Fullerenes (i.e., Graphene-based Structures, Such As Nanohorns, Nanococoons, Nanoscrolls, Etc.) Or Fullerene-like Structures (e.g., Ws2 Or Mos2 Chalcogenide Nanotubes, Planar C3n4, Etc.) Patents (Class 977/734)
  • Publication number: 20130059203
    Abstract: Provided are an anode active material for a lithium secondary battery, a method for preparing same, and a lithium secondary battery including same. An anode active material for a lithium secondary battery according to the present invention includes: active particles by means of which lithium ions may be absorbed/released; and a coating layer coated on the surface of the active particles, wherein the coating layer includes a first material which is a hollow nanofiber and a second material which is a carbon precursor or LTO.
    Type: Application
    Filed: May 11, 2011
    Publication date: March 7, 2013
    Applicant: ROUTE JJ CO., LTD.
    Inventors: Ji Jun Hong, Ki Taek Byun, Hyo Won Kim
  • Publication number: 20130057333
    Abstract: The present invention is to provide a graphene valley singlet-triplet qubit device. The device includes a substrate, and a graphene layer formed on the substrate. An energy gap is created between the valence band and the conduction band of the graphene layer. At least one electrical gate is configured on the graphene layer and/or on two sides of the graphene layer. The graphene layer is located in a magnetic field and a voltage is applied to at least one electrical gate, thereby creating a valley singlet-triplet qubit.
    Type: Application
    Filed: January 13, 2012
    Publication date: March 7, 2013
    Inventor: Yu-Shu WU
  • Publication number: 20130056071
    Abstract: Methods, compositions and devices relate to photovoltaic cells having a photoactive layer and constituents synthesized and utilized for the photoactive layer. The photovoltaic cells incorporate photoactive materials produced from dyads formed into an initial layer and then thermally cleaved to provide the photoactive layer. Cleavage of the dyads, such as synthesized fullerene anthracen-2-ylmethyl 3-(thiophen-3-yl) acetate dyads, or polymers of the dyads into separate molecules providing donors and acceptors facilitates in obtaining the photovoltaic cells with desired arrangement and interspacing of the donors and the acceptors relative to one another.
    Type: Application
    Filed: March 1, 2012
    Publication date: March 7, 2013
    Applicant: CONOCOPHILLIPS COMPANY
    Inventors: Amit J. Palkar, Ting He
  • Publication number: 20130059134
    Abstract: A method of conductively coupling a carbon nanostructure and a metal electrode is provided that includes disposing a carbon nanostructure on a substrate, depositing a carbon-containing layer on the carbon nanostructure, according to one embodiment, and depositing a metal electrode on the carbon-containing layer. Further provided is a conductively coupled carbon nanostructure device that includes a carbon nanostructure disposed on a substrate, a carbon-containing layer disposed on the carbon nanostructure and a metal electrode disposed on the carbon-containing layer, where a low resistance coupling between the carbon nanaostructure and metal elements is provided.
    Type: Application
    Filed: September 7, 2011
    Publication date: March 7, 2013
    Inventors: Yang Chai, Arash Hazeghi, Kuniharu Takei, Ali Javey, H.S. Philip Wong
  • Publication number: 20130059143
    Abstract: A method for preparing a graphene based conductive material and the graphene based conductive material prepared by the method. The method includes: preparing a solid film on a substrate layer by using graphene oxide sol and metal salt solution and/or metal colloidal solution, keeping the solid film separated or without separated from the substrate layer standing for from 30 s to 10000 h in an atmosphere consisting of hydrogen or containing hydrogen with temperature of ?50° C.˜200° C. and hydrogen pressure of 0.01-100 MPa, obtaining the graphene based conductive material. The preparation method can be processed at low temperature and uses cheap hydrogen as reductant, so the preparation process is simple and environment friendly.
    Type: Application
    Filed: May 16, 2011
    Publication date: March 7, 2013
    Applicant: NATIONAL CENTER FOR NANOSCIENCE AND TECHNOLOGY
    Inventors: Minghui Liang, Linjie Zhi
  • Patent number: 8388924
    Abstract: The present application relates generally to methods for growth of high quality graphene films. In particular, a method is provided for forming a graphene film using a modified chemical vapor deposition process using an oxygen-containing hydrocarbon liquid precursor. Desirably, the graphene films are a single-layer and have a single grain continuity of at least 1 ?m2.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: March 5, 2013
    Assignee: The Aerospace Corporation
    Inventors: Gouri Radhakrishnan, Paul Michael Adams
  • Patent number: 8389619
    Abstract: A poly(ether-ketone) composite of the formula: wherein DND is detonation nanodiamond particle; wherein Ar represents ether-ketone repeating groups of the formula wherein Q is —O— or —O—(CH2)n—O—, wherein n has a value of 2-12; wherein R is —H, —CH3, or —C2H5, m has a value of 1 or 2; wherein R? is —H or —CH3; and wherein — denotes the presence of a direct C—C bond between Ar and DND. Also provided is a process for preparing the nanocomposites.
    Type: Grant
    Filed: February 5, 2009
    Date of Patent: March 5, 2013
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Loon-Seng Tan, David H. Wang
  • Publication number: 20130048951
    Abstract: According to example embodiments, a graphene switching devices has a tunable barrier. The graphene switching device may include a gate substrate, a gate dielectric on the gate substrate, a graphene layer on the gate dielectric, a semiconductor layer and a first electrode sequentially stacked on a first region of the graphene layer, and a second electrode on a second region of the graphene layer. The semiconductor layer may be doped with one of an n-type impurity and a p-type impurity. The semiconductor layer may face the gate substrate with the graphene layer being between the semiconductor layer and the gate substrate. The second region of the graphene layer may be separated from the first region on the graphene layer.
    Type: Application
    Filed: August 22, 2012
    Publication date: February 28, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jin-Seong HEO, Hyun-jong CHUNG, Hyun-jae SONG, Seong-jun PARK, David SEO, Hee-jun YANG
  • Publication number: 20130050901
    Abstract: There is provided a multilayer ceramic electronic component, including: a ceramic main body including a dielectric layer; and first and second internal electrodes provided on upper and lower surfaces of the dielectric layer and formed of a thin film including graphene. The multilayer ceramic electronic component includes internal electrodes formed of a thin film including graphene, thereby having increased capacitance and improved thermal stability and withstand voltage characteristics.
    Type: Application
    Filed: August 9, 2012
    Publication date: February 28, 2013
    Inventors: Kwang Jik LEE, Suk Jin HAM, Ji Hyuk LIM
  • Publication number: 20130052522
    Abstract: To provide a carbon-based negative electrode material which can be used with an electrolyte containing PC as a main ingredient, a carbon-based negative electrode material having a graphene layer structure is crystalline and has pores. That is, the crystal structure of the carbon-based negative electrode material is distorted more significantly than that of graphite. Accordingly, the carbon-based negative electrode material has a larger interlayer distance between graphenes than graphite. It has been shown that such a negative electrode material can be used for a secondary battery which contains an electrolyte containing PC as a main ingredient.
    Type: Application
    Filed: August 16, 2012
    Publication date: February 28, 2013
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Nobuhiro Inoue, Junpei Momo, Hiroatsu Todoriki, Teppei Oguni
  • Publication number: 20130052463
    Abstract: Infrared metamaterial arrays containing Au elements immersed in a medium of benzocyclobutene (BCB) were fabricated and selectively etched to produce small square flakes with edge dimensions of approximately 20 ?m. Two unit-cell designs were fabricated: one employed crossed-dipole elements while the other utilized square-loop elements.
    Type: Application
    Filed: August 24, 2012
    Publication date: February 28, 2013
    Applicants: Plasmonics Inc., University of Central Florida Research Foundation Inc.
    Inventors: David Shelton, Glenn Boreman, Jeffrey D'Archangel
  • Publication number: 20130048948
    Abstract: Inverter logic devices include a gate oxide on a back substrate, a first graphene layer and a second graphene layer separated from each other on the gate oxide, a first electrode layer and a first semiconductor layer separated from each other on the first graphene layer, a second electrode layer and a second semiconductor layer separated from each other on the second graphene layer, and an output electrode on the first and second semiconductor layers and configured to output an output signal. The first semiconductor layer is doped with a different type of impurities selected from n-type impurities and p-type impurities than the second semiconductor layer.
    Type: Application
    Filed: August 24, 2012
    Publication date: February 28, 2013
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Jin-seong HEO, Seong-jun PARK, Hyun-jong CHUNG, Hyun-jae SONG, Hee-jun YANG, David SEO
  • Publication number: 20130052121
    Abstract: An object of the present invention is to solve a problem such as a small crystal size, which is the issue of a conventional method for formation of a film of graphene by a thermal CVD technique using a copper foil as a substrate, and thus providing a carbon film laminate in which graphene having a larger crystal size is formed. The carbon film laminate is configured to include a sapphire (0001) single crystal having a surface composed of terrace surfaces which are flat at the atomic level, and atomic-layer steps, a copper (111) single crystal thin film formed by epitaxial growth on the substrate and graphene deposited on the copper (111) single crystal thin film, and thus enabling formation of graphene having a large crystal size.
    Type: Application
    Filed: February 25, 2011
    Publication date: February 28, 2013
    Inventors: Masataka Hasegawa, Masatou Ishihara, Yoshinori Koga, Jaeho Kim, Kazuo Tsugawa, Sumio Iijima
  • Publication number: 20130052537
    Abstract: A power storage device including a negative electrode having high cycle performance in which little deterioration due to charge and discharge occurs is manufactured. A power storage device including a positive electrode, a negative electrode, and an electrolyte provided between the positive electrode and the negative electrode is manufactured, in which the negative electrode includes a negative electrode current collector and a negative electrode active material layer, and the negative electrode active material layer includes an uneven silicon layer formed over the negative electrode current collector, a silicon oxide layer or a mixed layer which includes silicon oxide and a silicate compound and is in contact with the silicon layer, and graphene in contact with the silicon oxide layer or the mixed layer including the silicon oxide and the silicate compound.
    Type: Application
    Filed: August 28, 2012
    Publication date: February 28, 2013
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Toshihiko TAKEUCHI, Minoru Takahashi, Takeshi Osada, Teppei Oguni, Takuya Hirohashi
  • Publication number: 20130052547
    Abstract: A structure and a method of manufacturing a power storage device with high energy density are provided. An air electrode includes a first current collector; a second current collector having a projecting structure, in contact with the first current collector; and a catalyst layer having 1 to 100 graphene films. Accordingly, the surface area of the air electrode can be significantly large due to an effect of the second current collector, and further, the graphene film can produce a catalytic reaction without using a catalyst such as a noble metal; thus, by employing a structure in which the catalyst layer is provided on the second current collector, the energy density of the power storage device can be improved.
    Type: Application
    Filed: August 16, 2012
    Publication date: February 28, 2013
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Kiyofumi OGINO, Yumiko Saito
  • Publication number: 20130048339
    Abstract: In some embodiments, the present invention provides transparent electrodes that comprise: (1) a grid structure; and (2) a graphene film associated with the grid structure. In additional embodiments, the transparent electrodes of the present invention further comprise a substrate, such as glass. Additional embodiments of the present invention pertain to methods of making the above-described transparent electrodes. Such methods generally comprise: (1) providing a grid structure; (2) providing a graphene film; and (3) associating the graphene film with the grid structure. In further embodiments, the methods of the present invention also comprise associating the transparent electrode with a substrate.
    Type: Application
    Filed: March 8, 2011
    Publication date: February 28, 2013
    Applicant: William Marsh Rice University
    Inventors: James M. Tour, Yu Zhu
  • Publication number: 20130052528
    Abstract: An electrode and a power storage device each of which achieves better charge-discharge cycle characteristics and is less likely to deteriorate owing to separation of an active material, or the like are manufactured. As the electrode for the power storage device, an electrode including a current collector and an active material layer that is over the current collector and includes a particle containing niobium oxide and a granular active material is used, whereby the charge-discharge cycle characteristics of the power storage device can be improved. Moreover, contact between the granular active material and the particle containing niobium oxide makes the granular active material physically fixed; accordingly, deterioration due to expansion and contraction of the active material which occur along with charge and discharge of the power storage device, such as powdering of the active material layer or its separation from the current collector, can be suppressed.
    Type: Application
    Filed: August 28, 2012
    Publication date: February 28, 2013
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Kazutaka KURIKI, Kiyofumi OGINO, Nobuhiro INOUE
  • Publication number: 20130048949
    Abstract: Disclosed are thin film transistor devices incorporating a thin film semiconductor derived from carbonaceous nanomaterials and a dielectric layer composed of an organic-inorganic hybrid self-assembled multilayer.
    Type: Application
    Filed: May 21, 2012
    Publication date: February 28, 2013
    Inventors: Yu Xia, He Yan, Antonio Facchetti
  • Publication number: 20130048953
    Abstract: A photoluminescence diode which may decrease a driving voltage may include an anode, a cathode, an emission layer interposed between the anode and the cathode, and an electron accepting layer interposed between the emission layer and the cathode and including one material selected from fullerene, methanofulleren, doped fullerene, doped methanofulleren, a derivative thereof, and a mixture thereof.
    Type: Application
    Filed: December 8, 2011
    Publication date: February 28, 2013
    Applicant: SAMSUNG MOBILE DISPLAY CO., LTD.
    Inventors: Hyung-Jun Song, Chang-Ho Lee, Il-Soo Oh, Hee-Joo Ko, Se-Jin Cho, Jin-Young Yun, Bo-Ra Lee, Young-Woo Song, Jong-Hyuk Lee, Sung-Chul Kim
  • Publication number: 20130048924
    Abstract: The described invention provides compositions related to an electronically insulating amorphous or nanocrystalline mixed ionic conductor composition comprising a metal fluoride composite to which an electrical potential is applied to form 1) a negative electrode, and 2) a positive electrode, wherein the negative electrode and positive electrode are formed in situ.
    Type: Application
    Filed: November 9, 2010
    Publication date: February 28, 2013
    Inventors: Glenn G. Amatucci, Anna Halajko, Fadwa Badway
  • Publication number: 20130045897
    Abstract: An amphiphilic nanoparticle comprises a nanoparticle having a hydrophilic region comprising a hydrophilic functional group bonded to a first portion of a surface of the nanoparticle, and a hydrophobic region of a surface of the nanoparticle. A downhole fluid comprises the amphiphilic nanoparticle, and a method of controlling an oil spill using the downhole fluid are also disclosed.
    Type: Application
    Filed: August 19, 2011
    Publication date: February 21, 2013
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Soma Chakraborty, Gaurav Agrawal
  • Publication number: 20130045427
    Abstract: The present invention provides a battery or supercapacitor current collector which is prelithiated. The prelithiated current collector comprises: (a) an electrically conductive substrate having two opposed primary surfaces, and (b) a mixture layer of carbon (and/or other stabilizing element, such as B, Al, Ga, In, C, Si, Ge, Sn, Pb, As, Sb, Bi, Te, or a combination thereof) and lithium or lithium alloy coated on at least one of the primary surfaces, wherein lithium element is present in an amount of 1% to 99% by weight of the mixture layer. This current collector serves as an effective and safe lithium source for a wide variety of electrochemical energy storage cells, including the rechargeable lithium cell (e.g. lithium-metal, lithium-ion, lithium-sulfur, lithium-air, lithium-graphene, lithium-carbon, and lithium-carbon nanotube cell) and the lithium ion based supercapacitor cell (e.g, symmetric ultracapacitor, asymmetric ultracapacitor, hybrid supercapacitor-battery, or lithium-ion capacitor).
    Type: Application
    Filed: August 19, 2011
    Publication date: February 21, 2013
    Inventors: Aruna Zhamu, Yanbo Wang, Bor Z. Jang
  • Publication number: 20130045418
    Abstract: To form graphene to a practically even thickness on an object having an uneven surface or a complex surface, in particular, an object having a surface with a three-dimensional structure due to complex unevenness, or an object having a curved surface. The object and an electrode are immersed in a graphene oxide solution, and voltage is applied between the object and the electrode. At this time, the object serves as an anode. Graphene oxide is attracted to the anode because of being negatively charged, and deposited on the surface of the object to have a practically even thickness. A portion where graphene oxide is deposited is unlikely coated with another graphene oxide. Thus, deposited graphene oxide is reduced to graphene, whereby graphene can be formed to have a practically even thickness on an object having surface with complex unevenness.
    Type: Application
    Filed: August 15, 2012
    Publication date: February 21, 2013
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Teppei OGUNI, Takeshi OSADA, Toshihiko TAKEUCHI
  • Publication number: 20130045416
    Abstract: Synthesis of gold microtubes and nanotubes suspendable in solution is presented. The synthesis is accomplished using an AAO template route, wherein a polymer tube is used as a sacrificial core. The synthesis produces hollow structures that consist of only gold. These nanostructures exhibit two SPR modes, which correspond to both the transverse and longitudinal modes. The mode assignment was confirmed by measuring SPR behavior as both aligned arrays and in solution. The performance of gold nanotubes as refractive index detectors was quantified and determined to be more sensitive than analogous solid nanorods prepared under identical conditions, and are among the most sensitive nanostructured plasmon sensors to date. Due to their intense and sensitive resonances in the NIR spectrum, these solution-suspendable nanoparticles have potential to be used as in vitro or in vivo sensors.
    Type: Application
    Filed: August 15, 2012
    Publication date: February 21, 2013
    Inventors: Dwight S. SEFEROS, Colin BRIDGES, Paul DICARMINE
  • Publication number: 20130042917
    Abstract: Embodiments of the inventive concept provide dye-sensitized solar cells and methods of manufacturing an electrolyte. The dye-sensitized solar cell may include a first electrode, a second electrode facing and spaced apart from the first electrode, and an electrolyte filling a space between the first and second electrode. The electrolyte may include a solvent including graphene of about 60 mg to about 100 mg dissolved in carbonate of about 10 ml, and an oxidation-reduction agent including alkyl imidazole-based iodine and iodine of about 0.2M to about 0.6M and iodine of about 0.01M to about 0.03M.
    Type: Application
    Filed: August 14, 2012
    Publication date: February 21, 2013
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Mi Hee JUNG, Mangu KANG
  • Publication number: 20130045156
    Abstract: A first precipitate is formed by mixing graphite and an oxidizer containing an alkali metal salt in a solution. Next, a second precipitate is formed by ionizing the oxidizer which is included in the first precipitate, with an acid solution, and removing the oxidizer from the first precipitate. Then, a dispersion liquid in which graphene oxide is dispersed is prepared by mixing the second precipitate and water to form a mixed solution and then applying ultrasonic waves to the mixed solution or mechanically stirring the mixed solution, so that the graphene oxide is separated from graphite oxide that is the graphite which is included in the second precipitate and oxidized. Next, graphene oxide salt is formed by mixing the dispersion liquid, a basic solution, and an organic solvent and reacting the graphene oxide included in the dispersion liquid and a base included in the basic solution to each other.
    Type: Application
    Filed: August 9, 2012
    Publication date: February 21, 2013
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Kuniharu Nomoto, Nobuhiro Inoue, Mikio Yukawa, Tatsuya Ikenuma
  • Patent number: 8378335
    Abstract: A semiconductor device according to an embodiment, includes a catalytic metal film, a graphene film, a contact plug, and an adjustment film. The catalytic metal film is formed above a substrate. The graphene film is formed on the catalytic metal film. The contact plug is connected to the graphene film. The adjustment film is formed in a region other than a region connected to the contact plug of a surface of the graphene film to adjust a Dirac point position in a same direction as the region connected to the contact plug with respect to a Fermi level.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: February 19, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yuichi Yamazaki, Makoto Wada, Tadashi Sakai
  • Patent number: 8377730
    Abstract: Provided is a method of manufacturing a sensor structure, where vertically-well-aligned nanotubes are formed and the sensor structure having an excellent performance can be manufactured at the room temperature at low cost by using the nanotubes. The method of manufacturing a sensor structure includes: (a) forming a lower electrode on a substrate; (b) forming an organic template having a pore structure on the lower electrode; (c) forming a metal oxide thin film in the organic template; (d) forming a metal oxide nanotube structure, in which nanotubes are vertically aligned and upper portions thereof are connected to each other, by removing the organic template through a dry etching method; and (e) forming an upper electrode on the upper portions of the nanotubes.
    Type: Grant
    Filed: December 28, 2009
    Date of Patent: February 19, 2013
    Assignee: Postech Academy-Industry Foundation
    Inventors: Seung Yun Yang, Gumhye Jeon, Hyungjun Kim, Jong Yeog Son, Chang-Soo Lee, Jin Kon Kim, Jinseok Byun
  • Patent number: 8377243
    Abstract: The invention relates to a method for transferring a nano-layer (1) from a first substrate (5, 105) to a second substrate (30, 130), wherein the nano-layer (1) comprises a self-aggregating monolayer with cross-linked phenyl units and/or a mono-atomic graphite layer (graphene), wherein the method comprises the following steps: a. applying a transfer medium (20, 120) onto nano-layer (1), wherein in this step or afterwards the transfer medium (20, 120) is transformed from a liquid or gaseous phase in a solid phase; b. separating the transfer medium (20, 120) and the nano-layer (1) from the first substrate (5, 105); and c. applying the transfer medium (20, 120) and the nano-layer (1) onto the second substrate (30, 130); and d. removing the transfer medium (20, 120).
    Type: Grant
    Filed: April 11, 2008
    Date of Patent: February 19, 2013
    Inventors: Armin Gölzhäuser, Christoph Nottbohm, André Beyer
  • Publication number: 20130040146
    Abstract: A graphene structure includes a substrate and a graphene layer. The grapheme layer is laminated on the substrate, is formed of graphene doped with a dopant, and has a similar oxidation-reduction potential to that of water.
    Type: Application
    Filed: August 1, 2012
    Publication date: February 14, 2013
    Applicant: SONY CORPORATION
    Inventors: Nozomi Kimura, Toshiyuki Kobayashi, Daisuke Hobara, Masashi Bando, Keisuke Shimizu, Koji Kadono
  • Publication number: 20130040197
    Abstract: Composite materials containing sulfurized polymers and sulfur-containing particles can be used in lithium-sulfur energy storage devices as a positive electrode. The composite material exhibits relatively high capacity retention and high charge/discharge cycle stability. In one particular instance, the composite comprises a sulfurized polymer having chains that are cross-linked through sulfur bonds. The polymer provides a matrix in which sulfide and/or polysulfide intermediates formed during electrochemical charge-discharge processes of sulfur can be confined through chemical bonds and not mere physical confinement or sorption.
    Type: Application
    Filed: July 30, 2012
    Publication date: February 14, 2013
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Jun Liu, Yuliang Cao, Lifen Xiao, Jie Xiao, Gregory J. Exarhos, Birgit Schwenzer, Zimin Nie
  • Publication number: 20130040283
    Abstract: A method of forming a composition includes oxidation of graphene oxide to form holey graphene oxide having defects therein and reduction of the holey graphene oxide.
    Type: Application
    Filed: February 9, 2012
    Publication date: February 14, 2013
    Inventors: ALEXANDER STAR, NARASIMHA HARINDRA VEDALA, GREGG PETER KOTCHEY
  • Publication number: 20130040124
    Abstract: The present invention relates to transparent antistatic films using graphene, and methods for preparing the same. The films include conductive particles comprising a single-layer or multi-layer graphene, and a binder. The films are prepared by dispersing graphene in a solvent to obtain a graphene dispersion; dissolving a curable binder to a solvent to obtain a binder solution; mixing the graphene dispersion, the binder solution and optionally an additive to obtain a coating solution; applying the coating solution onto a substrate and drying the solution to form a coated film; and curing the coated film. According to the present invention, transparent or semitransparent antistatic films having excellent permeability, abrasion resistance, scratch resistance, chemical stability and dimensional stability can be prepared. The films also have superior adhesion to substrates and applicability, and thus may be advantageously applied to rigid or flexible substrates.
    Type: Application
    Filed: April 5, 2011
    Publication date: February 14, 2013
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Chong Min Koo, Soon Man Hong, Seung Sang Hwang, Soon Jong Kwak, Kyung Youl Baek, Kyung Ho Min, Youn Duk Park, Hee La Kwak, Myung Hee Kim, Bo Ri Kim, Seung Sock Choi, Tae Hee Han
  • Publication number: 20130037759
    Abstract: The present invention relates to a semiconductive polyolefin composition comprising graphene nanoplatelets. It also relates to a semiconductive polyolefin composition comprising the combination of graphene nanoplatelets and carbon black. Moreover, the present invention is related to a process for producing the semiconductive polyolefin composition as well to the use of the semiconductive polyolefin composition in a power cable. Further, the invention is also related to an article, preferably a power cable comprising at least one semiconductive layer comprising said polyolefin composition.
    Type: Application
    Filed: April 5, 2011
    Publication date: February 14, 2013
    Applicant: BOREALIS AG
    Inventors: Christer Svanberg, Tung Pham, Muhammad Ali Malik, Francis Costa, Yi Liu, Takashi Uematsu, Thomas Gkourmpis
  • Publication number: 20130032913
    Abstract: A graphene structure includes a conductive layer and a protective layer. The conductive layer is formed of graphene doped with a dopant, and the protective layer is laminated on the conductive layer and formed of a material having a higher oxidation-reduction potential than water.
    Type: Application
    Filed: July 25, 2012
    Publication date: February 7, 2013
    Applicant: SONY CORPORATION
    Inventors: Nozomi Kimura, Daisuke Hobara, Toshiyuki Kobayashi, Masashi Bando, Keisuke Shimizu, Koji Kadono
  • Publication number: 20130034532
    Abstract: Embodiments of the present disclosure provides for nanozymes, methods of making nanozymes, methods of using nanozymes, and the like.
    Type: Application
    Filed: April 19, 2011
    Publication date: February 7, 2013
    Inventors: Yunwei Charles Cao, Chen Liu, Hongyan Liu, Zhongliang Wang, Soon Hye Yang
  • Publication number: 20130034724
    Abstract: In an embodiment of the invention, a laminar composite has at least one interlaminar reinforced interface comprising a dispersion of binding-agent-treated low-dimensional nanoparticles with a large aspect ratio fixed between adjacent lamina by residues of the binding agents. In another embodiment of the invention, a method to prepare a laminar composite having reinforced interfaces involves the deposition of binding-agent-treated low-dimensional nanoparticles from a solution or suspension onto the surface or a prepreg sheet, where, optionally, after removal of the liquid that comprises the solution or suspension, sheets of the prepreg are layed-up and cured to form the laminar composite.
    Type: Application
    Filed: August 4, 2011
    Publication date: February 7, 2013
    Inventor: HENRY SODANO
  • Publication number: 20130033810
    Abstract: Printed electronic device comprising a substrate onto at least one surface of which has been applied a layer of an electrically conductive ink comprising functionalized graphene sheets and at least one binder. A method of preparing printed electronic devices is further disclosed.
    Type: Application
    Filed: September 5, 2012
    Publication date: February 7, 2013
    Applicants: THE TRUSTEES OF PRINCETON UNIVERSITY, VORBECK MATERIALS CORPORATION
    Inventors: John M. CRAIN, John S. LETTOW, Ilhan A. AKSAY, Sibel KORKUT, Katherine S. CHIANG, Chuan-Hua CHEN, Robert K. PRUD'HOMME
  • Publication number: 20130032794
    Abstract: Provided is a thin film transistor and thin film transistor panel array. The thin film transistor includes: a substrate; a gate electrode disposed on the substrate; a semiconductor layer disposed on the substrate and partially overlapping with the gate electrode; a source electrode and a drain electrode spaced apart from each other with respect to a channel region of the semiconductor layer; an insulating layer disposed between the gate electrode and the semiconductor layer; and a barrier layer disposed between the semiconductor layer and the source electrode and between the semiconductor layer and the drain electrode, in which the barrier layer comprises graphene. An ohmic contact is provided based on the type of material used for the semiconductor layer.
    Type: Application
    Filed: February 6, 2012
    Publication date: February 7, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Yong Su LEE, Yoon Ho KHANG, Se Hwan YU, Chong Sup CHANG
  • Patent number: 8367033
    Abstract: In order to isolate and purify an endohedral fullerene, a solvent washing was performed using toluene to concentrate the endohedral fullerene in a residual, but endohedral fullerene could not be efficiently purified because impurities other than the endohedral fullerene could not be sufficiently removed. Thus, the endohedral fullerene is isolated and purified by using a solvent such as chloronaphthalene or tetralin having a high solubility for the endohedral fullerene and concentrating the endohedral fullerene in the solvent. The endohedral fullerene isolated and purified by solvent extraction has a cluster structure where the endohedral fullerene is surrounded with empty fullerenes. Thus, this endohedral fullerene is highly stable and is a useful material applicable to various fields such as medical care and electronics.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: February 5, 2013
    Inventors: Hiroshi Okada, Yoshinori Sibata, Kuniyoshi Yokoo, Yuzo Mizobuchi, Kenji Omote, Yasuhiko Kasama
  • Patent number: 8367032
    Abstract: The invention provides improved burners, combustion apparatus, and methods for carbon nanomaterial production. The burners of the invention provide sooting flames of fuel and oxidizing gases. The condensable products of combustion produced by the burners of this invention produce carbon nanomaterials including without limitation, soot, fullerenic soot, and fullerenes. The burners of the invention do not require premixing of the fuel and oxidizing gases and are suitable for use with low vapor pressure fuels such as those containing substantial amounts of polyaromatic hydrocarbons. The burners of the invention can operate with a hot (e.g., uncooled) burner surface and require little, if any, cooling or other forms of heat sinking. The burners of the invention comprise one or more refractory elements forming the outlet of the burner at which a flame can be established. The burners of the invention provide for improved flame stability, can be employed with a wider range of fuel/oxidizer (e.g.
    Type: Grant
    Filed: March 9, 2007
    Date of Patent: February 5, 2013
    Assignee: Frontier Carbon Corporation
    Inventors: J. Michael Alford, Michael D. Diener, James Nabity, Michael Karpuk
  • Publication number: 20130028016
    Abstract: Some embodiments include memory cells which have channel-supporting material, dielectric material over the channel-supporting material, carrier-trapping material over the dielectric material and an electrically conductive electrode material over and directly against the carrier-trapping material; where the carrier-trapping material includes gallium, indium, zinc and oxygen. Some embodiments include methods of storing information. A memory cell to is provided which has a channel-supporting material, a dielectric material over the channel-supporting material, a carrier-trapping material over the dielectric material, and an electrically conductive electrode material over and directly against the carrier-trapping material; where the carrier-trapping material includes gallium, indium, zinc and oxygen. It is determined if carriers are trapped in the carrier-trapping material to thereby ascertain a memory state of the memory cell.
    Type: Application
    Filed: July 26, 2011
    Publication date: January 31, 2013
    Applicant: Micron Technology, Inc.
    Inventors: Gurtej S. Sandhu, D.V. Nirmal Ramaswamy
  • Publication number: 20130025662
    Abstract: Techniques for reducing the resistivity of carbon nanotube and graphene materials are provided. In one aspect, a method of producing a doped carbon film having reduced resistivity is provided. The method includes the following steps. A carbon material selected from the group consisting of: a nanotube, graphene, fullerene and pentacene is provided. The carbon material and a dopant solution comprising an oxidized form of ruthenium bipyridyl are contacted, wherein the contacting is carried out under conditions sufficient to produce the doped carbon film having reduced resistivity.
    Type: Application
    Filed: July 25, 2011
    Publication date: January 31, 2013
    Applicant: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Ageeth Anke Bol, Bhupesh Chandra, George Stojan Tulevski
  • Publication number: 20130030175
    Abstract: The present invention provides metal-porphyrin carbon nanostructures, which have excellent oxygen reduction performance and are useful as materials for fuel cell electrodes.
    Type: Application
    Filed: September 28, 2012
    Publication date: January 31, 2013
    Applicant: KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventor: Korea Advanced Institute of Science & Technology
  • Publication number: 20130027778
    Abstract: An absorptive neutral density optical filter comprising one or more graphene layers disposed on an optical substrate. The optical substrate can be a solid material (e.g. glasses or crystals such as silicon carbide, sapphire, germanium, or potassium bromide), or a polymer, or even a wire mesh. The graphene can be grown on the optical substrate or can be growth on a growth substrate and then transferred to the optical substrate.
    Type: Application
    Filed: July 26, 2012
    Publication date: January 31, 2013
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Marc Currie, David Kurt Gaskill
  • Publication number: 20130026029
    Abstract: CO2 conversation into organic molecules is based on the photo-oxidation of water into oxygen gas O2, protons H+, and electrons. The conversion of CO2 occurs at the photo-cathode and involves the generated protons, electrons and the “fuel” CO2.
    Type: Application
    Filed: April 8, 2011
    Publication date: January 31, 2013
    Inventors: Sam Kayaert, Johan Martens, Kasper Masschaele
  • Publication number: 20130030120
    Abstract: The present invention relates to polymers, nanomaterials, and methods of making the same. Various embodiments provide an amphiphilic multi-arm copolymer. The copolymer includes a core unit and a plurality of amphiphilic block copolymer arms. Each block copolymer arm is substituted on the core unit. Each block copolymer arm includes at least one hydrophilic homopolymer subunit and at least one hydrophobic homopolymer subunit. In some examples, the copolymer can include a star-like or bottlebrush-like block copolymer, and can include a Janus copolymer. Various embodiments provide a nanomaterial. In some examples, the nanomaterial can include Janus nanomaterials, and can include nanoparticles, nanorods, or nanotubes. The nanomaterial includes the amphiphilic multi-arm copolymer and at least one inorganic precursor. The inorganic precursor can be coordinated to at least one homopolymer subunit of one of the amphiphilic block copolymer arms to form the nanomaterial.
    Type: Application
    Filed: July 25, 2011
    Publication date: January 31, 2013
    Inventors: Zhiqun Lin, Xinchang Pang
  • Patent number: 8361349
    Abstract: A nanoparticle coated with a semiconducting material and a method for making the same. In one embodiment, the method comprises making a semiconductor coated nanoparticle comprising a layer of at least one semiconducting material covering at least a portion of at least one surface of a nanoparticle, comprising: (A) dispersing the nanoparticle under suitable conditions to provide a dispersed nanoparticle; and (B) depositing at least one semiconducting material under suitable conditions onto at least one surface of the dispersed nanoparticle to produce the semiconductor coated nanoparticle. In other embodiments, the nanoparticle comprises a fullerene. Further embodiments include the semiconducting material comprising CdS or CdSe.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: January 29, 2013
    Assignees: William Marsh Rice University, Natcore Technology Inc.
    Inventors: Andrew R. Barron, Dennis J. Flood, John Ryan Loscutova
  • Patent number: 8361813
    Abstract: A method for depositing graphene is provided. The method includes depositing a layer of non-conducting amorphous carbon over a surface of a substrate and depositing a transition metal in a pattern over the amorphous carbon. The substrate is annealed at a temperature below 500° C., where the annealing converts the non-conducting amorphous carbon disposed under the transition metal to conducting amorphous carbon. A portion of the pattern of the transition metal is removed from the surface of the substrate to expose the conducting amorphous carbon.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: January 29, 2013
    Assignee: Intermolecular, Inc.
    Inventors: Sandip Niyogi, Sean Barstow
  • Publication number: 20130022813
    Abstract: A method for growing a graphene nanoribbon on an insulating substrate having a cleavage plane with atomic level flatness is provided, and belongs to the field of low-dimensional materials and new materials. The method includes the following steps. Step 1: Cleave an insulating substrate to obtain a cleavage plane with atomic level flatness, and prepare a single atomic layer step. Step 2: Directly grow a graphene nanoribbon on the insulating substrate having regular single atomic steps. In the method, a characteristic that nucleation energy of graphene on the atomic step is different from that on the flat cleavage plane is used, and conditions, such as the temperature, intensity of pressure and supersaturation degree of activated carbon atoms, are adjusted, so that the graphene grows only along a step edge into a graphene nanoribbon of an adjustable size. The method is mainly applied to the field of new-type graphene optoelectronic devices.
    Type: Application
    Filed: August 5, 2011
    Publication date: January 24, 2013
    Applicant: SHANGHAI INSTITUTE OF MICROSYSTEM AND INFORMATION TECHNOLOGY, CHINESE ACADEMY
    Inventors: Shujie Tang, Guqiao Ding, Xiaoming Xie, Ji Chen, Chen Wang, Mianheng Jiang