Gas Phase Catalytic Growth (i.e., Chemical Vapor Deposition) Patents (Class 977/843)
  • Patent number: 9028791
    Abstract: A system and method for manufacturing carbon nanotubes using chemical vapor deposition. The system has a first chamber comprising at least one cathode and at least one anode, a gas supply source, at least one activation energy source, at least one alignment energy source, a second chamber situated within said first chamber, said second chamber comprising: a target growth plate, comprising a catalyst and a substrate, a second cathode configured to support said target growth plate, a movable platform configured to support said second cathode, and a gas permeable barrier vertically opposed from said second cathode.
    Type: Grant
    Filed: November 27, 2012
    Date of Patent: May 12, 2015
    Assignee: Dream Matter, LLC
    Inventor: Joel Maier
  • Patent number: 9023308
    Abstract: Methods of ex situ synthesis of graphene, graphene oxide, reduced graphene oxide, other graphene derivative structures and nanoparticles useful as polishing agents are disclosed. Compositions and methods for polishing, hardening, protecting, adding longevity to, and lubricating moving and stationary parts in devices and systems, including, but not limited to, engines, turbos, turbines, tracks, races, wheels, bearings, gear systems, armor, heat shields, and other physical and mechanical systems employing machined interacting hard surfaces through the use of nano-polishing agents formed in situ from lubricating compositions and, in some cases, ex situ and their various uses are also disclosed.
    Type: Grant
    Filed: April 29, 2014
    Date of Patent: May 5, 2015
    Assignee: Peerless Worldwide, LLC
    Inventor: Richard S. Shankman
  • Patent number: 9017637
    Abstract: The present disclosure relates to a method for making carbon nanotube structure. A substrate having a growing surface is provided. A carbon nanotube layer is placed on the growing surface of the substrate. Part of the growing surface is exposed from the carbon nanotube layer. A number of first catalysts are deposited on surface of the carbon nanotube layer and a number of second catalysts are deposited on the growing surface. A carbon nanotube array is grown on the growing surface and a carbon nanotube cluster is grown on surface of the carbon nanotube layer.
    Type: Grant
    Filed: December 11, 2012
    Date of Patent: April 28, 2015
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Peng Liu, Kai-Li Jiang, Shou-Shan Fan
  • Patent number: 9017636
    Abstract: A deposition method of fine particles, includes the steps of irradiating a fine particle beam formed by size-classified fine particles to an irradiated subject under a vacuum state, and depositing the fine particles on a bottom part of a groove structure formed at the irradiated subject.
    Type: Grant
    Filed: December 5, 2012
    Date of Patent: April 28, 2015
    Assignee: Fujitsu Limited
    Inventors: Yuji Awano, Noriyoshi Shimizu, Shintaro Sato
  • Patent number: 9017635
    Abstract: The present invention relates to a continuous manufacturing apparatus for a carbon nanotube having gas separation units and a continuous manufacturing method for a carbon nanotube using the same. According to the present invention, the present invention has an effect to provide the continuous manufacturing apparatus of the carbon nanotube and continuous manufacturing method using the same, in which it makes possible to perform a rapid processing; has excellent productivity and excellent conversion rate of carbon source; can significantly reduce the cost of production; can reduce energy consumption because a reactor size can be decreased as compared with capacity; and a gas separation unit that not generate a waste gas.
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: April 28, 2015
    Assignee: LG Chem, Ltd.
    Inventors: Kwang-Hyun Chang, Jin-Do Kim, Kwang-Woo Yoon
  • Patent number: 9017634
    Abstract: Mass production of carbon nanotubes (CNT) are facilitated by methods and apparatus disclosed herein. Advantageously, the methods and apparatus make use of a single production unit, and therefore provide for uninterrupted progress in a fabrication process. Embodiments of control systems for a variety of CNT production apparatus are included.
    Type: Grant
    Filed: August 17, 2012
    Date of Patent: April 28, 2015
    Assignee: FastCAP Systems Corporation
    Inventors: Nicolò Michele Brambilla, Riccardo Signorelli, Fabrizio Martini, Oscar Enrique Corripio Luna
  • Patent number: 9005564
    Abstract: Disclosed are carbon nanotubes and a method for manufacturing the same. Advantageously, the method provides a high yield of potato or sphere-shaped non-bundled carbon nanotubes having a bulk density of 80 to 250 kg/m3, an ellipticity of 0.9 to 1.0 and a particle diameter distribution (Dcnt) of 0.5 to 1.0 using a two-component carbon nanotube catalyst comprising a catalyst component and an active component.
    Type: Grant
    Filed: January 9, 2013
    Date of Patent: April 14, 2015
    Assignee: LG Chem, Ltd.
    Inventors: Kyung Yeon Kang, Jin Do Kim, Sung Jin Kim, Jae Keun Yoon
  • Publication number: 20150093576
    Abstract: Disclosed herein are carbon nanotubes and a method of manufacturing the same. The carbon nanotubes include at least one element selected from aluminum (Al), magnesium (Mg) and silicon (Si) and at least one metal selected from cobalt (Co), nickel (Ni), iron (Fe), manganese (Mn) and molybdenum (Mo), and have an intensity ratio (ID/IG) of about 1.10 or less as measured by Raman spectroscopy and a carbon purity of about 98% or higher. The carbon nanotubes prepared by the method can be controlled in terms of carbon purity and preparation yield while eliminating the need for post-refining treatment.
    Type: Application
    Filed: September 29, 2014
    Publication date: April 2, 2015
    Inventors: Seung Yong BAE, Yun Tack LEE, Byeong Yeol KIM, Joong In KIM, Sung Hee AHN
  • Patent number: 8993448
    Abstract: A method of forming a plurality of nanotubes is disclosed. Particularly, a substrate may be provided and a plurality of recesses may be formed therein. Further, a plurality of nanotubes may be formed generally within each of the plurality of recesses and the plurality of nanotubes may be substantially surrounded with a supporting material. Additionally, at least some of the plurality of nanotubes may be selectively shortened and at least a portion of the at least some of the plurality of nanotubes may be functionalized. Methods for forming semiconductor structures intermediate structures, and semiconductor devices are disclosed. An intermediate structure, intermediate semiconductor structure, and a system including nanotube structures are also disclosed.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: March 31, 2015
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej S. Sandhu, Terry L. Gilton
  • Patent number: 8986835
    Abstract: A GaN nanorod and formation method. Formation includes providing a substrate having a GaN film, depositing SiNx on the GaN film, etching a growth opening through the SiNx and into the GaN film, growing a GaN nanorod through the growth opening, the nanorod having a nanopore running substantially through its centerline. Focused ion beam etching can be used. The growing can be done using organometallic vapor phase epitaxy. The nanopore diameter can be controlled using the growth opening diameter or the growing step duration. The GaN nanorods can be removed from the substrate. The SiNx layer can be removed after the growing step. A SiOx template can be formed on the GaN film and the GaN can be grown to cover the SiOx template before depositing SiNx on the GaN film. The SiOx template can be removed after growing the nanorods.
    Type: Grant
    Filed: April 5, 2011
    Date of Patent: March 24, 2015
    Assignee: Purdue Research Foundation
    Inventors: Isaac Harshman Wildeson, Timothy David Sands
  • Patent number: 8974719
    Abstract: A method of forming nano-structure composite materials that have a binder material and a nanostructure fiber material is described. A precursor material may be formed using a mixture of at least one metal powder and anchored nanostructure materials. The metal powder mixture may be (a) Ni powder and (b) NiAl powder. The anchored nanostructure materials may comprise (i) NiAl powder as a support material and (ii) carbon nanotubes attached to nanoparticles adjacent to a surface of the support material. The process of forming nano-structure composite materials typically involves sintering the mixture under vacuum in a die. When Ni and NiAl are used in the metal powder mixture Ni3Al may form as the binder material after sintering. The mixture is sintered until it consolidates to form the nano-structure composite material.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: March 10, 2015
    Assignee: Consolidated Nuclear Security, LLC
    Inventors: Roland D. Seals, Paul A. Menchhofer, Jane Y. Howe, Wei Wang
  • Patent number: 8951631
    Abstract: A composition includes a carbon nanotube (CNT)-infused metal fiber material which includes a metal fiber material of spoolable dimensions, a barrier coating conformally disposed about the metal fiber material, and carbon nanotubes (CNTs) infused to the metal fiber material. A continuous CNT infusion process includes: (a) disposing a barrier coating and a carbon nanotube (CNT)-forming catalyst on a surface of a metal fiber material of spoolable dimensions; and (b) synthesizing carbon nanotubes on the metal fiber material, thereby forming a carbon nanotube-infused metal fiber material.
    Type: Grant
    Filed: November 2, 2009
    Date of Patent: February 10, 2015
    Assignee: Applied NanoStructured Solutions, LLC
    Inventors: Tushar K. Shah, Slade H. Gardner, Mark R. Alberding, Harry C. Malecki
  • Patent number: 8951632
    Abstract: A composition includes a carbon nanotube (CNT)-infused carbon fiber material that includes a carbon fiber material of spoolable dimensions and carbon nanotubes (CNTs) infused to the carbon fiber material. The infused CNTs are uniform in length and uniform in distribution. The CNT infused carbon fiber material also includes a barrier coating conformally disposed about the carbon fiber material, while the CNTs are substantially free of the barrier coating. A continuous CNT infusion process includes: (a) functionalizing a carbon fiber material; (b) disposing a barrier coating on the functionalized carbon fiber material (c) disposing a carbon nanotube (CNT)-forming catalyst on the functionalized carbon fiber material; and (d) synthesizing carbon nanotubes, thereby forming a carbon nanotube-infused carbon fiber material.
    Type: Grant
    Filed: November 2, 2009
    Date of Patent: February 10, 2015
    Assignee: Applied NanoStructured Solutions, LLC
    Inventors: Tushar K. Shah, Slade H. Gardner, Mark R. Alberding, Harry C. Malecki
  • Patent number: 8945502
    Abstract: An electronics component is disclosed herein. The electronics component include a substrate and a plurality of single-walled carbon nanotubes (SWNTs) formed on said substrate, wherein said plurality of SWNTs form a patterned, dense and high-quality arrays of single-walled carbon nanotubes (SWNTs) on quartz wafers by using FeCl3/polymer as catalytic precursors and chemical vapor deposition (CVD) of methane. With the assistance of polymer, the catalysts may be well-patterned on the wafer surface by simple photolithography or polydimethylsiloxane (PDMS) stamp microcontact printing (?CP).
    Type: Grant
    Filed: April 24, 2009
    Date of Patent: February 3, 2015
    Assignee: The Regents of the University of California
    Inventors: Peter J. Burke, Weiwei Zhou, Christopher M. Rutherglen
  • Patent number: 8940628
    Abstract: A method of manufacturing an interconnection of an embodiment includes: forming a via which penetrates an interlayer insulation film on a substrate; forming an underlying film in the via; removing the underlying film on a bottom part of the via; forming a catalyst metal inactivation film on the underlying film; removing the inactivation film on the bottom part of the via; forming a catalyst metal film on the bottom part of the via on which the inactivation film is removed; performing a first plasma treatment and a second plasma treatment using a gas not containing carbon on a member in which the catalyst metal film is formed; forming a graphite layer on the catalyst film after the first and second plasma treatment processes; and causing a growth of a carbon nanotube from the catalyst film on which the graphite layer is formed.
    Type: Grant
    Filed: December 26, 2013
    Date of Patent: January 27, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yuichi Yamazaki, Tadashi Sakai
  • Patent number: 8926934
    Abstract: A method for growing an array of carbon nanotubes includes the steps of: (a) providing a substrate; (b) forming a catalyst film on the substrate, the catalyst film including carbonaceous material; (c) introducing a mixture of a carrier gas and a carbon source gas flowing across the catalyst film; (d) focusing a laser beam on the catalyst film to locally heat the catalyst to a predetermined reaction temperature; and (e) growing an array of the carbon nanotubes from the substrate.
    Type: Grant
    Filed: November 2, 2007
    Date of Patent: January 6, 2015
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Kai-Li Jiang, Zhuo Chen, Chun-Xiang Luo, Shou-Shan Fan
  • Patent number: 8926933
    Abstract: The present invention is directed to methods of making nanofiber yarns. In some embodiments, the nanotube yarns comprise carbon nanotubes. Particularly, such carbon nanotube yarns of the present invention provide unique properties and property combinations such as extreme toughness, resistance to failure at knots, high electrical and thermal conductivities, high absorption of energy that occurs reversibly, up to 13% strain-to-failure compared with the few percent strain-to-failure of other fibers with similar toughness, very high resistance to creep, retention of strength even when heated in air at 450° C. for one hour, and very high radiation and UV resistance, even when irradiated in air.
    Type: Grant
    Filed: November 9, 2005
    Date of Patent: January 6, 2015
    Assignee: The Board of Regents of The University of Texas System
    Inventors: Mei Zhang, Ray H. Baughman, Kenneth Ross Atkinson
  • Patent number: 8911701
    Abstract: An industrial process and an apparatus for fabricating carbon nanotubes (CNTs) is provided, comprising synthesis of the carbon nanotubes by decomposing a carbon source brought into contact, in a fluidized-bed reactor, whereby the carbon nanotubes synthesized in the reactor and fixed onto the grains of catalytic substrate in the form of an entangled three-dimensional network, forming agglomerates constituting the CNT powder, are recovered sequentially by discharging them while hot, that is to say at the reaction temperature for synthesizing the CNTs, at the foot of the reactor, the sequence in which the discharges are carried out corresponding to the frequency of filling of the reactor.
    Type: Grant
    Filed: March 20, 2012
    Date of Patent: December 16, 2014
    Assignee: Arkema France
    Inventors: Patrice Gaillard, Serge Bordere
  • Patent number: 8906335
    Abstract: Broad-area synthesis of aligned and densely-packed carbon nanotubes (CNT) is disclosed. CNT are repeatedly synthesized and then drawn together to locally and globally achieve increased packing densities. The process synthesizes an aligned, relatively sparse forest of CNT on a catalyzed sacrificial substrate. The catalyst is removed, thereby releasing the CNT but leaving them in place on the substrate. A liquid-induced collapse produces regions of more densely packed CNT and regions where no CNT remain. A fresh catalyst is deposited on the exposed regions of the substrate and a sparse forest of aligned CNT is regrown in these regions. The CNT also may form on the tops of the densified regions of CNT. The top-growth CNT may be removed or incorporated into the solid such that the solid is expanded axially. This process, e.g., growth then densification, is repeated to form a near-continuous solid of aligned and densely packed CNT.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: December 9, 2014
    Assignee: Lockheed Martin Corporation
    Inventor: Keith A. Slinker
  • Patent number: 8887663
    Abstract: A system for use in fabrication of carbon nanotubes (CNTs) includes a wafer having a circuitry and a plurality of CNT seed sites. The system also includes a base assembly configured to support the wafer. The system further includes a first tube disposed over the wafer and configured to surround the CNTs that form on the seed sites. The circuitry in the wafer is configured to conduct at least one static charge. The wafer includes a top surface having a plurality of CNT seed sites, each seed site coupled to the circuitry and configured to receive one of the at least one static charge.
    Type: Grant
    Filed: September 27, 2011
    Date of Patent: November 18, 2014
    Assignees: Samsung Austin Semiconductor, L.P., Samsung Electronics Co., Ltd.
    Inventors: Robert Stebbins, Russell Olson
  • Patent number: 8865109
    Abstract: Systems and methods for the formation of carbon-based nanostructures are generally described. In some embodiments, the nanostructures may be formed on a nanopositor. The nanopositor can comprise, in some embodiments, at least one of metal atoms in a non-zero oxidation state and metalloid atoms in a non-zero oxidation state. For example, the nanopositor may comprise a metal oxide, a metalloid oxide, a metal chalcogenide, a metalloid chalcogenide, and the like. The carbon-based nanostructures may be grown by exposing the nanopositor, in the presence or absence of a growth substrate, to a set of conditions selected to cause formation of carbon-based nanostructures on the nanopositor. In some embodiments, metal or metalloid atoms in a non-zero oxidation state are not reduced to a zero oxidation state during the formation of the carbon-based nanostructures. In some cases, metal or metalloid atoms in a non-zero oxidation state do not form a carbide during the formation of the carbon-based nanostructures.
    Type: Grant
    Filed: August 7, 2012
    Date of Patent: October 21, 2014
    Assignee: Massachusetts Institute of Technology
    Inventors: Stephen A. Steiner, III, Brian L. Wardle
  • Publication number: 20140302232
    Abstract: Apparatuses and methods for depositing materials on both side of a web while it passes a substantially vertical direction are provided. In particular embodiments, a web does not contact any hardware components during the deposition. A web may be supported before and after the deposition chamber but not inside the deposition chamber. At such support points, the web may be exposed to different conditions (e.g., temperature) than during the deposition.
    Type: Application
    Filed: April 14, 2014
    Publication date: October 9, 2014
    Applicant: Amprius,Inc.
    Inventors: Ronald J. Mosso, Ghyrn E. Loveness
  • Patent number: 8845996
    Abstract: The present disclosure is directed to a method of producing metallic single-wall carbon nanotubes by treatment of carbon nanotube producing catalysts to obtain the desired catalyst particle size to produce predominantly metallic single wall carbon nanotubes. The treatment of the carbon nanotube producing catalyst particles involves contacting the catalyst particles with a mixture of an inert gas, like He, a reductant, such as H2, and an adsorbate, like water, at an elevated temperature range, for example, at 500° C. to 860° C., for a sufficient time to obtain the catalyst particle size. In some of the present methods, the preferential growth of nanotubes with metallic conductivity of up to 91% has been demonstrated.
    Type: Grant
    Filed: July 28, 2009
    Date of Patent: September 30, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventor: Avetik R. Harutyunyan
  • Patent number: 8845995
    Abstract: The present invention relates to single walled and multi-walled carbon nanotubes (CNTs), functionalized CNTs and carbon nanotube composites with controlled properties, to a method for aerosol synthesis of single walled and multi-walled carbon nanotubes, functionalized CNTs and carbon nanotube composites with controlled properties from pre-made catalyst particles and a carbon source in the presence of reagents and additives, to functional, matrix and composite materials composed thereof and structures and devices fabricated from the same in continuous or batch CNT reactors. The present invention allows all or part of the processes of synthesis of CNTs, their purification, doping, functionalization, coating, mixing and deposition to be combined in one continuous procedure and in which the catalyst synthesis, the CNT synthesis, and their functionalization, doping, coating, mixing and deposition can be separately controlled.
    Type: Grant
    Filed: March 9, 2005
    Date of Patent: September 30, 2014
    Assignee: Canatu Oy
    Inventors: Esko Kauppinen, David P. Brown, Albert G. Nasibulin, Hua Jiang, Anna Moisala
  • Publication number: 20140273259
    Abstract: A method of making a low-dimensional material chemical vapor sensor comprising exfoliating MoS2, applying the monolayer flakes of MoS2 onto a SiO2/Si wafer, applying a methylmethacrylate (MMA)/polymethylmethacrylate (PMMA) film, defining trenches for the deposition of metal contacts, and depositing one of Ti/Au, Au, and Pt in the trench and resulting in a MoS2 sensor. A low-dimensional material chemical vapor sensor comprising monolayer flakes of MoS2, trenches in the SiO2/Si wafer, metal contacts in the trenches, and thereby resulting in a MoS2 sensor. A full spectrum sensing suite comprising similarly fabricated parallel sensors made from a variety of low-dimensional materials including graphene, carbon nanotubes, MoS2, BN, and the family of transition metal dichalcogenides. The sensing suites are small, robust, sensitive, low-power, inexpensive, and fast in their response to chemical vapor analytes.
    Type: Application
    Filed: November 8, 2013
    Publication date: September 18, 2014
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Adam L. Friedman, F. Keith Perkins, Enrique Cobas, Paul M. Campbell, Glenn G. Jernigan, Berend T. Jonker
  • Patent number: 8834632
    Abstract: In a method of manufacturing a carbon nanotube, a boat configured to receive substrates is positioned outside of a synthesis space where the carbon nanotube is synthesized. The substrates are loaded into the boat. The boat is then transferred to the synthesis space. A process for forming the carbon nanotube is performed on the substrates in the synthesis space to form the carbon nanotube. Thus, the carbon nanotube may be effectively manufactured.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: September 16, 2014
    Assignee: Korea Kumho Petrochemical Co., Ltd
    Inventors: Ho-Soo Hwang, Sung-Soo Kim, Jung-Keun Cho
  • Patent number: 8828349
    Abstract: A substrate for growing carbon nanotubes capable of elongating single-walled carbon nanotubes of an average diameter of less than 2 nm is provided. The substrate for growing carbon nanotubes 1 is equipped with a reaction prevention layer 3 formed on a base material 2, a catalyst material layer 4 formed on the reaction prevention layer 3, a dispersion layer 5 formed on the catalyst material layer 4, and a dispersion promotion layer 6 formed on the dispersion layer 5.
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: September 9, 2014
    Assignees: Honda Motor Co., Ltd., Waseda University
    Inventors: Toshiyuki Ohashi, Toshio Tokune, Masahiro Ota, Hidefumi Nikawa, Hiroshi Kawarada, Takumi Ochiai
  • Patent number: 8821975
    Abstract: A method for making a branched carbon nanotube structure includes steps, as follows: providing a substrate and forming a buffer layer on a surface of the substrate; depositing a catalyst layer on the surface of the buffer layer; putting the substrate into a reactive device; and forming the branched carbon nanotubes on the surface of the buffer layer and along the surface of the buffer layer by a chemical vapor deposition method. The material of the catalyst layer is non-wetting with the material of the buffer layer at a temperature that the branched carbon nanotube are formed. A yield of the branched carbon nanotubes in the structure can reach about 50%.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: September 2, 2014
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Chun-Xiang Luo, Liang Liu, Kai-Li Jiang, Shou-Shan Fan
  • Publication number: 20140241974
    Abstract: This carbon nanofiber is produced by a vapor phase reaction of a carbon oxide-containing raw material gas using a friend oxide powder including a Co oxide as a catalyst, wherein at least one type selected from metal cobalt, carbon-containing cobalt metals, and cobalt-carbon compounds is contained (encapsulated) in the fiber in a wrapped state. This method for producing a carbon nanofiber includes: producing a carbon nanofiber by, a vapor phase reaction of a carbon oxide-containing raw material gas using a mixed powder of a Co oxide and a Mg oxide as a catalyst, wherein a mixed powder of CoO and MgO, which is obtained by hydrogen-reducing a mixed powder of Co3O4 and MgO using a reduction gas having a hydrogen concentration in which metal cobalt is not generated, is used as the catalyst.
    Type: Application
    Filed: September 28, 2012
    Publication date: August 28, 2014
    Inventors: Masahiro Hagiwara, Hiroyuki Imai
  • Patent number: 8815341
    Abstract: Processes for growing carbon nanotubes on carbon fiber substrates are described herein. The processes can include depositing a catalyst precursor on a carbon fiber substrate, optionally depositing a non-catalytic material on the carbon fiber substrate, and after depositing the catalyst precursor and the optional non-catalytic material, exposing the carbon fiber substrate to carbon nanotube growth conditions so as to grow carbon nanotubes thereon. The carbon nanotube growth conditions can convert the catalyst precursor into a catalyst that is operable for growing carbon nanotubes. The carbon fiber substrate can remain stationary or be transported while the carbon nanotubes are being grown. Optionally, the carbon fiber substrates can include a barrier coating and/or be free of a sizing agent. Carbon fiber substrates having carbon nanotubes grown thereon are also described.
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: August 26, 2014
    Assignee: Applied NanoStructured Solutions, LLC
    Inventors: Brandon K. Malet, Tushar K. Shah
  • Patent number: 8815168
    Abstract: A carbon nanotube synthesizing apparatus in which the state of generated plasma can be stabilized is provided. A carbon nanotube synthesizing apparatus 1 comprises a chamber 2, an antenna 3 including a tip 3a, a microwave conductor 4, a gas introducing unit 5, a gas discharging unit 6, a substrate holding unit 7, and a heating unit 8. The shape of the inner wall of the chamber 2 is symmetrical with respect to the tip 3a of the antenna 3.
    Type: Grant
    Filed: March 9, 2013
    Date of Patent: August 26, 2014
    Assignees: Honda Motor Co., Ltd., Waseda University
    Inventors: Hiroshi Kawarada, Toshiyuki Ohashi, Masahiro Ohta, Ryogo Kato, Toshio Tokune, Hidefumi Nikawa
  • Publication number: 20140227481
    Abstract: Provided is a structure for forming carbon nanofiber, including a base material containing an oxygen ion-conductive oxide, and a metal catalyst that is provided on one surface side of the base material.
    Type: Application
    Filed: March 13, 2014
    Publication date: August 14, 2014
    Applicant: FUJIKURA LTD.
    Inventor: Masayasu INAGUMA
  • Publication number: 20140227211
    Abstract: Methods of ex situ synthesis of graphene, graphene oxide, reduced graphene oxide, other graphene derivative structures and nanoparticles useful as polishing agents are disclosed. Compositions and methods for polishing, hardening, protecting, adding longevity to, and lubricating moving and stationary parts in devices and systems, including, but not limited to, engines, turbos, turbines, tracks, races, wheels, bearings, gear systems, armor, heat shields, and other physical and mechanical systems employing machined interacting hard surfaces through the use of nano-polishing agents formed in situ from lubricating compositions and, in some cases, ex situ and their various uses are also disclosed.
    Type: Application
    Filed: April 29, 2014
    Publication date: August 14, 2014
    Applicant: Peerless Worldwide, LLC
    Inventor: Richard S. Shankman
  • Publication number: 20140212353
    Abstract: Apparatus to produce carbon nanotubes (CNTs) of arbitrary length using a chemical vapor deposition (CVD) process reactor furnace is described, where the CNTs are grown axially along a portion of the length of the furnace. The apparatus includes a spindle and a mechanism for rotating the spindle. The spindle located within a constant temperature region of the furnace and operable to collect the CNT around the rotating spindle as the CNT is grown within the furnace.
    Type: Application
    Filed: March 19, 2014
    Publication date: July 31, 2014
    Applicant: THE BOEING COMPANY
    Inventors: Keith Daniel Humfeld, Venkatacha Parameswaran
  • Patent number: 8791395
    Abstract: An embodiment of the present disclosure relates to a heating device comprising a carbon nanotube, which comprises a carbon nanotube layer containing aligned carbon nanotube carpet, a first electrode and a second electrode having a predetermined distance between each other and electrically connected to the carbon nanotube layer respectively, wherein a current produced by applying a voltage to the first electrode passes laterally via the diameter direction of the aligned carbon nanotubes from the first electrode to the second electrode. The present disclosure also includes methods for manufacturing the aligned carbon nanotube carpet.
    Type: Grant
    Filed: April 5, 2012
    Date of Patent: July 29, 2014
    Assignee: National Taiwan University
    Inventors: Shuo-Hung Chang, Chih-Chung Su
  • Patent number: 8784937
    Abstract: Methods for growing carbon nanotubes on glass substrates, particularly glass fiber substrates, are described herein. The methods can include depositing a catalytic material or a catalyst precursor on a glass substrate; depositing a non-catalytic material on the glass substrate prior to, after, or concurrently with the catalytic material or catalyst precursor; and exposing the glass substrate to carbon nanotube growth conditions so as to grow carbon nanotubes thereon. The glass substrate, particularly a glass fiber substrate, can be transported while the carbon nanotubes are being grown thereon. Catalyst precursors can be converted into a catalyst when exposed to carbon nanotube growth conditions. The catalytic material or catalyst precursor and the non-catalytic material can be deposited from a solution containing water as a solvent. Illustrative deposition techniques include, for example, spray coating and dip coating.
    Type: Grant
    Filed: September 12, 2011
    Date of Patent: July 22, 2014
    Assignee: Applied NanoStructured Solutions, LLC
    Inventors: Brandon K. Malet, Tushar K. Shah
  • Patent number: 8771627
    Abstract: A subject of the present invention is a process for producing carbon nanotubes, the process comprising: a) the synthesis of alcohol(s) by fermentation of at least one vegetable matter and optionally the purification of the product obtained; b) the dehydration of the alcohol or alcohols obtained in a) in order to produce, in a first reactor, a mixture of alkene(s) and water and optionally the purification of the product obtained; c) the introduction, in particular the introduction into a fluidized bed, in a second reactor, of a powdery catalyst at a temperature ranging from 450 to 850° C.
    Type: Grant
    Filed: April 4, 2008
    Date of Patent: July 8, 2014
    Assignee: Arkema France
    Inventors: Serge Bordere, Daniel Cochard, Eric Dutilh, Patrice Gaillard, André Lozowski, Dominique Plee
  • Patent number: 8759810
    Abstract: A phase change memory device that utilizes a nanowire structure. Usage of the nanowire structure permits the phase change memory device to release its stress upon amorphization via the minimization of reset resistance and threshold resistance.
    Type: Grant
    Filed: September 24, 2010
    Date of Patent: June 24, 2014
    Assignee: The Trustees Of The University Of Pennsylvania
    Inventors: Ritesh Agarwal, Mukut Mitra, Yeonwoong Jung
  • Patent number: 8758716
    Abstract: An atmosphere of a carbon source comprising an oxygenic compound is brought into contact with a catalyst with heating to yield single-walled carbon nanotubes. The carbon source comprising an oxygenic compound preferably is an alcohol and/or ether. The catalyst preferably is a metal. The heating temperature is preferably 500 to 1,500° C. The single-walled carbon nanotubes thus obtained contain no foreign substances and have satisfactory quality with few defects.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: June 24, 2014
    Assignees: Toudai Tlo, Ltd., Toray Industries, Inc
    Inventors: Shigeo Maruyama, Masahito Yoshikawa
  • Publication number: 20140170317
    Abstract: Aspects of the invention are directed to a method of forming a film on a substrate. The substrate and a solid carbon source are placed into a reactor. Subsequently, both the substrate and the solid carbon source are heated. Optionally, one or more process gases may be introduced into the reactor to help drive the formation of the film. The film comprises graphene.
    Type: Application
    Filed: December 17, 2012
    Publication date: June 19, 2014
    Applicant: BLUESTONE GLOBAL TECH LIMITED
    Inventors: Xuesong Li, Hao Ning
  • Publication number: 20140170056
    Abstract: A method for making carbon nanotubes is disclosed. The method includes steps of: (a) providing a growing device, wherein the growing device comprises a reacting room having a gas inlet and a gas outlet; (b) forming a catalyst layer on a first planar surface of a growing substrate; (c) placing the growing substrate and a receiving substrate having a second planar surface in the reacting room, wherein the first planar surface and the second planar surface are parallel with each other; (d) introducing a carbonaceous gas in the reaction room to form a gas flow and growing a first plurality of carbon nanotubes from the growing substrate, wherein the first plurality of carbon nanotubes are brought above the receiving substrate by the gas flow; and (e) stopping the introducing the carbonaceous gas such that the first plurality of carbon nanotubes deposits on the receiving substrate.
    Type: Application
    Filed: February 24, 2014
    Publication date: June 19, 2014
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., Tsinghua University
    Inventors: XUE-SHEN WANG, QUN-QING LI, KAI-LI JIANG, SHOU-SHAN FAN
  • Publication number: 20140159565
    Abstract: Disclosed herein are an electrostatic discharging structure including single-wall carbon nano tubes disposed between electrodes at a predetermined interval to precisely control discharge starting voltage generating a discharge phenomenon between electrodes, and a method of manufacturing an electrostatic discharging structure.
    Type: Application
    Filed: December 9, 2013
    Publication date: June 12, 2014
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Jun Hee BAE, Sang Moon Lee, Sung Kwon Wi, Yong Suk Kim
  • Publication number: 20140151219
    Abstract: The silver electrode coated with carbon nanotubes is an indicator electrode for microtitrimetry by differential electrolytic potentiometry. The electrode is made by first positioning at least one silver wire electrode within a reaction zone of a floating catalyst chemical vapor deposition reactor. A ferrocene catalyst is evaporated within the floating catalyst chemical vapor deposition reactor, and an inlet gas is fed therein to carry the evaporated ferrocene catalyst into the reaction zone. The inlet gas includes hydrogen and a carbon source, such as acetylene. The reaction zone is then heated for deposition of carbon onto the at least one silver electrode to form at least one silver electrode coated with carbon nanotubes. The electrode is cooled and then removed from the reactor.
    Type: Application
    Filed: December 4, 2012
    Publication date: June 5, 2014
    Applicant: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: ABDALLA M. ABULKIBASH, MOATAZ ALI ATEIEH, ABDULAZIZ NABIL AMRO
  • Patent number: 8734684
    Abstract: A method for producing a metallic carbon nanotube, by which a dispersion with a high concentration can be obtained. Specifically disclosed is a method for producing a metallic carbon nanotube, which comprises a fullerene addition step wherein fullerenes are added into a carbon nanotube-containing solution in which metallic carbon nanotubes and semiconductive carbon nanotubes are mixed, and a taking-out step wherein carbon nanotubes dispersed by the added fullerenes are taken out.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: May 27, 2014
    Assignee: Kuraray Co., Ltd.
    Inventor: Takahiro Kitano
  • Patent number: 8728431
    Abstract: A method for preparing carbon nanotubes including attaching a catalyst consisting of a compound in which a transition metal element of Group 8, 9 or 10 is coordinated to a nitrogen-containing dendrimer compound having at least one nitrogen atom, to which a metal element may be coordinated, on a surface of a substrate, and thermally decomposing a carbon compound in the vicinity of the substrate while supplying the carbon compound on the surface of the substrate to which the catalyst is attached. The catalyst for producing the carbon nanotubes is a compound in which a transition metal element of Group 8, 9 or 10 is coordinated to a nitrogen-containing dendrimer compound having at least one nitrogen atom to which a metal element may be coordinated.
    Type: Grant
    Filed: May 30, 2012
    Date of Patent: May 20, 2014
    Assignees: Tokyo Ohka Kogyo Co., Ltd., Tokyo Institute of Technology
    Inventors: Takashi Ono, Isao Hirano, Satoshi Fujimura, Kimihisa Yamamoto, Takane Imaoka
  • Patent number: 8728430
    Abstract: The present disclosure is directed to a method for producing SWCNT from endothermic carbon-containing feedstock, such as, methane gas, using an activated alumina supported Fe:Mo catalyst. The SWCNT growth temperature is less than about 560° C., and the catalyst is activated by exposure to a reducing atmosphere at a temperature greater than about 900° C.
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: May 20, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventors: Elena Mora, John M. Pigos, Avetik R. Harutyunyan
  • Patent number: 8722007
    Abstract: The present invention relates to a method for producing carbon nanoparticles employing heavy petroleum as a carbon precursor, obtained from decant oil, by using the technique of chemical vapor deposition (CVD), and optionally by using an organometallic catalyst that is soluble in the carbon precursor. The main feature of the method according to the invention is that the precursor is vaporized in a controlled manner so as to provide pulses of vapor of constant composition inside a tubular furnace which can be arranged in a vertical position for the continuous production of nanomaterials or in a horizontal position for batch production.
    Type: Grant
    Filed: October 9, 2009
    Date of Patent: May 13, 2014
    Assignee: Petroleo Brasileiro S.A.—Petrobras
    Inventors: Alexandre Taschetto De Castro, Luiz Depine De Castro, Adelci Menezes De Oliveira
  • Patent number: 8715608
    Abstract: A method for synthesizing carbon nanotubes having a narrow distribution of diameter and/or chirality is presented. The method comprises providing catalyst particles to a reactor for synthesizing the carbon nanotubes, wherein the catalyst particles are characterized by a narrow distribution of catalyst-particle diameters and a narrow distribution of catalyst-particle compositions. Preferably, the catalyst particles are characterized by a mean catalyst-particle diameter of 2.6 nm or less and a composition of NixFe1-x, wherein x is less than or equal to 0.5.
    Type: Grant
    Filed: November 29, 2010
    Date of Patent: May 6, 2014
    Assignee: Case Western Reserve University
    Inventors: R. Mohan Sankaran, Wei-Hung Chiang
  • Patent number: 8715609
    Abstract: Apparatus to produce carbon nanotubes (CNTs) of arbitrary length using a chemical vapor deposition (CVD) process reactor furnace is described, where the CNTs are grown axially along a portion of the length of the furnace. The apparatus includes a spindle and a mechanism for rotating the spindle. The spindle located within a constant temperature region of the furnace and operable to collect the CNT around the rotating spindle as the CNT is grown within the furnace.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: May 6, 2014
    Assignee: The Boeing Company
    Inventors: Keith Daniel Humfeld, Venkatacha Parameswaran
  • Publication number: 20140120028
    Abstract: Disclosed is a proximate atom nanotube growth technology capable of continuously growing long, high quality nanotubes. The current invention represents a departure from chemical vapor deposition technology as the atomic feedstock does not originate in the gaseous environment surrounding the nanotubes. The technology mitigates the problems that cease carbon nanotube growth in chemical vapor deposition growth techniques: 1) The accumulation of material on the surface of the catalyst particles, suspected to be primarily amorphous carbon. 2) The effect of Ostwald ripening that reduces the size of smaller catalyst particles and enlarges larger catalyst particles evolving the catalyst particles to a size range distribution incapable of supporting carbon nanotube growth. 3) The effect of some catalyst materials diffusing into the substrate used to grow carbon nanotubes and ceasing growth when the catalyst particle becomes too small.
    Type: Application
    Filed: October 29, 2012
    Publication date: May 1, 2014
    Inventor: Bryan Edward Laubscher