Degasification Of Liquid Patents (Class 95/46)
  • Publication number: 20110165663
    Abstract: A device and a method for producing a fine liquid mist and injecting the said mist into a gas stream to capture and remove very fine particulate pollutants. The pressurized gas stream is passed into a droplet generator (20) into which the liquid is sprayed and atomised into a mist which captures particulates and then into a droplet separator (30) to produce a separated liquid/particulate mixture and a gas stream with a reduced concentration of particulates. The main application is the removal of fine particulates from vehicle exhaust streams. Optionally a degassing stage (90) is provided for the removal of residual gases and vapours. The preferred liquid to form the mist is water.
    Type: Application
    Filed: July 11, 2005
    Publication date: July 7, 2011
    Inventor: Howard P. Davis
  • Patent number: 7964020
    Abstract: A gas separation process for treating flue gases from combustion processes, and combustion processes including such gas separation. The invention involves flowing the flue gas stream to be treated across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas to the combustor.
    Type: Grant
    Filed: May 8, 2009
    Date of Patent: June 21, 2011
    Assignee: Membrane Technology & Research, Inc
    Inventors: Richard W Baker, Johannes G Wijmans, Timothy C Merkel, Haiqing Lin, Ramin Daniels, Scott Thompson
  • Patent number: 7959715
    Abstract: Various embodiments of the present invention are directed to limiting a presence of air bubbles in fluidic media in a reservoir. Air passages may allow air to escape from fluidic media in a reservoir. Membranes may allow for trapping air bubbles in fluidic media before fluidic media enters a reservoir. A membrane may allow air to flow from a first reservoir containing fluidic media to a second reservoir while plunger heads within each of the reservoirs are moved within the reservoirs. An inner reservoir with a membrane may be moveable within an outer reservoir to allow air to move from the outer reservoir to the inner reservoir. An inner reservoir containing pressurized gas may allow fluidic media to be transferred to an outer reservoir.
    Type: Grant
    Filed: April 29, 2008
    Date of Patent: June 14, 2011
    Assignee: Medtronic Minimed, Inc.
    Inventors: Julian D. Kavazov, Rafael Bikovsky, Arsen Ibranyan, David Hezzell, Christopher G. Griffin, Mike Lee, Truong Gia Luan, Benjamin X. Shen, Thomas Miller
  • Patent number: 7947112
    Abstract: A method for degassing a fluid includes providing a degassing system having a degassing module and a fluid pump apparatus having a fluid reservoir, wherein the fluid pump apparatus is operated in a discontinuous mode involving one or more discrete pumping cycles having a first cycle time. The fluid pump apparatus is calibrated to deliver a predetermined volume of the fluid from the fluid reservoir during each of the pumping cycles, and the degassing module is adapted to operably move gas from the fluid to an extent sufficient to render the fluid volume to a desired degassed condition within a period of time that is not greater than the first cycle time.
    Type: Grant
    Filed: July 16, 2008
    Date of Patent: May 24, 2011
    Assignee: Rheodyne, LLC
    Inventors: Yuri Gerner, Carl W. Sims, Jonathan Thompson
  • Patent number: 7947113
    Abstract: An artificial lung includes a housing, a tubular hollow fiber membrane bundle contained in the housing and providing a multiplicity of hollow fiber membranes having a gas exchange function, a gas inflow port and a gas outflow port communicating with each other through hollow portions of the hollow fiber membranes, and a blood inflow port and a blood outflow port through which blood is distributed. The tubular hollow fiber membrane bundle has a cylindrical overall shape, and a filter member having a bubble-trapping function is provided on an outer peripheral portion of the tubular hollow fiber membrane bundle.
    Type: Grant
    Filed: September 8, 2008
    Date of Patent: May 24, 2011
    Assignee: Terumo Kabushiki Kaisha
    Inventors: Mitsuaki Ogihara, Hidetaka Nakayama
  • Patent number: 7927405
    Abstract: Porous composites comprise a porous membrane having a structure defining a plurality of pores extending therethrough, nonporous discontinuous surface layer affixed to said porous membrane, in which the nonporous discontinuous surface layer forms regions of gas permeability, and regions of gas impermeability, and a coating disposed upon the porous composite which renders at least a portion of the porous composite oleophobic.
    Type: Grant
    Filed: April 23, 2007
    Date of Patent: April 19, 2011
    Assignee: Gore Enterprise Holdings, Inc
    Inventors: John E. Bacino, John L. DiMeo, Alex R. Hobson, Klaus Meindl
  • Publication number: 20110087187
    Abstract: An optimized deaeration membrane has a biocompatible coating composition. Methods for preparing the membrane and the use of the membrane in medical devices for separating air from liquid that are administered to a living subject, e. g., blood processing devices used in dialysis and the like, are also described.
    Type: Application
    Filed: April 29, 2009
    Publication date: April 14, 2011
    Applicant: GAMBRO LUNDIA AB
    Inventor: Christof Beck
  • Patent number: 7892321
    Abstract: An integrated heating system for adding heat to a feed fuel within a module by way of an integrated heating element within the body or casing of the module. The heat may be selectively added to maintain a selected temperature.
    Type: Grant
    Filed: April 21, 2008
    Date of Patent: February 22, 2011
    Assignee: Intelligent Energy, Inc.
    Inventors: Diane Lee Aagesen, Kandaswamy Duraiswamy
  • Patent number: 7871456
    Abstract: A membrane for use in an implantable glucose sensor including at least one crosslinked substantially hydrophobic polymer and at least one crosslinked substantially hydrophilic polymer; wherein the first and second polymers are different polymers and substantially form an interpenetrating polymer network, semi-interpenetrating polymer network, polymer blend, or copolymer. The membranes are generally characterized by providing a permeability ratio of oxygen to glucose of about 1 to about 1000 in units of (mg/dl glucose) per (mmHg oxygen). Three methods of making membranes from hydrophobic and hydrophilic monomers formed into polymer networks are provided, wherein according to at least two of the methods, the monomers may be substantially immiscible with one another.
    Type: Grant
    Filed: August 10, 2006
    Date of Patent: January 18, 2011
    Assignee: The Regents of the University of California
    Inventors: David A. Gough, Joseph Y. Lucisano, Joe T. Lin, Hwai-Min Tsay, Drahoslav Lim, Jana Limova, legal representative
  • Patent number: 7867324
    Abstract: A fuel system includes a fuel deoxygenator for removing oxygen from a liquid fuel. A vaporizer is in fluid communication with the fuel deoxygenator. The vaporizer vaporizes at least a portion of the liquid fuel to produce vaporized fuel. At least a portion of the vaporized fuel pre-mixes with oxidizer to reduce formation of undesirable emissions.
    Type: Grant
    Filed: May 11, 2009
    Date of Patent: January 11, 2011
    Assignee: United Technologies Corporation
    Inventors: Alexander G Chen, Jeffrey M. Cohen
  • Publication number: 20100294128
    Abstract: A device for use in a fluid system includes a fuel channel for receiving fuel having dissolved gas therein. A gas permeable membrane supported by a porous support, the gas permeable membrane in communication with the fuel channel. A gas-removal channel adjacent the gas permeable membrane for receiving the dissolved gas from the fuel through the gas permeable membrane and the porous support.
    Type: Application
    Filed: May 20, 2009
    Publication date: November 25, 2010
    Inventors: Wayde R. Schmidt, Haralambos Cordatos, Slade R. Culp
  • Patent number: 7833321
    Abstract: There is provided a protective filter 1 for an extracorporeal circulation circuit pressure monitor, having a dialysis device side housing 2, an extracorporeal circulation circuit side housing 3, and a hydrophobic filter 4 held between both the housings, which allows passage of a gas but does not allow passage of a liquid, characterized in that a plurality of ribs 27 and 38 capable of supporting the hydrophobic filter 4 are respectively provided in both housings, and a protective member 5 for preventing direct contact between the ribs 38 and the hydrophobic filter 4 is interposed between the ribs 38 provided in the extracorporeal circulation circuit side housing 3 and the hydrophobic filter 4.
    Type: Grant
    Filed: August 31, 2007
    Date of Patent: November 16, 2010
    Assignee: Nipro Corporation
    Inventors: Katsunori Kawai, Akinobu Yamaguchi
  • Patent number: 7824470
    Abstract: A fuel system for an energy conversion device includes a deoxygenator system with a multitude of flow impingement elements which are interleaved to provide a fuel channel with intricate two-dimensional flow characteristics. The flow impingement elements break up the boundary layers and enhance the transport of oxygen from the core of the of the fuel flow within the fuel channel to the oxygen permeable membrane surfaces by directing the fuel flow in a direction normal to the oxygen permeable membrane. The rapid mixing of the relatively rich oxygen core of the fuel with the relatively oxygen-poor flow near the oxygen permeable membrane enhances the overall removal rate of oxygen from the fuel. Because this process can be accomplished in fuel channels of relatively larger flow areas while maintaining laminar flow, the pressure drop sustained is relatively low.
    Type: Grant
    Filed: January 18, 2006
    Date of Patent: November 2, 2010
    Assignee: United Technologies Corporation
    Inventors: Louis Chiappetta, Louis J. Spadaccini, He Huang, Mallika Gummalla, Dochul Choi
  • Publication number: 20100251887
    Abstract: Disclosed herein is a method and system for separating carbon dioxide (CO2) from a CO2 containing gas stream containing water vapor and additional impurities, for example, nitrogen, oxygen, sulfur oxides, nitrogen oxides, and mercury. The CO2 is captured by subjecting the CO2 gas feed stream to a temperature swing adsorption step. The temperature swing adsorption step comprises an adsorption step for producing a substantially dry carbon dioxide-depleted stream, and an adsorbent regeneration step comprising heating the adsorbent bed to produce a substantially water vapor-free carbon dioxide stream. Moisture from the gas stream containing CO2 is optionally removed by pressure swing adsorption, temperature swing adsorption, membrane separation, or absorption prior to CO2 capture.
    Type: Application
    Filed: April 7, 2009
    Publication date: October 7, 2010
    Inventor: Ravi Jain
  • Publication number: 20100242723
    Abstract: The present invention discloses blend polymer membranes comprising thermally rearranged polymers derived from aromatic polyimides containing ortho-positioned functional groups and methods for making and using these blend polymer membranes. The blend polymer membranes described in the current invention are prepared by heat treatment of blend polymer membranes comprising aromatic polyimides containing ortho-positioned functional groups such as —OH or —SH groups. In some instances, an additional crosslinking step is performed to improve the selectivity of the membrane. These blend polymer membranes have improved flexibility, reduced cost, improved processability, and enhanced selectivity and/or permeability compared to the comparable polymer membranes that comprise a single polymer.
    Type: Application
    Filed: March 27, 2009
    Publication date: September 30, 2010
    Inventors: Chunqing Liu, Man-Wing Tang
  • Publication number: 20100236404
    Abstract: A gas separation process for treating flue gases from combustion processes, and combustion processes including such gas separation. The invention involves flowing the flue gas stream to be treated across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas to the combustor.
    Type: Application
    Filed: May 8, 2009
    Publication date: September 23, 2010
    Inventors: Richard W. Baker, Johannes G. Wijmans, Timothy C. Merkel, Haiqing Lin, Ramin Daniels, Scott Thompson
  • Patent number: 7798985
    Abstract: In a venous bubble trap (1), having a housing (2) to which fluid, in particular blood, can be delivered essentially tangentially via a fluid inlet (8) and from which fluid can be carried away via a fluid outlet (10), and having a filter device (3) located in the interior of the housing (2), the filter device (3) divides the housing interior into a prefilter region (5) and a postfilter region (6), and the postfilter region (6) surrounds the prefilter region (5) in at least some portions. As a result, air is reliably removed from the fluid.
    Type: Grant
    Filed: March 7, 2006
    Date of Patent: September 21, 2010
    Assignee: Maquet Cardiopulmonary AG
    Inventors: Ralf Engelhardt, Enno-Utz Kueper, Ulrich Haag
  • Publication number: 20100230366
    Abstract: A method for decreasing the dissolved oxygen content in water used for extracting oil from rocks includes directing water and gas into a housing containing at least one hydrophobic membrane such that the water contacts only a first surface of the membrane and the gas contacts only a second surface of the membrane. The pressure of the gas is decreased thereby causing the oxygen in the water to pass through the first side of the membrane to the second side of the membrane and mix with the gas. A system for decreasing the dissolved oxygen content in water used for extracting oil from rocks includes a plurality of membrane modules. Each module contains at least one hydrophobic membrane. A water supply inlet and a gas supply inlet direct water over the first and second surface respectively of each of the hydrophobic membranes. A water outlet and a gas outlet direct water and gas respectively out of the plurality of membrane modules.
    Type: Application
    Filed: September 25, 2008
    Publication date: September 16, 2010
    Applicant: OTV SA
    Inventors: Didier Bigeonneau, Renaud Sublet, Herve Suty, Wayne Ewans
  • Publication number: 20100229720
    Abstract: Systems, methods, and apparatus for capturing CO2 using a solvent are provided. A gas that includes carbon dioxide may be mixed with a solvent that is operable to absorb at least a portion of the carbon dioxide from the gas. The solvent containing the carbon dioxide may be provided to at least one removal system operable to remove at least a portion of the liquid contained in the solvent. The solvent output by the removal system may be stripped to extract at least a portion of the carbon dioxide from the solvent.
    Type: Application
    Filed: March 11, 2009
    Publication date: September 16, 2010
    Applicant: General Electric Company
    Inventors: Chandrashekhar Ganpatrao Sonwane, Samuel David Draper
  • Patent number: 7771599
    Abstract: Disclosed is an improved method for the remineralization of process water in a desalination system. The method sequesters carbon dioxide gas (CO2) from seawater or concentrate (brine) of desalination process via a gas transfer membrane. The sequestered carbon dioxide gas (CO2) is thereafter used in the production of soluble calcium bicarbonate (Ca(HCO3)2). The calcium bicarbonate (Ca(HCO3)2) adds hardness and alkalinity to the resulting process water.
    Type: Grant
    Filed: March 9, 2009
    Date of Patent: August 10, 2010
    Assignee: Doosan Hydro Technology, Inc.
    Inventors: Young Chul Choi, Chunwoo Lee, Elvira Fernandez Sanchis
  • Patent number: 7763097
    Abstract: A device for removal of at least a portion of carbon dioxide from an aqueous fluid includes at least one membrane through which carbon dioxide can pass to be removed from the fluid and immobilized carbonic anhydrase on or in the vicinity of a first surface of the membrane to be contacted with the fluid such that the immobilized carbonic anhydrase comes into contact with the fluid. The first surface exhibits carbonic anhydrase activity of at least 20% of maximum theoretical activity of the first surface of the membrane based on monolayer surface coverage of carbonic anhydrase in the case that the carbonic anhydrase is immobilize on the first surface.
    Type: Grant
    Filed: June 8, 2007
    Date of Patent: July 27, 2010
    Assignee: University of Pittsburgh—of the Commonwealth System of Higher Education
    Inventors: William J. Federspiel, Alan J. Russell, Heung-Il Oh, Joel L. Kaar
  • Publication number: 20100184198
    Abstract: The present invention provides novel methods for removal and disposal of ammonia from spent dialysate in a dialysis system. Ammonium ions present in spent dialysate are converted into gaseous ammonia by raising the pH of the spent dialysate solution in a first reactor. Gaseous ammonia diffuses through a semi-permeable hydrophobic membrane at the outlet of the first reactor and into a second reactor via a gas channel. The second reactor converts gaseous ammonia into an ammonium compound for easy disposal.
    Type: Application
    Filed: January 16, 2009
    Publication date: July 22, 2010
    Inventors: Russell T. Joseph, David J. Mishelevich, Lina Gabrielaityte
  • Patent number: 7758671
    Abstract: A process and apparatus for dehumidifying a gas stream is provided. The apparatus includes a single semi-permeable osmotic membrane, at least one gas stream compartment formed in part by the osmotic membrane, and at least one osmotic fluid compartment formed in part by the osmotic membrane. The semi-permeable osmotic membrane has randomly arranged pores disposed across a thickness extending between a first side and a second side, and wherein some of the pores are small enough to permit capillary condensation within the membrane, leading to condensate travel across the thickness of the single membrane without requiring a separate capillary condenser, and which single membrane restricts transport of the osmotic fluid across the thickness of the membrane. The first side of the osmotic membrane is exposed to the gas stream compartment, and the second side of the osmotic membrane is exposed to the osmotic fluid compartment.
    Type: Grant
    Filed: August 14, 2006
    Date of Patent: July 20, 2010
    Assignee: Nanocap Technologies, LLC
    Inventors: Arthur S. Kesten, Jack N. Blechner
  • Publication number: 20100132545
    Abstract: A separator for a hydraulic system is provided, including a substrate and a membrane. The substrate includes a substrate outer surface and a gas side expulsion area. The expulsion area is for expelling gas from the separator. The membrane is in communication with the substrate, and is for permeating gas to the substrate outer surface while substantially blocking ingression of fluid to the substrate. The substrate outer surface is for receiving gas. The substrate is for transporting gas from the substrate outer surface to the expulsion area.
    Type: Application
    Filed: December 1, 2008
    Publication date: June 3, 2010
    Inventor: Edward J. Hummelt
  • Patent number: 7713332
    Abstract: A carbon dioxide separation system for a fuel cell system having a small volume and weight of a separation device and of a membrane, at simultaneous increase of the separated volume of carbon dioxide, comprises a separation device for containing a fluid phase, a carbon dioxide phase, and a two phase fluid including fluid and carbon dioxide. The separation device comprises a two phase fluid inlet, a fluid outlet, a carbon dioxide outlet, a carbon dioxide separation membrane, and a flow restrictor creating a backpressure which presses separated carbon dioxide through the carbon dioxide separation membrane. The flow restrictor comprises at least one narrow aperture, and is mounted downstream of the separation device. The carbon dioxide separation membrane is positioned in the separation device in such a manner that at least a part of the total membrane area is arranged above a two phase fluid level and is in touch with carbon dioxide contained in the separation device above the two phase fluid level.
    Type: Grant
    Filed: February 2, 2007
    Date of Patent: May 11, 2010
    Assignees: Samsung SDI Co., Ltd., Samsung SDI Germany GmbH
    Inventor: Matthias Bronold
  • Patent number: 7713319
    Abstract: A fluid recycling system includes a separator for physically separating glycol from at least a portion of other substances mixed with the glycol to produce a first effluent stream having separated glycol and a second effluent stream having the other substances and residual glycol. A catalytic reactor receives the second effluent stream and chemically reacts the other substances and residual glycol to produce a hydrogen stream and a remainder stream.
    Type: Grant
    Filed: August 16, 2006
    Date of Patent: May 11, 2010
    Assignee: Hamilton Sunstrand Corporation
    Inventors: Rakesh Radhakrishnan, Steven J. Moss, Per-Anders K. Lof, Michael K. Sahm, Joseph J. Sangiovanni, Thomas Henry Vanderspurt
  • Patent number: 7713331
    Abstract: An elongated flow-through degassing apparatus includes an elongated gas and liquid impermeable outer member and a gas-permeable, liquid-impermeable inner barrier extending within the outer member and at least partially along a first chamber defined within the outer member. The apparatus also includes inlet and outlet connection structures operably coupled to respective portions of the outer member and a second chamber defined by the inner barrier to further enable a sealed engagement between the outer member and the inner barrier, and to provide for connection devices to operably couple the degassing apparatus of the present invention to respective spaced apart components. The degassing apparatus may be sufficiently flexible so as to be readily manipulatable into desired configurations.
    Type: Grant
    Filed: December 4, 2006
    Date of Patent: May 11, 2010
    Assignee: Rheodyne, LLC
    Inventors: Yuri Gerner, Carl W. Sims, Thomas J. Thielen
  • Patent number: 7708811
    Abstract: A degassing apparatus is provided that accomplishes the connecting of a degassing element and a connecting member and/or the joining of a vacuum (reduced-pressure) chamber and the connecting member without using a fastening structure screwed together with the connecting member. A degassing apparatus includes: a reduced-pressure chamber having a through port for flowing a degassing target liquid therethrough; a degassing element, accommodated in the chamber, for passing the liquid therethrough; and a tubular connecting member joined to the chamber at the through port. The degassing element includes a gas-permeable tube, for passing the liquid therethrough, being covered with a joint piece at an end portion of the gas-permeable tube. The degassing element is fixed to the chamber by heat sealing the connecting member and the joint piece together.
    Type: Grant
    Filed: May 1, 2007
    Date of Patent: May 4, 2010
    Assignee: Nitto Denko Corporation
    Inventor: Hajime Ooya
  • Patent number: 7695550
    Abstract: An apparatus that comprises a membrane having a plurality of fluid-support-structures and openings located between the fluid-support-structures. The fluid-support-structures have at least one dimension that that is about 1 millimeter or less. The apparatus also comprises a wicking material positioned adjacent to a surface of the membrane. When a fluid locatable on a surface of the fluid-support-structures penetrates the fluid-support-structures, at least a portion of the fluid passes through the openings and into the wicking material.
    Type: Grant
    Filed: July 28, 2006
    Date of Patent: April 13, 2010
    Assignee: Alcatel-Lucent USA Inc.
    Inventors: Thomas Nikita Krupenkin, Victor Alexander Lifton, Joseph Ashley Taylor, Brijesh Vyas
  • Patent number: 7691180
    Abstract: Ionic liquids comprising a mixture of one or more triflate or bis(trifluoromethylsulfonyl)imide salt(s) with one or more Lewis acids(s), wherein the total of the molar contents of the Lewis acid(s) in the mixture is from about 0.01-98%, are provided, that are useful as catalysts in Lewis acid catalyzed reactions.
    Type: Grant
    Filed: July 16, 2004
    Date of Patent: April 6, 2010
    Assignee: Novartis AG
    Inventors: Peter Wasserscheid, Andreas Metlen, Nicole Brausch
  • Patent number: 7686867
    Abstract: A degasifier is provided in which the deterioration in sealing property (deterioration in airtightness) is prevented while sealing members to be placed between a container and covers that compose a decompression chamber can be omitted. A degasifier includes a decompression chamber provided with a container and covers, and a gas-permeable tube. The container is a tubular body extending along the central axis. The covers seal the openings of the ends of the tubular body. The gas-permeable tube is contained in the decompression chamber in such a manner that a liquid to be degassed that has entered from the outside of the decompression chamber flows therethrough and the liquid to be degassed that has flowed therethrough flows out of the decompression chamber.
    Type: Grant
    Filed: May 1, 2006
    Date of Patent: March 30, 2010
    Assignee: Nitto Denko Corporation
    Inventor: Hajime Ooya
  • Patent number: 7682421
    Abstract: A liquid is degassed with an apparatus including a membrane contactor, where the liquid is drawn through the apparatus by gravity.
    Type: Grant
    Filed: October 12, 2006
    Date of Patent: March 23, 2010
    Assignee: Celgard LLC
    Inventors: Gareth P. Taylor, Jorge Munoz
  • Publication number: 20090308246
    Abstract: A gas extraction apparatus provides for reliable and accurate extraction of gases dissolved in fluids and routing the extracted gas to an analytical instrument. An extraction module comprises one or more fluorosilicone membranes molded into the shape of a flattened disk. The membranes are retained in a housing in a spaced apart relationship. The membrane is permeable to target gas(es), but not to the fluid. Porous support members support the membranes and prevent damage to them and the housing defines separate fluid flow paths for the fluid and the gas extracted from it.
    Type: Application
    Filed: June 12, 2008
    Publication date: December 17, 2009
    Applicant: SERVERON CORPORATION
    Inventors: Steven Mahoney, Thomas Waters
  • Patent number: 7632338
    Abstract: A fuel stabilization unit includes an electrochemical device for promoting the formation of water utilizing oxygen from a fuel stream for generating an oxygen partial pressure differential across an oxygen permeable membrane.
    Type: Grant
    Filed: October 5, 2006
    Date of Patent: December 15, 2009
    Assignee: United Technologies Corporation
    Inventor: Ned E. Cipollini
  • Patent number: 7621982
    Abstract: A liquid-gas separator for a direct liquid feed fuel cell includes a tube having an opening portion at a sidewall thereof; liquid extracting members that selectively transmit the liquid in the tube and located at both ends of the tube; a gas extracting membrane that selectively transmits the gas and covers the opening portion; an inlet that guides the liquid and the gas into the tube; chambers that surround an outer side of the liquid extracting member; and outlets that guide the liquid in the chambers to the outside by being connected to the chamber.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: November 24, 2009
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Sang-kyun Kang, Xiaobing Luo, Dong-kee Sohn, Hae-kyoung Kim
  • Patent number: 7615104
    Abstract: A fuel system for an energy conversion device includes a deoxygenator system with an oxygen permeable membrane formed from a multiple of layers. The layers include a sealant layer, an oxygen permeability layer and a porous backing layer. The layered composite oxygen permeable membrane maximizes the oxygen transfer rate and minimizes the fuel leakage rate.
    Type: Grant
    Filed: November 3, 2005
    Date of Patent: November 10, 2009
    Assignees: United Technologies Corporation, Membrane Technology & Research, Inc.
    Inventors: Haralambos Cordatos, Louis J. Spadaccini, Ingo Pinnau
  • Patent number: 7611568
    Abstract: A liquid-gas separator for a direct liquid feed fuel cell includes: a housing having an open hole; a gas extracting membrane that covers the open hole and transmits only the gas; a liquid extracting member that defines a first chamber that contacts the gas extracting membrane and a second chamber that does not contact the gas extracting membrane, and selectively transmits the liquid in the first chamber to the second chamber; an inlet that guides the liquid and the gas into the housing; and an outlet that is connected to the second chamber and guides the liquid in the second chamber to the outside.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: November 3, 2009
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Sang-kyun Kang, Dong-kee Sohn, Woong-ho Cho, Sang-hyeon Choi
  • Publication number: 20090266229
    Abstract: Oil system components for a turbine engine are used to provide a vacuum system for a fuel stabilization unit (FSU). A vacuum system pulls oxygen and other contaminants from fuel into a vacuum chamber within the FSU. The vacuum system pumps the discharge through a vacuum outlet in the FSU toward a vacuum pump. Due to the quality of vacuum required, a two-stage vacuum pump is used. A first stage vacuum pump is an oil system scavenge pump for the turbine engine and the second stage vacuum is provided by a second stage vacuum pump. The discharge flows from the vacuum chamber through to the second stage vacuum pump and is then added to the oil supply. The oil and discharge mixture is sent through an oil system de-oiler and a de-aerator to clean the oil supply prior to pumping the oil back through the oil system.
    Type: Application
    Filed: July 1, 2009
    Publication date: October 29, 2009
    Inventor: Douglas A. Parsons
  • Publication number: 20090255290
    Abstract: Methods and apparatus for separating fluids are disclosed. We have discovered that, surprisingly, providing an open pore structure between a wick and an open flow channel resulted in superior separation performance. A novel and compact integrated device components for conducting separations are also described.
    Type: Application
    Filed: April 1, 2009
    Publication date: October 15, 2009
    Applicant: Battelle Memorial Institute
    Inventors: Ward E. TeGrotenhuis, Paul H. Humble, Dustin D. Caldwell
  • Patent number: 7601203
    Abstract: A fuel system for a gas turbine engine removes oxygen from fuel with a fuel stabilization unit (FSU). The FSU includes a first vacuum stage, where vacuum pressure is created by an ejector and a second vacuum stage where vacuum pressure is created by the ejector and a vacuum pump. The vacuum stream from the first vacuum stage and the second vacuum stage flow through the ejector. The vacuum stream from the second vacuum stage is all that passes through the vacuum pump.
    Type: Grant
    Filed: July 7, 2006
    Date of Patent: October 13, 2009
    Assignee: United Technologies Corporation
    Inventors: Hayden M. Reeve, Thomas G. Tillman
  • Patent number: 7601201
    Abstract: A method of removing carbon monoxide from an oxygen carrier including setting a carbon monoxide bonded oxygen carrier solution across a separation membrane from an oxygen-dissolved solution; and exposing the setting part to the light and a method of removing carbon monoxide from an oxygen carrier including setting a carbon monoxide oxygen carrier solution across a hollow fiber separation membrane from an oxygen-dissolved solution; and exposing the setting part to light.
    Type: Grant
    Filed: April 13, 2006
    Date of Patent: October 13, 2009
    Assignee: Nipro Corporation
    Inventors: Ippei Fukutomi, Toshiya Kai, Naohisa Katayama, Takeshi Nizuka, Yoshinori Kida
  • Patent number: 7591878
    Abstract: The invention relates to gas separation, in particular to separation of CO2 from CO2-rich liquids, particularly from CO2 absorption liquids used in the removal of CO2 from off-gases or product flows, such as natural gas or synthesis gas. According to the invention, CO2 is separated from a CO2-rich liquid by a method comprising a step wherein, under elevated pressure, said liquid is contacted with a membrane based on polyacetylene substituted with trimethylsilyl groups such that the pressure across the membrane is at least 1 bar and that at least a part of the CO2 is transported from the liquid through the membrane.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: September 22, 2009
    Assignee: Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek TNO
    Inventors: Paul Hubert M. Feron, Vladimir Vasilevich Volkov, Valery Samuilovich Khotimsky, Vladimir Vasil'evich Teplyakov
  • Patent number: 7582137
    Abstract: A device for use in a fluid system includes a flow perturbation element within a fluid channel. The flow perturbation element has a gas permeable surface for removing dissolved gas from passing fluid. A gas permeable membrane is coated on the gas permeable surface and allows the dissolved gas transport out of passing fluid into a gas-removal channel. The gas permeable membrane may be coated on the fuel perturbation elements using any of a variety of methods.
    Type: Grant
    Filed: January 18, 2006
    Date of Patent: September 1, 2009
    Assignee: United Technologies Corporation
    Inventors: Alexander G. Chen, Louis J. Spadaccini, Louis Chiappetta, Haralambos Cordatos
  • Publication number: 20090199709
    Abstract: A method of deacidizing a gaseous effluent comprising acid compounds where the gaseous effluent is contacted in C1 with an adsorbent solution so as to obtain a gaseous effluent depleted in acid compounds and an absorbent solution laden with acid compounds, the absorbent solution being selected for its property of forming two separable phases when it has absorbed an amount of acid compounds and when it is heated. The absorbent solution laden with acid compounds is then heated in E1 and E3 so as to separate two fractions: a first absorbent solution fraction depleted in acid compounds and a second absorbent solution fraction enriched in acid compounds. These two fractions are then separated in BS1. The second fraction is regenerated in C2 so as to release part of the acid compounds, and the first absorbent solution fraction and the regenerated absorbent solution are recycled as absorbent solution.
    Type: Application
    Filed: March 9, 2007
    Publication date: August 13, 2009
    Applicant: IFP
    Inventors: Alexandre Rojey, Renaud Cadours, Pierre-Louis Carrette, Pierre Boucot
  • Patent number: 7569099
    Abstract: A fuel system for an energy conversion device includes a multiple of non-metallic fuel plates, gaskets, oxygen permeable membranes, porous substrate plates, and vacuum frame plates. Intricate 3-dimension fuel channel structures such as laminar flow impingement elements within the fuel channel dramatically enhance oxygen diffusivity in the FSU. The fuel plates are manufactured from a relatively soft non-metallic material. The non-metallic fuel plates and gasket arrangement provide an effective sealing interface between the fuel plate and oxygen permeable membrane, since compression may be applied to the plates without damaging the relatively delicate oxygen permeable membrane.
    Type: Grant
    Filed: January 18, 2006
    Date of Patent: August 4, 2009
    Assignee: United Technologies Corporation
    Inventors: Charles C. Coffin, Thomas G. Tillman, He Huang, Brian M. Welch
  • Publication number: 20090183871
    Abstract: The present invention provides methods and apparatus for separating and/or analyzing fluids of interest. According to principles of the present invention, fluid analysis is accomplished with microfluidic devices and may be reported in real-time or near real-time in a subterranean environment. In addition or alternative to oilfield applications, the principles of the present invention contemplate separation in a laboratory or other environment for biological sample separation and analytical chemistry applications. The present invention is capable of separating liquid-liquid mixtures or emulsions in a microfluidic device without fouling.
    Type: Application
    Filed: February 20, 2009
    Publication date: July 23, 2009
    Applicant: Schlumberger Technology Corporation
    Inventors: Philippe Salamitou, Joyce Wong, Bhavani Raghuraman, Jagdish Shah, Ronald E. G. Van Hal, Robert J. Schroeder, Patrick Jean Rene Tabeling
  • Publication number: 20090145461
    Abstract: An ophthalmic device forming system includes an inspection station configured to receive a plurality of ophthalmic devices, a fluid supply fluidly connected to the inspection station, the fluid supply containing a working fluid, and a degassing assembly fluidly connected between the fluid supply and the inspection station. The degassing assembly comprises a housing, a vacuum device, and a membrane. The vacuum device is fluidly connected to the housing adjacent to the membrane.
    Type: Application
    Filed: November 25, 2008
    Publication date: June 11, 2009
    Inventors: Sanjay M. Rastogi, William J. Appleton, Norbert Politi
  • Patent number: 7537646
    Abstract: A fuel system includes a fuel deoxygenator for removing oxygen from a liquid fuel. A vaporizer is in fluid communication with the fuel deoxygenator. The vaporizer vaporizes at least a portion of the liquid fuel to produce vaporized fuel. At least a portion of the vaporized fuel pre-mixes with oxidizer to reduce formation of undesirable emissions.
    Type: Grant
    Filed: October 11, 2005
    Date of Patent: May 26, 2009
    Assignee: United Technologies Corporation
    Inventors: Alexander G Chen, Jeffrey M. Cohen
  • Patent number: 7520919
    Abstract: The transducer-protector device for medical apparatus comprises a housing formed by two half-shells, a membrane defining a gas-permeable anti-contamination barrier, a female Luer first connection port, a second connection port for connection to a flexible tube, a helical bellows-conformed deformable member. The device, which operates in a service line of an extracorporeal blood circuit associated to a dialysis machine, is for protecting the machine from contaminating agents originating from the circuit. The device is simple and economical to manufacture.
    Type: Grant
    Filed: June 16, 2005
    Date of Patent: April 21, 2009
    Assignee: Gambro Lundia AB
    Inventor: Luca Caleffi
  • Patent number: 7497895
    Abstract: The invention relates to an improved membrane pervaporation and vapor permeation system in which the vacuum is produced by a fluid passing through a Venturi-type nozzle. The fluid is chosen from solvents that have little or no affinity for the permeate molecules. It is applicable over process feed rates, and can be used for the separation of aromatic species from hydrocarbon.
    Type: Grant
    Filed: November 18, 2005
    Date of Patent: March 3, 2009
    Assignee: ExxonMobil Research and Engineering Company
    Inventor: Craig Y. Sabottke