of improving the blood compatibility of a blood-contacting surface includes immobilizing carbonic anhydrase on the surface, wherein the surface exhibits carbonic anhydrase activity of at least 20% of maximum theoretical activity of the surface based on monolayer surface coverage of carbonic anhydrase.
    Type: Grant
    Filed: October 24, 2011
    Date of Patent: December 4, 2012
    Assignee: University of Pittsburgh—of the Commonwealth System of Higher Education
    Inventors: William J. Federspiel, Alan J. Russell, Heung-Il Oh, Joel Kaar
  • Publication number: 20120291627
    Abstract: A dispensing assembly for a pressure dispense package includes a connector having separate and distinct liquid and extraction conduits, and having a pressurization gas conduit. A liner fitment adapter may include a longitudinal bore to receive a probe portion of a connector defining a liquid extraction conduit, and may include a lateral bore to enable removal of gas. Insertion of a connector into a dispensing assembly simultaneously makes fluidic connections between (a) a gas extraction conduit and a dispensing volume; (b) a liquid extraction conduit and the dispensing volume, and (c) a pressurization gas conduit and a space to be pressurized within a pressure dispense vessel. Presence of fluid or change in phase of flowing fluid within a fluid circuit may be sensed by comparing outputs of first and second temperature sensing elements, with one sensing element including a heater to increase temperature of the sensing element in exposure to gas but not in exposure to liquid.
    Type: Application
    Filed: January 5, 2011
    Publication date: November 22, 2012
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: Glenn M. Tom, Joseph Patrick Menning, Matthew Kusz, Amy Koland, Donald D. Ware, Richard D. Chism
  • Patent number: 8313557
    Abstract: The present invention is generally directed to a system for recovering CO2 from seawater or aqueous bicarbonate solutions using a gas permeable membrane with multiple layers. At elevated pressures, gaseous CO2 and bound CO2 in the ionic form of bicarbonate and carbonate diffuse from the seawater or bicarbonate solution through the multiple layers of the membrane. Also disclosed is the related method of recovering CO2 from seawater or aqueous bicarbonate solutions.
    Type: Grant
    Filed: June 25, 2009
    Date of Patent: November 20, 2012
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Heather D. Willauer, Dennis R Hardy, M. Kathleen Lewis, Ejiogu C. Ndubizu, Frederick Williams
  • Publication number: 20120285319
    Abstract: Methods and apparatus relate to recovery of carbon dioxide and/or hydrogen sulfide from a gas mixture. Separating of the carbon dioxide, for example, from the gas mixture utilizes a liquid sorbent for the carbon dioxide. The liquid sorbent contacts the gas mixture for transfer of the carbon dioxide from the gas mixture to the liquid sorbent. The carbon dioxide then desorbs from the liquid sorbent using hollow-fiber contactors as a source of heat to liberate the carbon dioxide further separated by the hollow-fiber contactors from the liquid sorbent.
    Type: Application
    Filed: March 1, 2012
    Publication date: November 15, 2012
    Applicant: ConocoPhillips Company
    Inventors: Imona C. Omole, George F. Schuette
  • Publication number: 20120245042
    Abstract: Provided are robust, passive, membrane-based debubblers that are readily incorporated into microfluidic devices for rapid degassing. Also provided are methods of degassing fluid disposed within fluidic systems.
    Type: Application
    Filed: February 16, 2012
    Publication date: September 27, 2012
    Applicant: THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA
    Inventors: Changchun Liu, Haim H. Bau, Jason Alan Thompson
  • Publication number: 20120240762
    Abstract: A liquid degassing apparatus is arranged to prevent pervaporated solvent cross-contamination by counteracting liquid vapor pervaporation flow. Liquid vapor pervaporation cross-contamination among a plurality of degassing modules is counteracted with specifically configured volumes and bleed inlet flow to conduits fluidly coupling permeate sides of said plurality of degassing chambers.
    Type: Application
    Filed: January 24, 2012
    Publication date: September 27, 2012
    Inventor: Yuri Gerner
  • Patent number: 8273159
    Abstract: A control device module for a motor vehicle includes a control device that has a closed housing in which a first internal pressure prevails, and at least one connecting device for coupling a connecting element of an electrical cable. A closed space is defined in the coupled state between the connecting device and the connecting element, in which closed space a second internal pressure prevails. The control device also includes a pressure compensating device for adapting the first and second internal pressures to an external pressure that acts on the control device module from outside.
    Type: Grant
    Filed: December 27, 2006
    Date of Patent: September 25, 2012
    Assignee: Robert Bosch GmbH
    Inventors: Manfred Moser, Hartmut Wayand
  • Patent number: 8252094
    Abstract: A gas exchange membrane is for use in an artificial lung. The membrane consists of a foamed, closed-cell material, in particular of silicone rubber. The membrane is produced by extruding a basic material which contains a foaming agent. The extrudate is then foamed. The result is a gas exchange membrane which has an increased gas exchange performance compared to known material due to the high permeability of the surface.
    Type: Grant
    Filed: January 8, 2008
    Date of Patent: August 28, 2012
    Assignee: Raumedic AG
    Inventor: Ralf Ziembinski
  • Publication number: 20120174772
    Abstract: In a device and a method for mixing and exchanging fluids, a first chamber is a mixing chamber with static mixing elements. First and second fluids flow through the first chamber in a mixing fluid flow direction. A second chamber adjacent the first chamber is a fluid feeding or discharge chamber through which the second fluid flows. A semipermeable membrane separates the volume of the first chamber from the volume of the second chamber. The membrane is impermeable to molecules or molecule agglomerations of the first fluid and permeable to molecules or molecule agglomerations of the second fluid. The membrane is made of a material or is coated with a material to which the molecules or molecule agglomerations of one of the two fluids have a lower affinity. Alternatively, or in addition, the membrane is elastic and spans a support wall with holes.
    Type: Application
    Filed: August 2, 2010
    Publication date: July 12, 2012
    Applicant: FRANZ HAAS WAFFEL- UND KEKSANLAGEN-INDUSTRIE GMBH
    Inventor: Alex Knobel
  • Publication number: 20120160096
    Abstract: Apparatus for changing the concentration of a selected gas in a liquid, the apparatus comprising a flow chamber through which the liquid is passed and which comprises a wall comprising a planar separation membrane, the separation membrane being substantially impermeable to the liquid and permeable to the selected gas, characterized in that the separation member extends beyond the flow chamber and provides a seal between components of the apparatus. The apparatus is particularly useful for degassing liquids, for example HPLC eluents and analysis samples.
    Type: Application
    Filed: September 13, 2010
    Publication date: June 28, 2012
    Applicant: SANTO ELECTRIC CO., LTD.
    Inventors: Amos Gottlieb, William Kilbridge
  • Patent number: 8197578
    Abstract: A liquid degasser for a space device including a gas permeable material configured for contact with a flow of liquid to be de-gassed on one side and a vacuum on the other side, and wherein the gas permeable material allows gas in the liquid to diffuse to the vacuum to remove the gas from the liquid.
    Type: Grant
    Filed: July 25, 2007
    Date of Patent: June 12, 2012
    Assignee: Busek Company, Inc.
    Inventors: Vladimir J. Hruby, Nate Demmons, Tom Roy, Doug Spence, Eric Ehrbar, Jurg Zwahlen, Charles Gasdaska
  • Publication number: 20120137879
    Abstract: In accordance with at least selected embodiments of the present invention, an improved liquid degassing membrane contactor or module includes a high pressure housing and at least one degassing cartridge therein. It may be preferred that the high pressure housing is a standard, ASME certified, reverse osmosis (RO) or water purification pressure housing or vessel (made of, for example, polypropylene, polycarbonate, stainless steel, corrosion resistant filament wound fiberglass reinforced epoxy tubing, with pressure ratings of for example, 150, 250, 300, 400, or 600 psi, and with, for example 4 or 6 ports, and an end cap at each end) and that the degassing cartridge is a self-contained, hollow-fiber membrane cartridge adapted to fit in the RO high pressure housing.
    Type: Application
    Filed: August 17, 2010
    Publication date: June 7, 2012
    Inventors: Gareth P. Taylor, Amitava Sengupta
  • Patent number: 8192534
    Abstract: Devices and systems for capturing and removing accumulated gas bubbles in a liquid-carrying line wherein the device is an expanded double-layered chamber designed and adapted to be integrally placed within the flow pathway of a liquid-carrying line. The device allows insertion of tubes and wires through the device while in use without occlusion of the fluid flow path and without interruption of the bubble-removing function. The efficiency of the air venting and bubble-removing process is not dependent on the fluid flow rate under stable flow conditions, and the device works to remove air bubbles under a range of orientations.
    Type: Grant
    Filed: October 13, 2007
    Date of Patent: June 5, 2012
    Inventors: Neema Hekmat, Lipkong Yap
  • Patent number: 8182576
    Abstract: The present invention is a biogas processing system having a compressor having a biogas input and output, a pump having a water input and output, a scrubber tower having a mixing chamber connected to a biogas input, a water pump input, a water output, and a processed biogas output, and a filtration member connected to the water output to remove contaminants from the water exiting the first scrubber tower. The system also includes devices for heating and cooling the recycled flow of water to enhance the ability of the water to absorb contaminants from the biogas and the ability of a stripper to remove absorbed contaminants from the water in a closed loop water system, and a controller for closely controlling the operating parameters of the system to achieve safe and optimal operation of the system.
    Type: Grant
    Filed: August 22, 2011
    Date of Patent: May 22, 2012
    Assignee: A&B Process Systems Corporation
    Inventors: Kevin L. Roe, David J. Mandli, Amanda M. Neuhalfen
  • Patent number: 8177885
    Abstract: A gas separation process for treating exhaust gases from the combustion of gaseous fuels, and gaseous fuel combustion processes including such gas separation. The invention involves routing a first portion of the exhaust stream to a carbon dioxide capture step, while simultaneously flowing a second portion of the exhaust gas stream across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas back to the combustor.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: May 15, 2012
    Assignee: Membrane Technology and Research, Inc
    Inventors: Johannes G. Wijmans, Timothy C. Merkel, Richard W. Baker
  • Patent number: 8177889
    Abstract: A gas removal device 1 includes a decompression chamber 2 with an inlet 11 and an outlet 12 through which a liquid to be degassed flows therein and thereout, and a degassing element 5 that is accommodated in the decompression chamber 2 while having one end connected to the inlet 11 and another end connected to the outlet 12, and that allows the liquid to be degassed entering into the inlet 11 to pass through the degassing element 5. The degassing element 5 includes a tube bundle 15 composed of a plurality of flexible gas-permeable tubes 151, and a tying member 16 tying the plurality of gas-permeable tubes 151 to form the tube bundle 15. The tube bundle 15 is bent in a shape of coil with multiple turns in such a manner that a portion tied by the tying member 16 is included in a bent portion BP.
    Type: Grant
    Filed: September 19, 2007
    Date of Patent: May 15, 2012
    Assignee: Nitto Denko Corporation
    Inventor: Hajime Ooya
  • Patent number: 8177884
    Abstract: A device for use in a fluid system includes a fuel channel for receiving fuel having dissolved gas therein. A gas permeable membrane supported by a porous support, the gas permeable membrane in communication with the fuel channel. A gas-removal channel adjacent the gas permeable membrane for receiving the dissolved gas from the fuel through the gas permeable membrane and the porous support.
    Type: Grant
    Filed: May 20, 2009
    Date of Patent: May 15, 2012
    Assignee: United Technologies Corporation
    Inventors: Wayde R. Schmidt, Haralambos Cordatos, Slade R. Culp
  • Publication number: 20120111189
    Abstract: Method and system to capture target gases from all kind of point-sources, as well as from ambient air and surface waters, sediments or soils by advantage of large differences in Henrys law constants. For gas dissolution in water the constants favor dissolution of e.g. CO2 compared to the main constituents of flue gases like N2 and O2. The main principle is to dissolve the gases—release of the non-dissolved part stripping the liquid for the dissolved gases, which are enriched in target gas. Further steps can be used to reach a predetermined level of target gas concentration.
    Type: Application
    Filed: March 9, 2010
    Publication date: May 10, 2012
    Applicant: NORSK INSTITUTT FOR LUFTFORSKNING
    Inventors: Svein Knudsen, Norbert Schmidbauer
  • Patent number: 8142546
    Abstract: An artificial lung includes a housing, a tubular hollow fiber membrane bundle contained in the housing and providing a multiplicity of hollow fiber membranes having a gas exchange function, a gas inflow port and a gas outflow port communicating with each other through hollow portions of the hollow fiber membranes, and a blood inflow port and a blood outflow port through which blood is distributed. The tubular hollow fiber membrane bundle has a cylindrical overall shape, and a filter member having a bubble-trapping function is provided on an outer peripheral portion of the tubular hollow fiber membrane bundle.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: March 27, 2012
    Assignee: Terumo Kabushiki Kaisha
    Inventors: Mitsuaki Ogihara, Hidetaka Nakayama
  • Patent number: 8142547
    Abstract: A method for extraction of gas from liquid provides for reliable and accurate extraction of gases dissolved in fluids and routing the extracted gas to an analytical instrument. An extraction module comprises one or more fluorosilicone membranes molded into the shape of a flattened disk. The membranes are retained in a housing in a spaced apart relationship. The membrane is permeable to target gas(es), but not to the fluid. Porous support members support the membranes and prevent damage to them and the housing defines separate fluid flow paths for the fluid and the gas extracted from it. Fluid is passed over the membrane in a first fluid phase; target compounds in the fluid diffuse across the membrane to a second fluid phase until equilibrium is achieved.
    Type: Grant
    Filed: November 15, 2011
    Date of Patent: March 27, 2012
    Assignee: Serveron Corporation
    Inventors: Steven Mahoney, Thomas Waters
  • Publication number: 20120055330
    Abstract: The present invention relates to a system and method for removing dissolved gas from makeup water in a water-cooled nuclear reactor. The present invention includes a storage tank for containing the makeup water that includes the dissolved gas, a membrane system positioned downstream of the storage tank to at least partially remove the dissolved gas front the makeup water; and a transport mechanism to transfer the makeup water from an outlet of the membrane system for use in the water-cooled nuclear reactor. The dissolved gas can include at least one of dissolved oxygen, dissolved nitrogen, dissolved argon and mixtures thereof.
    Type: Application
    Filed: September 8, 2010
    Publication date: March 8, 2012
    Applicant: Westinghouse Electric Company LLC
    Inventor: George G. Konopka
  • Publication number: 20120055332
    Abstract: A method for extraction of gas from liquid provides for reliable and accurate extraction of gases dissolved in fluids and routing the extracted gas to an analytical instrument. An extraction module comprises one or more fluorosilicone membranes molded into the shape of a flattened disk. The membranes are retained in a housing in a spaced apart relationship. The membrane is permeable to target gas(es), but not to the fluid. Porous support members support the membranes and prevent damage to them and the housing defines separate fluid flow paths for the fluid and the gas extracted from it. Fluid is passed over the membrane in a first fluid phase; target compounds in the fluid diffuse across the membrane to a second fluid phase until equilibrium is achieved.
    Type: Application
    Filed: November 15, 2011
    Publication date: March 8, 2012
    Applicant: SERVERON CORPORATION
    Inventors: Steven Mahoney, Thomas Waters
  • Patent number: 8123833
    Abstract: A process for producing a gas-containing cleaning water which contains a specific gas dissolved in water, which process comprises dissolving the specific gas into water under an increased pressure exceeding an atmospheric pressure to prepare a gas-containing water having a concentration of the gas exceeding solubility of the gas under an atmospheric pressure and, then, removing a portion of the dissolved gas by decreasing pressure on the gas-containing water; an apparatus for producing a gas-containing cleaning water which comprises an apparatus for dissolving a gas (14) in which a specific gas is dissolved into water under a pressure exceeding the atmospheric pressure and an apparatus for removing a portion of a dissolved gas (15) in which the pressure on the gas-containing water obtained from the apparatus for dissolving a gas is decreased to a pressure lower than the pressure under which the gas has been dissolved so that a portion of the dissolved gas is removed; and a cleaning apparatus using the gas-con
    Type: Grant
    Filed: March 12, 2007
    Date of Patent: February 28, 2012
    Assignee: Kurita Water Industries Ltd.
    Inventors: Hiroshi Morita, Hiroto Tokoshima
  • Publication number: 20120024156
    Abstract: A blood storage system. The system has a collection bag for red blood cells; an oxygen/carbon dioxide depletion device; a storage bag for red blood cells; and tubing connecting the collection bag to the depletion device and the depletion device to the storage bag. The depletion device includes a receptacle of a solid material having an inlet and an outlet adapted to receiving and expelling a flushing gas; a plurality of hollow fibers or gas-permeable films extending within the receptacle from an entrance to an exit thereof. The hollow fibers or gas-permeable films are adapted to receiving and conveying red blood cells.
    Type: Application
    Filed: October 8, 2010
    Publication date: February 2, 2012
    Inventors: Tatsura Yoshida, Paul J. Vernucci
  • Publication number: 20120000358
    Abstract: There is provided a zeolite separation membrane-provided article having gaps or pores larger than pores inherent to zeolite crystals and controlled within an appropriate range and being capable of achieving both high permeability and high separability for components with small difference in adsorption properties or a component having a smaller molecular diameter than the diameter of the pores, a method for producing the same, a method for separating mixed fluids, and a device for separating mixed fluids. The zeolite separation membrane-provided article is provided with a zeolite membrane having an N2 gas permeation speed at room temperature of 1.0×10?6 mol·m?2·s?1·Pa?1 or more and a permeation speed ratio of 1,3,5-trimethylbenzene/N2 at room temperature of 0.17 or more and being free from dyeing caused by the impregnation with Rhodamine B.
    Type: Application
    Filed: September 13, 2011
    Publication date: January 5, 2012
    Applicant: NGK Insulators, Ltd.
    Inventors: Masaaki KAWAI, Toshihiro TOMITA, Nobuhiko MORI, Aya SATOH
  • Publication number: 20110315010
    Abstract: The present invention relates to an integrated membrane/adsorbent process and system for removal of carbon dioxide from natural gas on a ship that houses natural gas purification equipment. Additional membrane units or adsorbent beds are used to reduce the amount of product gas that is lost in gas streams that are used to regenerate the adsorbent beds. These systems produce a product stream that meets the specifications of less than 50 parts per million carbon dioxide in natural gas for liquefaction.
    Type: Application
    Filed: May 11, 2011
    Publication date: December 29, 2011
    Applicant: UOP LLC
    Inventors: Shain-Jer Doong, Lubo Zhou, Dennis J. Bellville, Mark E. Schott, Leonid Bresler, John M. Foresman
  • Publication number: 20110309032
    Abstract: A system and method for photochemical treatment of liquid substances with ultraviolet light inside liquid conveying tubings. The system includes an elongated polymeric light guiding liquid conveyance tube having first and second open ends and an internal surface defining the interior and liquid conveying conduit of the tube, and a UV light source, which is optically connected to the interior and liquid conveying conduit of the tube. The light guiding tube includes one or multiple concentric layers of polymeric materials selected from a group that includes thermoplastic and thermosetting polymers, elastomers and composites. The tube has at least one UV light transmitting polymeric material layer having a lower refractive index value than the refractive index value of the liquid substance conveyed within the tube.
    Type: Application
    Filed: February 25, 2009
    Publication date: December 22, 2011
    Inventor: Markus MäkI
  • Patent number: 8080093
    Abstract: Provided is a liquid supply apparatus including: a liquid supply path which supplies a liquid from an upstream side, which is a liquid supply source, to a downstream side in which the liquid is consumed; a defoaming chamber which is provided in the liquid supply path and defoams air bubbles included in the liquid; and a depressurization chamber which is provided at a position adjacent to the defoaming chamber with a partition interposed therebetween and is depressurized such that the pressure thereof becomes lower than the pressure of the defoaming chamber, wherein the partition allows permeation of gas by the depressurization of the depressurization chamber and restricts permeation of the liquid, and wherein the partition is configured by a partition wall having rigidity.
    Type: Grant
    Filed: December 10, 2008
    Date of Patent: December 20, 2011
    Assignee: Seiko Epson Corporation
    Inventors: Hiroyuki Ito, Hideya Yokouchi
  • Patent number: 8075669
    Abstract: There is described a composite material such as venting materials and vents containing said venting materials. The vents are air- or more generally gas-permeable venting composites that are oleophobic and liquid repellent.
    Type: Grant
    Filed: April 22, 2008
    Date of Patent: December 13, 2011
    Assignee: Gore Enterprise Holdings, Inc.
    Inventors: Klaus Meindl, Wolfgang Buerger
  • Patent number: 8075675
    Abstract: A gas extraction apparatus provides for reliable and accurate extraction of gases dissolved in fluids and routing the extracted gas to an analytical instrument. An extraction module comprises one or more fluorosilicone membranes molded into the shape of a flattened disk. The membranes are retained in a housing in a spaced apart relationship. The membrane is permeable to target gas(es), but not to the fluid. Porous support members support the membranes and prevent damage to them and the housing defines separate fluid flow paths for the fluid and the gas extracted from it.
    Type: Grant
    Filed: June 12, 2008
    Date of Patent: December 13, 2011
    Assignee: Serveron Corporation
    Inventors: Steven Mahoney, Thomas Waters
  • Publication number: 20110300065
    Abstract: An apparatus and method purify hydrogen from a mixed fluid containing gaseous hydrogen, gaseous oxygen, and liquid water. The apparatus has a mixed fluid channel through which the mixed fluid flows; a first gas channel through which a mixed gas containing gaseous hydrogen and gaseous oxygen flows; a second gas channel through which gaseous hydrogen or oxygen flows; a gas-liquid separating membrane forming a wall between the mixed fluid channel and the first gas channel, separating the mixed gas from the mixed fluid of the mixed fluid channel, and providing the separated mixed gas to the first gas channel; and a hydrogen or oxygen separating membrane forming a wall between the first gas channel and the second gas channel, separating gaseous hydrogen or oxygen from the mixed gas of the first gas channel, and providing the separated gaseous hydrogen or oxygen to the second gas channel.
    Type: Application
    Filed: April 8, 2010
    Publication date: December 8, 2011
    Applicants: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Haruyuki NAKANISHI, Norihiko NAKAMURA, Hidekazu ARIKAWA, Hirofumi FUJIWARA, Hidehito KUBO, Keiji TOH, Akiko KUMANO, Shohei MATSUMOTO
  • Publication number: 20110278227
    Abstract: The present invention discloses a new type of high performance polymer membranes prepared from aromatic polyimide membranes by thermal treating and crosslinking and methods for making and using these membranes. The polymer membranes were prepared from aromatic polyimide membranes by thermal treating under inert atmosphere followed by crosslinking preferably by using a UV radiation source. The aromatic polyimide membranes were made from aromatic polyimide polymers comprising both pendent hydroxy functional groups ortho to the heterocyclic imide nitrogen and cross-linkable functional groups in the polymer backbone. The membranes showed significantly improved selectivity and permeability for gas separations compared to the aromatic polyimide membranes without any treatment. The membranes can be fabricated into any convenient geometry and are not only suitable for a variety of liquid, gas, and vapor separations, but also can be used for other applications such as for catalysis and fuel cell applications.
    Type: Application
    Filed: June 22, 2011
    Publication date: November 17, 2011
    Applicant: UOP LLC
    Inventors: Chunqing Liu, Peter K. Coughlin, Man-Wing Tang, Raisa Minkov, Lubo Zhou
  • Patent number: 8048209
    Abstract: A degassing device (203) comprises a first chamber (21) having an inlet for a liquid, and a second chamber (22) having an opening (23) closed by a hydrophobic membrane (24) and an outlet (25) for discharging the liquid. The first chamber (21) has a downstream portion that partially extends within the second chamber (22) and communicates therewith by a passageway (28). The second chamber (22) has a downstream portion that extends below the passageway (28) and asymmetrically surrounds the downstream portion of the first chamber (21).
    Type: Grant
    Filed: November 2, 2004
    Date of Patent: November 1, 2011
    Assignee: Gambro Lundia AB
    Inventors: Jürgen Dannenmaier, Hermann Goehl, Thomas Ertl, Jacques Chevallet, Francesco Ribolzi
  • Patent number: 8043411
    Abstract: A device for removal of at least a portion of carbon dioxide from an aqueous fluid includes at least one membrane through which carbon dioxide can pass to be removed from the fluid and immobilized carbonic anhydrase on or in the vicinity of a first surface of the membrane to be contacted with the fluid such that the immobilized carbonic anhydrase comes into contact with the fluid. The first surface exhibits carbonic anhydrase activity of at least 20% of maximum theoretical activity of the first surface of the membrane based on monolayer surface coverage of carbonic anhydrase in the case that the carbonic anhydrase is immobilize on the first surface.
    Type: Grant
    Filed: June 16, 2010
    Date of Patent: October 25, 2011
    Assignee: University of Pittsburgh - of the Commonwealth System of Higher Education
    Inventors: William J. Federspiel, Allan J. Russell, Heung-Il Oh, Joel Kaar
  • Patent number: 8038770
    Abstract: A separator for a hydraulic system is provided, including a substrate and a membrane. The substrate includes a substrate outer surface and a gas side expulsion area. The expulsion area is for expelling gas from the separator. The membrane is in communication with the substrate, and is for permeating gas to the substrate outer surface while substantially blocking ingression of fluid to the substrate. The substrate outer surface is for receiving gas. The substrate is for transporting gas from the substrate outer surface to the expulsion area.
    Type: Grant
    Filed: December 1, 2008
    Date of Patent: October 18, 2011
    Assignee: Eaton Corporation
    Inventor: Edward J. Hummelt
  • Patent number: 8034161
    Abstract: The present invention is directed to degassing devices for dialysate circuits. One embodiment has a first housing and a second housing positioned within the first housing in an annular relationship. A second embodiment comprises a dialysate regeneration system with urease, a dialyzer, and a housing with an external wall, where the external wall is exposed to atmosphere and comprises a material that passes gas but does not pass liquid and where the housing is positioned between the urease and dialyzer.
    Type: Grant
    Filed: January 16, 2009
    Date of Patent: October 11, 2011
    Assignee: Fresenius Medical Care Holdings, Inc.
    Inventors: Victor Gura, Carlos Jacobo Ezon, Masoud Beizai
  • Patent number: 8025715
    Abstract: A gas separation process for treating flue gases from combustion processes, and combustion processes including such gas separation. The invention involves routing a first portion of the flue gas stream to be treated to a carbon dioxide capture step, while simultaneously flowing a second portion of the flue gas across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas to the combustor.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: September 27, 2011
    Assignee: Membrane Technology and Research, Inc
    Inventors: Johannes G. Wijmans, Timothy C. Merkel, Richard W. Baker
  • Publication number: 20110226697
    Abstract: The present invention is directed to functional nanofibers, methods of making the functional nanofibers, and products such as filters and membranes comprising mats of the functional nanofibers.
    Type: Application
    Filed: September 20, 2010
    Publication date: September 22, 2011
    Applicant: Nano Terra Inc.
    Inventors: Joseph M. McLellan, Xinhua Li, Graciela Beatriz Blanchet, David Picard
  • Patent number: 8017016
    Abstract: A method for controlling pervaporation through a membrane includes assessing the vapor pressure of each component material of a mobile phase disposed on a retentate side of the membrane, and maintaining a designed environment on a permeate side of the membrane. The environment maintained on the permeate side of the membrane contains partial pressures of selected component materials of the mobile phase at a level substantially equal to or greater than the respective vapor pressures thereof.
    Type: Grant
    Filed: July 7, 2006
    Date of Patent: September 13, 2011
    Inventors: Carl W. Sims, Jonathan Thompson, Yuri Gerner
  • Patent number: 8007567
    Abstract: The present invention is a biogas processing system having a compressor having a biogas input and output, a pump having a water input and output, a scrubber tower having a mixing chamber connected to a biogas input, a water pump input, a water output, and a processed biogas output, and a filtration member connected to the water output to remove contaminants from the water exiting the first scrubber tower. The system also includes devices for heating and cooling the recycled flow of water to enhance the ability of the water to absorb contaminants from the biogas and the ability of a stripper to remove absorbed contaminants from the water in a closed loop water system, and a controller for closely controlling the operating parameters of the system to achieve safe and optimal operation of the system.
    Type: Grant
    Filed: August 13, 2008
    Date of Patent: August 30, 2011
    Assignee: A & B Process Systems Corporation
    Inventors: Kevin L. Roe, David J. Mandli, Amanda M. Neuhalfen
  • Publication number: 20110185891
    Abstract: An air dehydration membrane module is provided with a sweep gas which is taken from the waste gas of a pressure swing adsorption (PSA) unit. No additional compressor is required, other than the compressor forming part of the PSA unit. In another embodiment, the sweep gas includes the combination of dried product gas, taken from the dehydration membrane module, and a supplemental gas, which may be ambient air, or permeate gas from an air separation membrane, or waste gas from a PSA unit. An air ejector combines the streams, without the use of an additional compression step, and the combined gas is used as a sweep stream for the dehydration module. The invention also includes the method of selecting an optimum point at which the sweep gas is injected into the module.
    Type: Application
    Filed: February 2, 2010
    Publication date: August 4, 2011
    Applicant: GENERON IGS, INC.
    Inventors: Marc Straub, John A. Jensvold, Raymond K. M. Chan
  • Publication number: 20110174156
    Abstract: The present invention relates to a reactor and a process suitable for extracting carbon dioxide from carbon dioxide-containing gas stream. The reactor is based on a two module system where absorption occurs in one module and desorption occurs in the other module. The absorption and desorption modules in the system include at least one gas-liquid membrane (GLM) module and at least one direct gas-liquid contact (DGLC) module. The carbon dioxide extraction may be catalyzed by carbonic anhydrase.
    Type: Application
    Filed: July 30, 2009
    Publication date: July 21, 2011
    Applicant: Novozymes A/S
    Inventors: Paria Saunders, Sonja Salmon, Martin Borchert