Patents Assigned to Intevac, Inc.
  • Patent number: 9034143
    Abstract: A plasma processing chamber having capacitive and inductive coupling of RF power. An RF power source is connected to an inductive coil and to a top electrode via a variable capacitor to control the ratio of power applied to the coil and electrode. The bottom electrode, which is part of the chuck holding the substrates, is floating, but has parasitive capacitance coupling to ground. No RF bias is applied to the chuck and/or the substrate, but the substrate is chucked using DC power. In a system utilizing the chamber, the chuck is movable and is loaded with substrates outside the chamber, enter the chamber from one side for processing, exit the chamber from an opposite side after the processing, and is unloaded in an unloading chamber. The chuck is then transported back to the loading chamber. Substrates are delivered to and removed from the system using conveyor belts.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: May 19, 2015
    Assignee: INTEVAC, INC.
    Inventors: Young Kyu Cho, Kenneth Tan, Karthik Janakiraman, Judy Huang
  • Patent number: 8997688
    Abstract: An ion implantation system having a grid assembly. The system includes a plasma source configured to provide plasma in a plasma region; a first grid plate having a plurality of apertures configured to allow ions from the plasma region to pass therethrough, wherein the first grid plate is configured to be biased by a power supply; a second grid plate having a plurality of apertures configured to allow the ions to pass therethrough subsequent to the ions passing through the first grid plate, wherein the second grid plate is configured to be biased by a power supply; and a substrate holder configured to support a substrate in a position where the substrate is implanted with the ions subsequent to the ions passing through the second grid plate.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: April 7, 2015
    Assignee: Intevac, Inc.
    Inventors: Babak Adibi, Moon Chun
  • Patent number: 8998553
    Abstract: A system for transporting substrates from an atmospheric pressure to high vacuum pressure and comprising: a rough vacuum chamber having an entry valve and an exit opening; a high vacuum chamber having an entry opening, the high vacuum chamber coupled to the rough vacuum chamber such that the exit opening and the entry opening are aligned; a valve situated between the exit opening and the entry opening; a first conveyor belt provided in the rough vacuum chamber; a second conveyor provided in the high vacuum chamber; a sensing element provided in the high vacuum chamber to enable detection of broken substrates on the second conveyor; and, a mechanism provided on the second conveyor belt enabling dumping of broken substrates onto the bottom of the high vacuum chamber.
    Type: Grant
    Filed: December 7, 2012
    Date of Patent: April 7, 2015
    Assignee: Intevac, Inc.
    Inventors: Vinay Shah, William Runstadler, Jr., Kevin P. Fairbairn, Terry Bluck, Richard Henry Cooke
  • Patent number: 8992153
    Abstract: Introduction of substrates into vacuum environment is accomplish by gradually reducing the number of substrates being transferred simultaneously as the clean and evacuated environment is progressed. Cassettes are maintained in clean atmospheric environment and do not enter the vacuum environment. Several vacuum locks are linearly staggered so as to introduce progressively higher level of vacuum environment. The number of substrates transported through this arrangement is a portion of the number of substrates present in each cassette. The staggered vacuum locks lead to a series of processing chambers, wherein a yet smaller number of substrates, e.g., one or two, are transported.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: March 31, 2015
    Assignee: Intevac, Inc.
    Inventors: Stuart Scollay, Terry Bluck, Xiang Chen
  • Patent number: 8975668
    Abstract: A structure and method of manufacture is disclosed for a backside thinned imager that incorporates a conformal, Al2O3, low thermal budget, surface passivation. This passivation approach facilitates fabrication of backside thinned, backside illuminated, silicon image sensors with thick silicon absorber layer patterned with vertical trenches that are formed by etching the exposed back surface of a backside-thinned image sensor to control photo-carrier diffusion and optical crosstalk. A method of manufacture employing conformal, Al2O3, surface passivation approach is shown to provide high quantum efficiency and low dark current while meeting the thermal budget constraints of a finished standard foundry-produced CMOS imager.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: March 10, 2015
    Assignee: Intevac, Inc.
    Inventors: Kenneth A. Costello, Edward Yin, Michael Wayne Pelczynski, Verle W. Aebi
  • Publication number: 20140332376
    Abstract: A system for depositing material from a target onto substrates, comprising a processing chamber; a sputtering target having length L and having sputtering material provided on front surface thereof; a magnet operable to reciprocally scan across the length L in close proximity to rear surface of the target; and a counterweight operable to reciprocally scan at same speed but opposite direction of the magnet.
    Type: Application
    Filed: February 20, 2014
    Publication date: November 13, 2014
    Applicant: INTEVAC, INC.
    Inventors: Vinay Shah, Alex Riposan, Terry Bluck
  • Patent number: 8871619
    Abstract: Solar cells and other semiconductor devices are fabricated more efficiently and for less cost using an implanted doping fabrication system. A system for implanting a semiconductor substrate includes an ion source (such as a single-species delivery module), an accelerator to generate from the ion source an ion beam having an energy of no more than 150 kV, and a beam director to expose the substrate to the beam. In one embodiment, the ion source is single-species delivery module that includes a single-gas delivery element and a single-ion source. Alternatively, the ion source is a plasma source used to generate a plasma beam. The system is used to fabricate solar cells having lightly doped photo-receptive regions and more highly doped grid lines. This structure reduces the formation of “dead layers” and improves the contact resistance, thereby increasing the efficiency of a solar cell.
    Type: Grant
    Filed: June 11, 2009
    Date of Patent: October 28, 2014
    Assignee: Intevac, Inc.
    Inventors: Babak Adibi, Edward S. Murrer
  • Publication number: 20140311893
    Abstract: A sputtering system having a processing chamber with an inlet port and an outlet port, and a sputtering target positioned on a wall of the processing chamber. A movable magnet arrangement is positioned behind the sputtering target and reciprocally slides behind the target. A conveyor continuously transports substrates at a constant speed past the sputtering target, such that at any given time, several substrates face the target between the leading edge and the trailing edge. In certain embodiments, the movable magnet arrangement slides at a speed that is at least several times faster than the constant speed of the conveyor. A rotating zone is defined behind the leading edge and trailing edge of the target, wherein the magnet arrangement decelerates when it enters the rotating zone and accelerates as it reverses direction of sliding within the rotating zone. In certain embodiments, magnet power and/or speed varies as function of direction of magnet travel.
    Type: Application
    Filed: February 20, 2014
    Publication date: October 23, 2014
    Applicant: Intevac, Inc.
    Inventors: Vinay Shah, Alexandru Riposan, Terry Bluck, Vladimir Kudriavtsev
  • Patent number: 8834088
    Abstract: Disclosed is a substrate processing system with a magnetic conduit configuration to improve the movement of a substrate carrier within the system. The configuration specifically provides for safe, secure movement of a carrier between multiple levels of a substrate processing system by using magnetic conduits to redirect magnetic forces created by a linear motor, permitting the linear motor to be positioned outside of the system and in a location that will not interfere with the movement of the carrier.
    Type: Grant
    Filed: November 12, 2007
    Date of Patent: September 16, 2014
    Assignee: Intevac, Inc.
    Inventor: Stuart Scollay
  • Patent number: 8795466
    Abstract: Apparatus and methods are provided that enable processing of patterned layers on substrates using a detachable mask. Unlike prior art where the mask is formed directly over the substrate, according to aspects of the invention the mask is made independently of the substrate. During use, the mask is positioned in close proximity or in contact with the substrate so as to expose only portions of the substrate to processing, e.g., sputtering or etch. Once the processing is completed, the mask is moved away from the substrate and may be used for another substrate. The substrate may be cycled for a given number of substrates and then be removed for cleaning or disposal.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: August 5, 2014
    Assignee: Intevac, Inc.
    Inventors: Michael S. Barnes, Terry Bluck
  • Patent number: 8784622
    Abstract: A system is provided for etching patterned media disks. A movable non-contact electrode is utilized to perform sputter etch. The electrode moves to near contact distance to, but not contacting, the substrate so as to couple RF energy to the disk. The material to be etched may be metal, e.g., Co/Pt/Cr or similar metals. The substrate is held vertically in a carrier and both sides are etched serially. That is, one side is etched in one chamber and then in the next chamber the second side is etched. An isolation valve is disposed between the two chambers and the disk carrier moves the disks between the chambers. The carrier may be a linear drive carrier, using, e.g., magnetized wheels and linear motors.
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: July 22, 2014
    Assignee: Intevac, Inc.
    Inventors: Michael S. Barnes, Terry Bluck
  • Publication number: 20140170795
    Abstract: A grid for minimizing effects of ion divergence in plasma ion implant. The plasma grid is made of a flat plate having a plurality of holes, wherein the holes are arranged in a plurality of rows and a plurality of columns thereby forming beamlets of ions that diverge in one direction. A mask is used to form the implanted shapes on the wafer, wherein the holes in the mask are oriented orthogonally to the direction of beamlet divergence.
    Type: Application
    Filed: December 19, 2013
    Publication date: June 19, 2014
    Applicant: Intevac, Inc.
    Inventors: Vinay Prabhakar, Babak Adibi
  • Publication number: 20140166087
    Abstract: A photovoltaic cell having a graded doped region such as a graded emitter and methods of making photovoltaic cells having graded doped regions such as a graded emitter are disclosed. Doping is adjusted across a surface to minimize resistive (I2R) power losses. The graded emitters provide a gradual change in sheet resistance over the entire distance between the lines. The graded emitter profile may have a lower sheet resistance near the metal lines and a higher sheet resistance farther from the metal line edges. The sheet resistance is graded such that the sheet resistance is lower where I2R power losses are highest due to current crowding. One advantage of graded emitters over selective emitters is improved efficiency. An additional advantage of graded emitters over selective emitters is improved ease of aligning metallization to the low sheet resistance regions.
    Type: Application
    Filed: December 18, 2012
    Publication date: June 19, 2014
    Applicant: INTEVAC, INC.
    Inventors: Henry Hieslmair, Babak Adibi
  • Patent number: 8749053
    Abstract: A method of ion implantation comprising: providing a plasma within a plasma region of a chamber; positively biasing a first grid plate, wherein the first grid plate comprises a plurality of apertures; negatively biasing a second grid plate, wherein the second grid plate comprises a plurality of apertures; flowing ions from the plasma in the plasma region through the apertures in the positively-biased first grid plate; flowing at least a portion of the ions that flowed through the apertures in the positively-biased first grid plate through the apertures in the negatively-biased second grid plate; and implanting a substrate with at least a portion of the ions that flowed through the apertures in the negatively-biased second grid plate.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: June 10, 2014
    Assignee: Intevac, Inc.
    Inventors: Babak Adibi, Moon Chun
  • Patent number: 8715515
    Abstract: A sequence of process steps having balanced process times are implemented in sequence of etch chambers coupled linearly and isolated one from the other, resulting in the optimization of island to trench ratio for a patterned media. A biased chemical etching using active etching gas is used to descum and trim the resist patterns. An inert gas sputter etch is performed on the magnetic layers, resulting in the patterned magnetic layer on the disk. A final step of stripping is then performed to remove the residual capping resist and carbon hard mask on top of un-etched magnetic islands. The effective magnetic material remaining on the disk surface can be optimized by adjusting the conditions of chemical etch and sputter etch conditions. Relevant process conditions that may be adjusted include: pressure, bias, time, and the type of gas in each step.
    Type: Grant
    Filed: March 23, 2010
    Date of Patent: May 6, 2014
    Assignee: Intevac, Inc.
    Inventors: Houng T. Nguyen, Ren Xu, Michael S. Barnes
  • Publication number: 20140102888
    Abstract: A deposition system is provided, where conductive targets of similar composition are situated opposing each other. The system is aligned parallel with a substrate, which is located outside the resulting plasma that is largely confined between the two cathodes. A “plasma cage” is formed wherein the carbon atoms collide with accelerating electrons and get highly ionized. The electrons are trapped inside the plasma cage, while the ionized carbon atoms are deposited on the surface of the substrate. Since the electrons are confined to the plasma cage, no substrate damage or heating occurs. Additionally, argon atoms, which are used to ignite and sustain the plasma and to sputter carbon atoms from the target, do not reach the substrate, so as to avoid damaging the substrate.
    Type: Application
    Filed: October 4, 2013
    Publication date: April 17, 2014
    Applicant: Intevac, Inc.
    Inventors: Samuel D. Harkness, IV, Terry Bluck, Michael A. Russak, Quang N. Tran, David Ward Brown
  • Patent number: 8697553
    Abstract: Solar cells in accordance with the present invention have reduced ohmic losses. These cells include photo-receptive regions that are doped less densely than adjacent selective emitter regions. The photo-receptive regions contain multiple four-sided pyramids that decrease the amount of light lost to the solar cell by reflection. The smaller doping density in the photo-receptive regions results in less blue light that is lost by electron-hole recombination. The higher doping density in the selective emitter region allows for better contacts with the metallic grid coupled to the multiple emitter regions. Preferably, the selective emitter and photo-receptive regions are both implanted using a narrow ion beam containing the dopants.
    Type: Grant
    Filed: June 11, 2009
    Date of Patent: April 15, 2014
    Assignee: Intevac, Inc
    Inventors: Babak Adibi, Edward S. Murrer
  • Patent number: 8697189
    Abstract: A scalable, high-throughput nanoimprint lithography priming tool includes a dual-reactant chemical vapor deposition reactor chamber, a mandrel configured to hold a plurality of hard disks at an inner diameter of the hard disks, and a transport mechanism to move the plurality of hard disks into and out of the chamber. The tool may also include a transfer tool to transfer the plurality of hard disks to additional chambers for processing.
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: April 15, 2014
    Assignee: Intevac, Inc.
    Inventors: Ren Xu, Carl T. Petersen, III, Charles Liu
  • Patent number: 8698925
    Abstract: An image sensor is disclosed that includes a solid state semiconductor imager having a metallized catch pad, a collimator having a metallized layer that faces a sensor anode, the metallized layer joined with the metallized catch pad to form a metal bond between the solid state semiconductor imager and the collimator. Methods of making the joined solid state semiconductor imager and collimator assembly are also disclosed.
    Type: Grant
    Filed: April 21, 2010
    Date of Patent: April 15, 2014
    Assignee: Intevac, Inc.
    Inventors: Kenneth A. Costello, Kevin J. Roderick, Edward Yin, Douglas Fowler
  • Patent number: 8697552
    Abstract: A method of ion implantation comprising: providing a plasma within a plasma region of a chamber; positively biasing a first grid plate, wherein the first grid plate comprises a plurality of apertures; negatively biasing a second grid plate, wherein the second grid plate comprises a plurality of apertures; flowing ions from the plasma in the plasma region through the apertures in the positively-biased first grid plate; flowing at least a portion of the ions that flowed through the apertures in the positively-biased first grid plate through the apertures in the negatively-biased second grid plate; and implanting a substrate with at least a portion of the ions that flowed through the apertures in the negatively-biased second grid plate.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: April 15, 2014
    Assignee: Intevac, Inc.
    Inventors: Babak Adibi, Moon Chun